Package cron implements a cron spec parser and job runner. To download the specific tagged release, run: Import it in your program as: It requires Go 1.11 or later due to usage of Go Modules. Callers may register Funcs to be invoked on a given schedule. Cron will run them in their own goroutines. A cron expression represents a set of times, using 5 space-separated fields. Month and Day-of-week field values are case insensitive. "SUN", "Sun", and "sun" are equally accepted. The specific interpretation of the format is based on the Cron Wikipedia page: https://en.wikipedia.org/wiki/Cron Alternative Cron expression formats support other fields like seconds. You can implement that by creating a custom Parser as follows. Since adding Seconds is the most common modification to the standard cron spec, cron provides a builtin function to do that, which is equivalent to the custom parser you saw earlier, except that its seconds field is REQUIRED: That emulates Quartz, the most popular alternative Cron schedule format: http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html Asterisk ( * ) The asterisk indicates that the cron expression will match for all values of the field; e.g., using an asterisk in the 5th field (month) would indicate every month. Slash ( / ) Slashes are used to describe increments of ranges. For example 3-59/15 in the 1st field (minutes) would indicate the 3rd minute of the hour and every 15 minutes thereafter. The form "*\/..." is equivalent to the form "first-last/...", that is, an increment over the largest possible range of the field. The form "N/..." is accepted as meaning "N-MAX/...", that is, starting at N, use the increment until the end of that specific range. It does not wrap around. Comma ( , ) Commas are used to separate items of a list. For example, using "MON,WED,FRI" in the 5th field (day of week) would mean Mondays, Wednesdays and Fridays. Hyphen ( - ) Hyphens are used to define ranges. For example, 9-17 would indicate every hour between 9am and 5pm inclusive. Question mark ( ? ) Question mark may be used instead of '*' for leaving either day-of-month or day-of-week blank. You may use one of several pre-defined schedules in place of a cron expression. You may also schedule a job to execute at fixed intervals, starting at the time it's added or cron is run. This is supported by formatting the cron spec like this: where "duration" is a string accepted by time.ParseDuration (http://golang.org/pkg/time/#ParseDuration). For example, "@every 1h30m10s" would indicate a schedule that activates after 1 hour, 30 minutes, 10 seconds, and then every interval after that. Note: The interval does not take the job runtime into account. For example, if a job takes 3 minutes to run, and it is scheduled to run every 5 minutes, it will have only 2 minutes of idle time between each run. By default, all interpretation and scheduling is done in the machine's local time zone (time.Local). You can specify a different time zone on construction: Individual cron schedules may also override the time zone they are to be interpreted in by providing an additional space-separated field at the beginning of the cron spec, of the form "CRON_TZ=Asia/Tokyo". For example: The prefix "TZ=(TIME ZONE)" is also supported for legacy compatibility. Be aware that jobs scheduled during daylight-savings leap-ahead transitions will not be run! A Cron runner may be configured with a chain of job wrappers to add cross-cutting functionality to all submitted jobs. For example, they may be used to achieve the following effects: Install wrappers for all jobs added to a cron using the `cron.WithChain` option: Install wrappers for individual jobs by explicitly wrapping them: Since the Cron service runs concurrently with the calling code, some amount of care must be taken to ensure proper synchronization. All cron methods are designed to be correctly synchronized as long as the caller ensures that invocations have a clear happens-before ordering between them. Cron defines a Logger interface that is a subset of the one defined in github.com/go-logr/logr. It has two logging levels (Info and Error), and parameters are key/value pairs. This makes it possible for cron logging to plug into structured logging systems. An adapter, [Verbose]PrintfLogger, is provided to wrap the standard library *log.Logger. For additional insight into Cron operations, verbose logging may be activated which will record job runs, scheduling decisions, and added or removed jobs. Activate it with a one-off logger as follows: Cron entries are stored in an array, sorted by their next activation time. Cron sleeps until the next job is due to be run. Upon waking:
Package cron implements a cron spec parser and job runner. Callers may register Funcs to be invoked on a given schedule. Cron will run them in their own goroutines. A cron expression represents a set of times, using 6 space-separated fields. Note: Month and Day-of-week field values are case insensitive. "SUN", "Sun", and "sun" are equally accepted. Asterisk ( * ) The asterisk indicates that the cron expression will match for all values of the field; e.g., using an asterisk in the 5th field (month) would indicate every month. Slash ( / ) Slashes are used to describe increments of ranges. For example 3-59/15 in the 1st field (minutes) would indicate the 3rd minute of the hour and every 15 minutes thereafter. The form "*\/..." is equivalent to the form "first-last/...", that is, an increment over the largest possible range of the field. The form "N/..." is accepted as meaning "N-MAX/...", that is, starting at N, use the increment until the end of that specific range. It does not wrap around. Comma ( , ) Commas are used to separate items of a list. For example, using "MON,WED,FRI" in the 5th field (day of week) would mean Mondays, Wednesdays and Fridays. Hyphen ( - ) Hyphens are used to define ranges. For example, 9-17 would indicate every hour between 9am and 5pm inclusive. Question mark ( ? ) Question mark may be used instead of '*' for leaving either day-of-month or day-of-week blank. You may use one of several pre-defined schedules in place of a cron expression. You may also schedule a job to execute at fixed intervals, starting at the time it's added or cron is run. This is supported by formatting the cron spec like this: where "duration" is a string accepted by time.ParseDuration (http://golang.org/pkg/time/#ParseDuration). For example, "@every 1h30m10s" would indicate a schedule that activates after 1 hour, 30 minutes, 10 seconds, and then every interval after that. Note: The interval does not take the job runtime into account. For example, if a job takes 3 minutes to run, and it is scheduled to run every 5 minutes, it will have only 2 minutes of idle time between each run. All interpretation and scheduling is done in the machine's local time zone (as provided by the Go time package (http://www.golang.org/pkg/time). Be aware that jobs scheduled during daylight-savings leap-ahead transitions will not be run! Since the Cron service runs concurrently with the calling code, some amount of care must be taken to ensure proper synchronization. All cron methods are designed to be correctly synchronized as long as the caller ensures that invocations have a clear happens-before ordering between them. Cron entries are stored in an array, sorted by their next activation time. Cron sleeps until the next job is due to be run. Upon waking:
Package gocron : A Golang Job Scheduling Package. An in-process scheduler for periodic jobs that uses the builder pattern for configuration. Schedule lets you run Golang functions periodically at pre-determined intervals using a simple, human-friendly syntax. Inspired by the Ruby module clockwork <https://github.com/tomykaira/clockwork> and Python package schedule <https://github.com/dbader/schedule> See also http://adam.heroku.com/past/2010/4/13/rethinking_cron/ http://adam.heroku.com/past/2010/6/30/replace_cron_with_clockwork/ Copyright 2014 Jason Lyu. jasonlvhit@gmail.com . All rights reserved. Use of this source code is governed by a BSD-style . license that can be found in the LICENSE file.
Package gocron : A Golang Job Scheduling Package. An in-process scheduler for periodic jobs that uses the builder pattern for configuration. gocron lets you run Golang functions periodically at pre-determined intervals using a simple, human-friendly syntax.
Package ecs provides the API client, operations, and parameter types for Amazon EC2 Container Service. Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management service. It makes it easy to run, stop, and manage Docker containers. You can host your cluster on a serverless infrastructure that's managed by Amazon ECS by launching your services or tasks on Fargate. For more control, you can host your tasks on a cluster of Amazon Elastic Compute Cloud (Amazon EC2) or External (on-premises) instances that you manage. Amazon ECS makes it easy to launch and stop container-based applications with simple API calls. This makes it easy to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features. You can use Amazon ECS to schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements. With Amazon ECS, you don't need to operate your own cluster management and configuration management systems. You also don't need to worry about scaling your management infrastructure.
Package autoscaling provides the API client, operations, and parameter types for Auto Scaling. Amazon EC2 Auto Scaling is designed to automatically launch and terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information, see the Amazon EC2 Auto Scaling User Guide and the Amazon EC2 Auto Scaling API Reference.
Package extender contains types and logic to respond to requests from a Kubernetes http scheduler extender.
RBAC TODO: mention the required RBAC rules. TODO: example config. The processor supports running both in agent and collector mode. When running as an agent, the processor detects IP addresses of pods sending spans, metrics or logs to the agent and uses this information to extract metadata from pods. When running as an agent, it is important to apply a discovery filter so that the processor only discovers pods from the same host that it is running on. Not using such a filter can result in unnecessary resource usage especially on very large clusters. Once the filter is applied, each processor will only query the k8s API for pods running on it's own node. Node filter can be applied by setting the `filter.node` config option to the name of a k8s node. While this works as expected, it cannot be used to automatically filter pods by the same node that the processor is running on in most cases as it is not know before hand which node a pod will be scheduled on. Luckily, kubernetes has a solution for this called the downward API. To automatically filter pods by the node the processor is running on, you'll need to complete the following steps: 1. Use the downward API to inject the node name as an environment variable. Add the following snippet under the pod env section of the OpenTelemetry container. This will inject a new environment variable to the OpenTelemetry container with the value as the name of the node the pod was scheduled to run on. 2. Set "filter.node_from_env_var" to the name of the environment variable holding the node name. This will restrict each OpenTelemetry agent to query pods running on the same node only dramatically reducing resource requirements for very large clusters. The processor can be deployed both as an agent or as a collector. When running as a collector, the processor cannot correctly detect the IP address of the pods generating the telemetry data without any of the well-known IP attributes, when it receives them from an agent instead of receiving them directly from the pods. To workaround this issue, agents deployed with the k8s_tagger processor can be configured to detect the IP addresses and forward them along with the telemetry data resources. Collector can then match this IP address with k8s pods and enrich the records with the metadata. In order to set this up, you'll need to complete the following steps: 1. Setup agents in passthrough mode Configure the agents' k8s_tagger processors to run in passthrough mode. This will ensure that the agents detect the IP address as add it as an attribute to all telemetry resources. Agents will not make any k8s API calls, do any discovery of pods or extract any metadata. 2. Configure the collector as usual No special configuration changes are needed to be made on the collector. It'll automatically detect the IP address of spans, logs and metrics sent by the agents as well as directly by other services/pods. There are some edge-cases and scenarios where k8s_tagger will not work properly. The processor cannot correct identify pods running in the host network mode and enriching telemetry data generated by such pods is not supported at the moment, unless the attributes contain information about the source IP. The processor does not support detecting containers from the same pods when running as a sidecar. While this can be done, we think it is simpler to just use the kubernetes downward API to inject environment variables into the pods and directly use their values as tags.
This package provides utilities for efficiently performing Win32 IO operations in Go. Currently, this package is provides support for genreal IO and management of This code is similar to Go's net package, and uses IO completion ports to avoid blocking IO on system threads, allowing Go to reuse the thread to schedule other goroutines. This limits support to Windows Vista and newer operating systems. Additionally, this package provides support for:
Package virtualkubelet is currently just for providing docs for godoc. Virtual Kubelet is a project which aims to provide a library that can be consumed by other projects to build a Kubernetes node agent that performs the same basic role as the Kubelet, but fully customize the behavior. *Note*: Virtual Kubelet is not the Kubelet. All of the business logic for virtual-kubelet is in the `node` package. The node package has controllers for managing the node in Kubernetes and running scheduled pods against a backend service. The backend service along with the code wrapping what is provided in the node package is what consumers of this project would implement. In the interest of not duplicating examples, please see that package on how to get started using virtual kubelet. Virtual Kubelet supports propagation of logging and traces through a context. See the "log" and "trace" packages for how to use this. Errors produced by and consumed from the node package are expected to conform to error types defined in the "errdefs" package in order to be able to understand the kind of failure that occurred and react accordingly.
Package eventbridge provides the API client, operations, and parameter types for Amazon EventBridge. Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.
Package applicationautoscaling provides the API client, operations, and parameter types for Application Auto Scaling. With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon Neptune clusters Amazon SageMaker endpoint variants Amazon SageMaker inference components Amazon SageMaker serverless endpoint provisioned concurrency Spot Fleets (Amazon EC2) Pool of WorkSpaces Custom resources provided by your own applications or services To learn more about Application Auto Scaling, see the Application Auto Scaling User Guide. The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTargetAPI action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling.
Package datapipeline provides the API client, operations, and parameter types for AWS Data Pipeline. AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.
Package swf provides the API client, operations, and parameter types for Amazon Simple Workflow Service. The Amazon Simple Workflow Service (Amazon SWF) makes it easy to build applications that use Amazon's cloud to coordinate work across distributed components. In Amazon SWF, a task represents a logical unit of work that is performed by a component of your workflow. Coordinating tasks in a workflow involves managing intertask dependencies, scheduling, and concurrency in accordance with the logical flow of the application. Amazon SWF gives you full control over implementing tasks and coordinating them without worrying about underlying complexities such as tracking their progress and maintaining their state. This documentation serves as reference only. For a broader overview of the Amazon SWF programming model, see the Amazon SWF Developer Guide.
Package cloudwatchevents provides the API client, operations, and parameter types for Amazon CloudWatch Events. Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.
Package health provides a generic health checking framework. The health package works expvar style. By importing the package the debug server is getting a "/debug/health" endpoint that returns the current status of the application. If there are no errors, "/debug/health" will return a HTTP 200 status, together with an empty JSON reply "{}". If there are any checks with errors, the JSON reply will include all the failed checks, and the response will be have an HTTP 503 status. A Check can either be run synchronously, or asynchronously. We recommend that most checks are registered as an asynchronous check, so a call to the "/debug/health" endpoint always returns immediately. This pattern is particularly useful for checks that verify upstream connectivity or database status, since they might take a long time to return/timeout. To install health, just import it in your application: You can also (optionally) import "health/api" that will add two convenience endpoints: "/debug/health/down" and "/debug/health/up". These endpoints add "manual" checks that allow the service to quickly be brought in/out of rotation. After importing these packages to your main application, you can start registering checks. The recommended way of registering checks is using a periodic Check. PeriodicChecks run on a certain schedule and asynchronously update the status of the check. This allows CheckStatus to return without blocking on an expensive check. A trivial example of a check that runs every 5 seconds and shuts down our server if the current minute is even, could be added as follows: Alternatively, you can also make use of "RegisterPeriodicThresholdFunc" to implement the exact same check, but add a threshold of failures after which the check will be unhealthy. This is particularly useful for flaky Checks, ensuring some stability of the service when handling them. The lowest-level way to interact with the health package is calling "Register" directly. Register allows you to pass in an arbitrary string and something that implements "Checker" and runs your check. If your method returns an error with nil, it is considered a healthy check, otherwise it will make the health check endpoint "/debug/health" start returning a 503 and list the specific check that failed. Assuming you wish to register a method called "currentMinuteEvenCheck() error" you could do that by doing: CheckFunc is a convenience type that implements Checker. Another way of registering a check could be by using an anonymous function and the convenience method RegisterFunc. An example that makes the status endpoint always return an error: You could also use the health checker mechanism to ensure your application only comes up if certain conditions are met, or to allow the developer to take the service out of rotation immediately. An example that checks database connectivity and immediately takes the server out of rotation on err: You can also use the predefined Checkers that come included with the health package. First, import the checks: After that you can make use of any of the provided checks. An example of using a `FileChecker` to take the application out of rotation if a certain file exists can be done as follows: After registering the check, it is trivial to take an application out of rotation from the console: You could also test the connectivity to a downstream service by using a "HTTPChecker", but ensure that you only mark the test unhealthy if there are a minimum of two failures in a row:
Package gorelic is an New Relic agent implementation for Go runtime. It collect a lot of metrics about Go scheduler, garbage collector and memory allocator and send them to NewRelic.
Package pool implements a limited consumer goroutine or unlimited goroutine pool for easier goroutine handling and cancellation. Features: Pool v2 advantages over Pool v1: Pool v3 advantages over Pool v2: Important Information READ THIS! important usage information It is recommended that you cancel a pool or batch from the calling function and not inside of the Unit of Work, it will work fine, however because of the goroutine scheduler and context switching it may not cancel as soon as if called from outside. When Batching DO NOT FORGET TO CALL batch.QueueComplete(), if you do the Batch WILL deadlock It is your responsibility to call WorkUnit.IsCancelled() to check if it's cancelled after a blocking operation like waiting for a connection from a pool. (optional) both Limited Pool and Unlimited Pool have the same signatures and are completely interchangeable. Per Unit Work Batch Work run with 1, 2, 4,8 and 16 cpu to show it scales well...16 is double the # of logical cores on this machine. NOTE: Cancellation times CAN vary depending how busy your system is and how the goroutine scheduler is but worse case I've seen is 1 second to cancel instead of 0ns To put some of these benchmarks in perspective:
A job runner for executing scheduled or ad-hoc tasks asynchronously from HTTP requests. It adds a couple of features on top of the Robfig cron package:
Provides an HTTP Transport that implements the `RoundTripper` interface and can be used as a built in replacement for the standard library's, providing: This is a thin wrapper around `http.Transport` that sets dial timeouts and uses Go's internal timer scheduler to call the Go 1.1+ `CancelRequest()` API.
Package scheduler is a cron replacement based on: and Uses include:
Package scheduler provides the API client, operations, and parameter types for Amazon EventBridge Scheduler. create, run, and manage tasks from one central, managed service. EventBridge Scheduler delivers your tasks reliably, with built-in mechanisms that adjust your schedules based on the availability of downstream targets. The following reference lists the available API actions, and data types for EventBridge Scheduler.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package tc allows to show and alter traffic control settings in the Linux kernel. Traffic control is composed of the elements shaping, scheduling, policing and dropping. This processing is controlled by qdiscs, classes and filters. For a more detailed introduction of these elements, please have a look at http://man7.org/linux/man-pages/man8/tc.8.html. This example demonstrate the use with classic BPF This example demonstrate how to attach an eBPF program with TC to an interface.
Package temporal and its subdirectories contain the Temporal client side framework. The Temporal service is a task orchestrator for your application’s tasks. Applications using Temporal can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Temporal manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Temporal consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root temporal package contains common data structures. The subpackages are: The Temporal hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Temporal provides a client-side library for the Go language. In Temporal, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Temporal does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Temporal will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Temporal provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Temporal ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Temporal provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Temporal workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Temporal enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task queue. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Temporal ensure that only one workflow is running for a particular entity at a time. Temporal implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Temporal allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Temporal will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Temporal also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Temporal will not automatically retry activities on failure. For every activity execution Temporal will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Temporal allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Temporal datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Temporal server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Temporal requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Temporal provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Temporal client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package jobs is a persistent and flexible background jobs library. Version: 0.4.2 Jobs is powered by redis and supports the following features: Jobs is intended to be used in web applications. It is useful for cases where you need to execute some long-running code, but you don't want your users to wait for the code to execute before rendering a response. A good example is sending a welcome email to your users after they sign up. You can use Jobs to schedule the email to be sent asynchronously, and render a response to your user without waiting for the email to be sent. You could use a goroutine to accomplish the same thing, but in the event of a server restart or power loss, the email might never be sent. Jobs guarantees that the email will be sent at some time, and allows you to spread the work between different machines. Visit https://github.com/albrow/jobs for a Quickstart Guide, code examples, and more information.
Package cron implements a cron spec parser and runner. Package cron implements a cron spec parser and job runner. Callers may register Funcs to be invoked on a given schedule. Cron will run them in their own goroutines. A cron expression represents a set of times, using 6 space-separated fields. Note: Month and Day-of-week field values are case insensitive. "SUN", "Sun", and "sun" are equally accepted. Asterisk ( * ) The asterisk indicates that the cron expression will match for all values of the field; e.g., using an asterisk in the 5th field (month) would indicate every month. Slash ( / ) Slashes are used to describe increments of ranges. For example 3-59/15 in the 1st field (minutes) would indicate the 3rd minute of the hour and every 15 minutes thereafter. The form "*\/..." is equivalent to the form "first-last/...", that is, an increment over the largest possible range of the field. The form "N/..." is accepted as meaning "N-MAX/...", that is, starting at N, use the increment until the end of that specific range. It does not wrap around. Comma ( , ) Commas are used to separate items of a list. For example, using "MON,WED,FRI" in the 5th field (day of week) would mean Mondays, Wednesdays and Fridays. Hyphen ( - ) Hyphens are used to define ranges. For example, 9-17 would indicate every hour between 9am and 5pm inclusive. Question mark ( ? ) Question mark may be used instead of '*' for leaving either day-of-month or day-of-week blank. You may use one of several pre-defined schedules in place of a cron expression. You may also schedule a job to execute at fixed intervals. This is supported by formatting the cron spec like this: where "duration" is a string accepted by time.ParseDuration (http://golang.org/pkg/time/#ParseDuration). For example, "@every 1h30m10s" would indicate a schedule that activates every 1 hour, 30 minutes, 10 seconds. Note: The interval does not take the job runtime into account. For example, if a job takes 3 minutes to run, and it is scheduled to run every 5 minutes, it will have only 2 minutes of idle time between each run. By default, all interpretation and scheduling is done in the machine's local time zone (as provided by the Go time package http://www.golang.org/pkg/time). The time zone may be overridden by providing an additional space-separated field at the beginning of the cron spec, of the form "TZ=Asia/Tokyo" Be aware that jobs scheduled during daylight-savings leap-ahead transitions will not be run! Since the Cron service runs concurrently with the calling code, some amount of care must be taken to ensure proper synchronization. All cron methods are designed to be correctly synchronized as long as the caller ensures that invocations have a clear happens-before ordering between them. Cron entries are stored in an array, sorted by their next activation time. Cron sleeps until the next job is due to be run. Upon waking:
Package cron implements a cron spec parser and job runner. Callers may register Funcs to be invoked on a given schedule. Cron will run them in their own goroutines. A cron expression represents a set of times, using 6 space-separated fields. Note: Month and Day-of-week field values are case insensitive. "SUN", "Sun", and "sun" are equally accepted. Asterisk ( * ) The asterisk indicates that the cron expression will match for all values of the field; e.g., using an asterisk in the 5th field (month) would indicate every month. Slash ( / ) Slashes are used to describe increments of ranges. For example 3-59/15 in the 1st field (minutes) would indicate the 3rd minute of the hour and every 15 minutes thereafter. The form "*\/..." is equivalent to the form "first-last/...", that is, an increment over the largest possible range of the field. The form "N/..." is accepted as meaning "N-MAX/...", that is, starting at N, use the increment until the end of that specific range. It does not wrap around. Comma ( , ) Commas are used to separate items of a list. For example, using "MON,WED,FRI" in the 5th field (day of week) would mean Mondays, Wednesdays and Fridays. Hyphen ( - ) Hyphens are used to define ranges. For example, 9-17 would indicate every hour between 9am and 5pm inclusive. Question mark ( ? ) Question mark may be used instead of '*' for leaving either day-of-month or day-of-week blank. You may use one of several pre-defined schedules in place of a cron expression. You may also schedule a job to execute at fixed intervals, starting at the time it's added or cron is run. This is supported by formatting the cron spec like this: where "duration" is a string accepted by time.ParseDuration (http://golang.org/pkg/time/#ParseDuration). For example, "@every 1h30m10s" would indicate a schedule that activates after 1 hour, 30 minutes, 10 seconds, and then every interval after that. Note: The interval does not take the job runtime into account. For example, if a job takes 3 minutes to run, and it is scheduled to run every 5 minutes, it will have only 2 minutes of idle time between each run. All interpretation and scheduling is done in the machine's local time zone (as provided by the Go time package (http://www.golang.org/pkg/time). Be aware that jobs scheduled during daylight-savings leap-ahead transitions will not be run! Since the Cron service runs concurrently with the calling code, some amount of care must be taken to ensure proper synchronization. All cron methods are designed to be correctly synchronized as long as the caller ensures that invocations have a clear happens-before ordering between them. Cron entries are stored in an array, sorted by their next activation time. Cron sleeps until the next job is due to be run. Upon waking: