Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package excelize providing a set of functions that allow you to write to and read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and writing spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.16 or later. See https://xuri.me/excelize for more information about this package.
ANSI Text Styling A portmanteau of “ansi style” anstyle provides core types describing ANSI styling escape codes for interoperability between crates. Example use cases: - An argument parser allowing callers to define the colors used in the help-output without putting the text formatting crate in the public API - A style description parser that can work with any text formatting crate Priorities: API stability - Low compile-time and binary-size overhead - const friendly API for callers to statically define their stylesheet For integration with text styling crate, see: - anstyle-ansi-term - anstyle-crossterm - anstyle-owo-colors - anstyle-termcolor - anstyle-yansi User-styling parsers: - anstyle-git: Parse Git style descriptions - anstyle-ls: Parse LS_COLORS style descriptions Convert to other formats. - anstream: A simple cross platform library for writing colored text to a terminal - anstyle-roff: For converting to ROFF - anstyle-syntect: For working with syntax highlighting Utilities. - anstyle-lossy: Convert between anstyle::Color types - anstyle-parse: Parsing ANSI Style Escapes - anstyle-wincon: Styling legacy Microsoft terminals
Package Authaus is an authentication and authorization system. Authaus brings together the following pluggable components: Any of these five components can be swapped out, and in fact the fourth, and fifth ones (Role Groups and User Store) are entirely optional. A typical setup is to use LDAP as an Authenticator, and Postgres as a Session, Permit, and Role Groups database. Your session database does not need to be particularly performant, since Authaus maintains an in-process cache of session keys and their associated tokens. Authaus was NOT designed to be a "Facebook Scale" system. The target audience is a system of perhaps 100,000 users. There is nothing fundamentally limiting about the API of Authaus, but the internals certainly have not been built with millions of users in mind. The intended usage model is this: Authaus is intended to be embedded inside your security system, and run as a standalone HTTP service (aka a REST service). This HTTP service CAN be open to the wide world, but it's also completely OK to let it listen only to servers inside your DMZ. Authaus only gives you the skeleton and some examples of HTTP responders. It's up to you to flesh out the details of your authentication HTTP interface, and whether you'd like that to face the world, or whether it should only be accessible via other services that you control. At startup, your services open an HTTP connection to the Authaus service. This connection will typically live for the duration of the service. For every incoming request, you peel off whatever authentication information is associated with that request. This is either a session key, or a username/password combination. Let's call it the authorization information. You then ask Authaus to tell you WHO this authorization information belongs to, as well as WHAT this authorization information allows the requester to do (ie Authentication and Authorization). Authaus responds either with a 401 (Unauthorized), 403 (Forbidden), or a 200 (OK) and a JSON object that tells you the identity of the agent submitting this request, as well the permissions that this agent posesses. It's up to your individual services to decide what to do with that information. It should be very easy to expose Authaus over a protocol other than HTTP, since Authaus is intended to be easy to embed. The HTTP API is merely an illustrative example. A `Session Key` is the long random number that is typically stored as a cookie. A `Permit` is a set of roles that has been granted to a user. Authaus knows nothing about the contents of a permit. It simply treats it as a binary blob, and when writing it to an SQL database, encodes it as base64. The interpretation of the permit is application dependent. Typically, a Permit will hold information such as "Allowed to view billing information", or "Allowed to paint your bathroom yellow". Authaus does have a built-in module called RoleGroupDB, which has its own interpretation of what a Permit is, but you do not need to use this. A `Token` is the result of a successful authentication. It stores the identity of a user, an expiry date, and a Permit. A token will usually be retrieved by a session key. However, you can also perform a once-off authentication, which also yields you a token, which you will typically throw away when you are finished with it. All public methods of the `Central` object are callable from multiple threads. Reader-Writer locks are used in all of the caching systems. The number of concurrent connections is limited only by the limits of the Go runtime, and the performance limits that are inherent to the simple reader-writer locks used to protect shared state. Authaus must be deployed as a single process (which implies running on a single logical machine). The sole reason why it must run on only one process and not more, is because of the state that lives inside the various Authaus caches. Were it not for these caches, then there would be nothing preventing you from running Authaus on as many machines as necessary. The cached state stored inside the Authaus server is: If you wanted to make Authaus runnable across multiple processes, then you would need to implement a cache invalidation system for these caches. Authaus makes no attempt to mitigate DOS attacks. The most sane approach in this domain seems to be this (http://security.stackexchange.com/questions/12101/prevent-denial-of-service-attacks-against-slow-hashing-functions). The password database (created via NewAuthenticationDB_SQL) stores password hashes using the scrypt key derivation system (http://www.tarsnap.com/scrypt.html). Internally, we store our hash in a format that can later be extended, should we wish to double-hash the passwords, etc. The hash is 65 bytes and looks like this: The first byte of the hash is a version number of the hash. The remaining 64 bytes are the salt and the hash itself. At present, only one version is supported, which is version 1. It consists of 32 bytes of salt, and 32 bytes of scrypt'ed hash, with scrypt parameters N=256 r=8 p=1. Note that the parameter N=256 is quite low, meaning that it is possible to compute this in approximately 1 millisecond (1,000,000 nanoseconds) on a 2009-era Intel Core i7. This is a deliberate tradeoff. On the same CPU, a SHA256 hash takes about 500 nanoseconds to compute, so we are still making it 2000 times harder to brute force the passwords than an equivalent system storing only a SHA256 salted hash. This discussion is only of relevance in the event that the password table is compromised. No cookie signing mechanism is implemented. Cookies are not presently transmitted with Secure:true. This must change. The LDAP Authenticator is extremely simple, and provides only one function: Authenticate a user against an LDAP system (often this means Active Directory, AKA a Windows Domain). It calls the LDAP "Bind" method, and if that succeeds for the given identity/password, then the user is considered authenticated. We take care not to allow an "anonymous bind", which many LDAP servers allow when the password is blank. The Session Database runs on Postgres. It stores a table of sessions, where each row contains the following information: When a permit is altered with Authaus, then all existing sessions have their permits altered transparently. For example, imagine User X is logged in, and his administrator grants him a new permission. User X does not need to log out and log back in again in order for his new permissions to be reflected. His new permissions will be available immediately. Similarly, if a password is changed with Authaus, then all sessions are invalidated. Do take note though, that if a password is changed through an external mechanism (such as with LDAP), then Authaus will have no way of knowing this, and will continue to serve up sessions that were authenticated with the old password. This is a problem that needs addressing. You can limit the number of concurrent sessions per user to 1, by setting MaxActiveSessions.ConfigSessionDB to 1. This setting may only be zero or one. Zero, which is the default, means an unlimited number of concurrent sessions per user. Authaus will always place your Session Database behind its own Session Cache. This session cache is a very simple single-process in-memory cache of recent sessions. The limit on the number of entries in this cache is hard-coded, and that should probably change. The Permit database runs on Postgres. It stores a table of permits, which is simply a 1:1 mapping from Identity -> Permit. The Permit is just an array of bytes, which we store base64 encoded, inside a text field. This part of the system doesn't care how you interpret that blob. The Role Group Database is an entirely optional component of Authaus. The other components of Authaus (Authenticator, PermitDB, SessionDB) do not understand your Permits. To them, a Permit is simply an arbitrary array of bytes. The Role Group Database is a component that adds a specific meaning to a permit blob. Let's see what that specific meaning looks like... The built-in Role Group Database interprets a permit blob as a string of 32-bit integer IDs: These 32-bit integer IDs refer to "role groups" inside a database table. The "role groups" table might look like this: The Role Group IDs use 32-bit indices, because we assume that you are not going to create more than 2^32 different role groups. The worst case we assume here is that of an automated system that creates 100,000 roles per day. Such a system would run for more than 100 years, given a 32-bit ID. These constraints are extraordinary, suggesting that we do not even need 32 bits, but could even get away with just a 16-bit group ID. However, we expect the number of groups to be relatively small. Our aim here, arbitrary though it may be, is to fit the permit and identity into a single ethernet packet, which one can reasonably peg at 1500 bytes. 1500 / 4 = 375. We assume that no sane human administrator will assign 375 security groups to any individual. We expect the number of groups assigned to any individual to be in the range of 1 to 20. This makes 375 a gigantic buffer. OAuth support in Authaus is limited to a very simple scenario: * You wish to allow your users to login using an OAuth service - thereby outsourcing the Authentication to that external service, and using it to populate the email address of your users. OAuth was developed in order to work with Microsoft Azure Active Directory, however it should be fairly easy to extend the code to be able to handle other OAuth providers. Inside the database are two tables related to OAuth: oauthchallenge: The challenge table holds OAuth sessions which have been started, and which are expected to either succeed or fail within the next few minutes. The default timeout for a challenge is 5 minutes. A challenge record is usually created the moment the user clicks on the "Sign in with Microsoft" button on your site, and it tracks that authentication attempt. oauthsession: The session table holds OAuth sessions which have successfully authenticated, and also the token that was retrieved by a successful authorization. If a token has expired, then it is refreshed and updated in-place, inside the oauthsession table. An OAuth login follows this sequence of events: 1. User clicks on a "Signin with X" button on your login page 2. A record is created in the oauthchallenge table, with a unique ID. This ID is a secret known only to the authaus server and the OAuth server. It is used as the `state` parameter in the OAuth login mechanism. 3. The HTTP call which prompts #2 return a redirect URL (eg via an HTTP 302 response), which redirects the user's browser to the OAuth website, so that the user can either grant or refuse access. If the user refuses, or fails to login, then the login sequence ends here. 4. Upon successful authorization with the OAuth system, the OAuth website redirects the user back to your website, to a URL such as example.com/auth/oauth/finish, and you'll typically want Authaus to handle this request directly (via HttpHandlerOAuthFinish). Authaus will extract the secrets from the URL, perform any validations necessary, and then move the record from the oauthchallenge table, into the oauthsession table. While 'moving' the record over, it will also add any additional information that was provided by the successful authentication, such as the token provided by the OAuth provider. 5. Authaus makes an API call to the OAuth system, to retrieve the email address and name of the person that just logged in, using the token just received. 6. If that email address does not exist inside authuserstore, then create a new user record for this identity. 7. Log the user into Authaus, by creating a record inside authsession, for the relevant identity. Inside the authsession table, store a link to the oauthsession record, so that there is a 1:1 link from the authsession table, to the oauthsession table (ie Authaus Session to OAuth Token). 8. Return an Authaus session cookie to the browser, thereby completing the login. Although we only use our OAuth token a single time, during login, to retrieve the user's email address and name, we retain the OAuth token, and so we maintain the ability to make other API calls on behalf of that user. This hasn't proven necessary yet, but it seems like a reasonable bit of future-proofing. See the guidelines at the top of all_test.go for testing instructions.
Package excelize providing a set of functions that allow you to write to and read from XLSX / XLSM / XLTM files. Supports reading and writing spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.10 or later. See https://xuri.me/excelize for more information about this package.
Copyright Philippe Thomassigny 2004-2023. Use of this source code is governed by a MIT licence. license that can be found in the LICENSE file. XDominion for GO v0 ============================= xdominion is a Go library for creating a database layer that abstracts the underlying database implementation and allows developers to interact with the database using objects rather than SQL statements. It supports multiple database backends, including PostgreSQL, MySQL, SQLite, and Microsoft SQL Server, among others. If you need a not yet supported database, please open a ticket on github.com. The library provides a set of high-level APIs for interacting with databases. It allows developers to map database tables to Go structs, allowing them to interact with the database using objects. The library also provides an intuitive and chainable API for querying the database, similar to the structure of SQL statements, but without requiring developers to write SQL code directly. xdominion uses a set of interfaces to abstract the database operations, making it easy to use different database backends with the same code. The library supports transactions, allowing developers to perform multiple database operations in a single transaction. The xdominion library uses reflection to map Go structs to database tables, and also allows developers to specify custom column names and relationships between tables. Overall, xdominion provides a simple and intuitive way to interact with databases using objects and abstracts the underlying database implementation. It is a well-designed library with a clear API and support for multiple database backends. 1. Overview ------------------------ XDominion is a database abstraction layer, to build and use objects of data instead of building SQL queries. The code is portable between databases with changing the implementation, since you don't use direct incompatible SQL sentences. The library is build over 3 main objects: - XBase: database connector and cursors to build queries and manipulation language - - Other included objects: XCursor - XTable: the table definition, data access function/structures and definition manipulation language - - Other included objects: XField*, XConstraints, XContraint, XOrderby, XConditions, XCondition - XRecord: the results and data to interchange with the database - - Other included objects: XRecords 2. Some example code to start working rapidly: ------------------------ Creates the connector to the database and connect: ``` ``` Executes a direct query: ``` ``` Creates a table definition: ``` t := xdominion.NewXTable("test", "t_") t.AddField(xdominion.XFieldText{Name: "f3"}) t.AddField(xdominion.XFieldDate{Name: "f4"}) t.AddField(xdominion.XFieldDateTime{Name: "f5"}) t.AddField(xdominion.XFieldFloat{Name: "f6"}) t.SetBase(base) ``` Synchronize the table with DB (create it if it does not exist) ``` ``` Some Insert: ``` ``` With an error (f2 is mandatory based on table definition): ``` ``` General query (select ALL): ``` ``` Query by Key: ``` ``` Query by Where: ``` ``` Transactions: ``` tx, err := base.BeginTransaction() res1, err := tb.Insert(XRecord{"f1": 5, "f2": "Data line 1"}, tx) res2, err := tb.Update(2, XRecord{"f1": 5, "f2": "Data line 1"}, tx) res3, err := tb.Delete(3, tx) // Note that the transaction is always passed as a parameter to the insert, update, delete operations tx.Commit() ``` 3. Reference ------------------------ XBase ----- The xbase package in xdominion provides a set of functions for working with relational databases in Go. Here is a reference manual for the package: Constants VERSION: A constant string that represents the version of XDominion. DB_Postgres: A constant string that represents the PostgreSQL database. DB_MySQL: A constant string that represents the MySQL database. DB_Localhost: A constant string that represents the local host. Variables DEBUG: A boolean variable used to enable/disable debug mode. Structs XBase DB: A pointer to an instance of sql.DB, representing the database connection. Logged: A boolean indicating whether the database connection has been established. DBType: A string representing the type of database being used. Username: A string representing the username for the database connection. Password: A string representing the password for the database connection. Database: A string representing the name of the database being connected to. Host: A string representing the host for the database connection. SSL: A boolean indicating whether to use SSL for the database connection. Logger: A pointer to a logger for debugging purposes. XTransaction DB: A pointer to an instance of XBase, representing the database connection. TX: A pointer to an instance of sql.Tx, representing a transaction. Functions Logon() The Logon() function establishes a connection to the database. go Copy code func (b *XBase) Logon() Logoff() The Logoff() function closes the database connection. go Copy code func (b *XBase) Logoff() Exec() The Exec() function executes a SQL query on the database and returns a cursor. go Copy code func (b *XBase) Exec(query string, args ...interface{}) (*sql.Rows, error) Cursor() The Cursor() function returns a new instance of Cursor, which provides methods for working with database records. go Copy code package main import ( ) In this example, we first create a new instance of the xdominion.XBase struct with the connection details to the database we want to connect to. We then call the Logon() method of the XBase struct to establish a connection to the database. Next, we define an SQL query to insert a new user into the users table, and then call the Exec() method of the XBase struct with the query and the values we want to insert. The Exec() function returns a cursor, which we don't need in this example, so we ignore it using the blank identifier (_). If there's an error executing the query, we print an error message to the console. Finally, we close the database connection by calling the Logoff() method of the XBase struct. Note that this is just a simple example, and you should always make sure to properly handle errors and sanitize user input when working with databases. package main import ( ) In this example, we first create a new instance of the xdominion.XBase struct with the connection details to the database we want to connect to. We then call the Logon() method of the XBase struct to establish a connection to the database. Next, we define an SQL query to select a user from the users table with the id equal to 1. We then call the Exec() method of the XBase struct with the query and the value we want to use for the id parameter. The Exec() function returns a cursor that we can iterate over to get the results of the query. We use a for loop to iterate over the rows returned by the Exec() function. Inside the loop, we use the Scan() method of the rows object to read the values of the name and email columns into variables. We then print the values of these variables to the console. If there's an error executing the query or reading a row, we print an error message to the console. Finally, we close the rows object and the database connection by calling the Close() and Logoff() methods of the XBase struct, respectively. Note that this is just a simple example, and you should always make sure to properly handle errors and sanitize user input when working with databases. go Copy code func (b *XBase) Cursor() *Cursor BeginTransaction() The BeginTransaction() function starts a new transaction on the database. go Copy code func (b *XBase) BeginTransaction() (*XTransaction, error) Commit() The Commit() function commits a transaction to the database. go Copy code func (t *XTransaction) Commit() error Rollback() The Rollback() function rolls back a transaction on the database. go Copy code func (t *XTransaction) Rollback() error Notes The Logon() function must be called before using any other functions in the xbase package. The Logoff() function should be called when finished using the database connection. The Exec() function should be used for executing arbitrary SQL queries. The Cursor() function should be used for performing CRUD operations on database records. The BeginTransaction(), Commit(), and Rollback() functions should be used for transactions. Note that this is just a brief overview of the xbase package. For more information and examples, please refer to the documentation in the xdominion GitHub repository: https://github.com/webability-go/xdominion. Create a new instance of the xdominion.XBase struct, which represents a database connection. The XBase struct provides methods for interacting with the database, such as querying, inserting, updating, and deleting records. In this example, &xdominion.XBase{} is the instance of the XBase struct, and the properties of the struct are set to the database connection details. The DBType property specifies the type of database being used, Username and Password specify the username and password for the database connection, Database specifies the name of the database being connected to, Host specifies the host for the database connection, and SSL specifies whether to use SSL for the database connection. Use the Logon() method of the XBase struct to connect to the database. base.Logon() The Logon() method establishes a connection to the database using the details provided in the XBase struct. Note that this is just a simple example, and the XBase library provides many more features for working with databases using objects. You can find more information and examples in the xdominion GitHub repository: https://github.com/webability-go/xdominion. XTable definition ----------------- XTable operations ----------------- XRecord ------- XRecords -------- Conditions ---------- Orderby ------- Fields ------ Limits ------ Groupby ------- Having ------ */
Package luis is a tools to access Microsoft Translator marketplace API. For more detail, please refer to https://www.microsoft.com/translator/api.aspx
Package excelize providing a set of functions that allow you to write to and read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and writing spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.18 or later. See https://xuri.me/excelize for more information about this package.
Package azure provides a complete API to work with different services of Microsoft Azure (defined as Azure). Specifications leveraged:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package excelize providing a set of functions that allow you to write to and read from XLSX / XLSM / XLTM files. Supports reading and writing spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.10 or later. See https://xuri.me/excelize for more information about this package.
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package excelize providing a set of functions that allow you to write to and read from XLSX / XLSM / XLTM files. Supports reading and writing spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.10 or later. See https://xuri.me/excelize for more information about this package.
Package msgraph is a go lang implementation of the Microsoft Graph API See: https://developer.microsoft.com/en-us/graph/docs/concepts/overview
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package msgraph4go provides a Go interface for the Microsoft Graph API. See https://developer.microsoft.com/en-us/graph for more details on the Graph API.
Package excelize providing a set of functions that allow you to write to and read from XLSX / XLSM / XLTM files. Supports reading and writing spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.10 or later. See https://xuri.me/excelize for more information about this package.
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package msgoraph implements a Go interface for the Microsoft Graph API
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package excelize providing a set of functions that allow you to write to and read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and writing spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.15 or later. See https://xuri.me/excelize for more information about this package.
Package excelize providing a set of functions that allow you to write to and read from XLSX / XLSM / XLTM files. Supports reading and writing spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.10 or later. See https://xuri.me/excelize for more information about this package.
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document: