Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

xgb

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

xgb

  • 0.9.0
  • Rubygems
  • Socket score

Version published
Maintainers
1
Created
Source

XGBoost Ruby

XGBoost - high performance gradient boosting - for Ruby

Build Status

Installation

Add this line to your application’s Gemfile:

gem "xgb"

On Mac, also install OpenMP:

brew install libomp

Learning API

Prep your data

x = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [1, 2, 3, 4]

Train a model

params = {objective: "reg:squarederror"}
dtrain = XGBoost::DMatrix.new(x, label: y)
booster = XGBoost.train(params, dtrain)

Predict

dtest = XGBoost::DMatrix.new(x)
booster.predict(dtest)

Save the model to a file

booster.save_model("my.model")

Load the model from a file

booster = XGBoost::Booster.new(model_file: "my.model")

Get the importance of features

booster.score

Early stopping

XGBoost.train(params, dtrain, evals: [[dtrain, "train"], [dtest, "eval"]], early_stopping_rounds: 5)

CV

XGBoost.cv(params, dtrain, nfold: 3, verbose_eval: true)

Set metadata about a model

booster["key"] = "value"
booster.attributes

Scikit-Learn API

Prep your data

x = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [1, 2, 3, 4]

Train a model

model = XGBoost::Regressor.new
model.fit(x, y)

For classification, use XGBoost::Classifier

Predict

model.predict(x)

For classification, use predict_proba for probabilities

Save the model to a file

model.save_model("my.model")

Load the model from a file

model.load_model("my.model")

Get the importance of features

model.feature_importances

Early stopping

model.fit(x, y, eval_set: [[x_test, y_test]], early_stopping_rounds: 5)

Data

Data can be an array of arrays

[[1, 2, 3], [4, 5, 6]]

Or a Numo array

Numo::NArray.cast([[1, 2, 3], [4, 5, 6]])

Or a Rover data frame

Rover.read_csv("houses.csv")

Or a Daru data frame

Daru::DataFrame.from_csv("houses.csv")

Helpful Resources

  • LightGBM - LightGBM for Ruby
  • Eps - Machine learning for Ruby

Credits

This library follows the Python API, with the get_ and set_ prefixes removed from methods to make it more Ruby-like.

Thanks to the xgboost gem for showing how to use FFI.

History

View the changelog

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/ankane/xgboost-ruby.git
cd xgboost-ruby
bundle install
bundle exec rake vendor:all
bundle exec rake test

FAQs

Package last updated on 17 Oct 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc