An HTTP client for interacting with the Kubecost Allocation API. For documentation on the Go standard library net/http package, see the following: For documentation on the Kubecost Allocation API, see the following: Package main is a generated GoMock package. Application configuration. For documentation on Viper, see the following: An HTTP server for exposing cost allocation metrics retrieved from Kubecost. Metrics are exposed via an HTTP metrics endpoint. Applications that provide a Prometheus OpenMetrics integration can gather cost allocation metrics from this endpoint to store and visualize the data. Generate Prometheus metrics from configuration. For documentation on the Go client library for Prometheus, see the following: Utility functions.
Package geobin.io runs a web server which creates a geobin url that can receive geo data via POSTs and visualizes it on a map.
Package vision is a repository containing visual processing packages in Go (golang), focused mainly on providing efficient V1 (primary visual cortex) level filtering of images, with the output then suitable as input for neural networks. Two main types of filters are supported: * **Gabor** filters simulate V1 simple-cell responses in terms of an oriented sine wave times a gaussian envelope that localizes the filter in space. This produces an edge detector that detects oriented contrast transitions between light and dark. In general, the main principle of primary visual filtering is to focus on spatial (and temporal) changes, while filtering out static, uniform areas. * **DoG** (difference of gaussian) filters simulate retinal On-center vs. Off-center contrast coding cells -- unlike gabor filters, these do not have orientation tuning. Mathematically, they are a difference between a narrow (center) vs wide (surround) gaussian, of opposite signs, balanced so that a uniform input generates offsetting values that sum to zero. In the visual system, orientation tuning is constructed from aligned DoG-like inputs, but it is more efficient to just use the Gabor filters directly. However, DoG filters capture the "blob" cells that encode color contrasts. The `vfilter` package contains general-purpose filtering code that applies (convolves) any given filter with a visual input. It also supports converting an `image.Image` into a `tensor.Float32` tensor which is the main data type used in this framework. It also supports max-pooling for efficiently reducing the dimensionality of inputs. The `kwta` package provides an implementation of the feedforward and feedback (FFFB) inhibition dynamics (and noisy X-over-X-plus-1 activation function) from the `Leabra` algorithm to produce a k-Winners-Take-All processing of visual filter outputs -- this increases the contrast and simplifies the representations, and is a good model of the dynamics in primary visual cortex.
Package mdtopdf implements a PDF document generator for markdown documents. This package depends on two other packages: * The BlackFriday v2 parser to read the markdown source * The gofpdf packace to generate the PDF The tests included here are from the BlackFriday package. See the "testdata" folder. The tests create PDF files and thus while the tests may complete without errors, visual inspection of the created PDF is the only way to determine if the tests *really* pass! The tests create log files that trace the BlackFriday parser callbacks. This is a valuable debug tool showing each callback and data provided in each while the AST is presented. To install the package: In the cmd folder is an example using the package. It demonstrates a number of features. The test PDF was created with this command: Package mdtopdf converts markdown to PDF.
Package chart implements common chart/plot types. The following chart types are available: Chart tries to provides useful defaults and produce nice charts without sacrificing accuracy. The generated charts look good and are higly customizable but will not match the visual quality of handmade photoshop charts or the statistical features of charts produced by S or R. Creating charts consists of the following steps: You may change the configuration at any step or render to different outputs. The different chart types and their fields are all simple struct types where the zero value provides suitable defaults. All fields are exported, even if you are not supposed to manipulate them directy or are 'output fields'. E.g. the common Data field of all chart types will store the sample data added with one or more Add... methods. Some fields are mere output which expose internal stuff for your use like the Data2Screen and Screen2Data functions of the Ranges. Some fields are even input/output fields: E.g. you may set the Range.TicSetting.Delta to some positive value which will be used as the spacing between tics on that axis; on the other hand if you leave Range.TicSetting.Delta at its default 0 you indicate to the plotting routine to automatically determine the tic delta which is then reported back in this fields. All charts (except pie/ring charts) contain at least one axis represented by a field of type Range. Axis can be differented into following categories: How the axis is autoscaled can be controlled for both ends of the axis individually by MinMode and MaxMode which allow a fine control of the (auto-) scaling. After setting up the chart, adding data, samples, functions you can render the chart to a Graphics output. This process will set several internal fields of the chart. If you reuse the chart, add additional data and output it again these fields might no longer indicate 'automatical/default' but contain the value calculated in the first output round.
Package graph is a library for creating generic graph data structures and modifying, analyzing, and visualizing them. A graph consists of vertices of type T, which are identified by a hash value of type K. The hash value for a given vertex is obtained using the hashing function passed to New. A hashing function takes a T and returns a K. For primitive types like integers, you may use a predefined hashing function such as IntHash – a function that takes an integer and uses that integer as the hash value at the same time: For storing custom data types, you need to provide your own hashing function. This example takes a City instance and returns its name as the hash value: Creating a graph using this hashing function will yield a graph of vertices of type City identified by hash values of type string. Adding vertices to a graph of integers is simple. graph.Graph.AddVertex takes a vertex and adds it to the graph. Most functions accept and return only hash values instead of entire instances of the vertex type T. For example, graph.Graph.AddEdge creates an edge between two vertices and accepts the hash values of those vertices. Because this graph uses the IntHash hashing function, the vertex values and hash values are the same. All operations that modify the graph itself are methods of Graph. All other operations are top-level functions of by this library. For detailed usage examples, take a look at the README.
Package mdtopdf implements a PDF document generator for markdown documents. This package depends on two other packages: * The BlackFriday v2 parser to read the markdown source * The gofpdf packace to generate the PDF The tests included here are from the BlackFriday package. See the "testdata" folder. The tests create PDF files and thus while the tests may complete without errors, visual inspection of the created PDF is the only way to determine if the tests *really* pass! The tests create log files that trace the BlackFriday parser callbacks. This is a valuable debug tool showing each callback and data provided in each while the AST is presented. To install the package: In the cmd folder is an example using the package. It demonstrates a number of features. The test PDF was created with this command: Package mdtopdf converts markdown to PDF.
Package mdtopdf implements a PDF document generator for markdown documents. This package depends on two other packages: * The BlackFriday v2 parser to read the markdown source * The fpdf packace to generate the PDF The tests included here are from the BlackFriday package. See the "testdata" folder. The tests create PDF files and thus while the tests may complete without errors, visual inspection of the created PDF is the only way to determine if the tests *really* pass! The tests create log files that trace the BlackFriday parser callbacks. This is a valuable debug tool showing each callback and data provided in each while the AST is presented. To install the package: In the cmd folder is an example using the package. It demonstrates a number of features. The test PDF was created with this command: Package mdtopdf converts markdown to PDF.
Package mdtopdf implements a PDF document generator for markdown documents. This package depends on two other packages: * The BlackFriday v2 parser to read the markdown source * The fpdf packace to generate the PDF The tests included here are from the BlackFriday package. See the "testdata" folder. The tests create PDF files and thus while the tests may complete without errors, visual inspection of the created PDF is the only way to determine if the tests *really* pass! The tests create log files that trace the BlackFriday parser callbacks. This is a valuable debug tool showing each callback and data provided in each while the AST is presented. To install the package: In the cmd folder is an example using the package. It demonstrates a number of features. The test PDF was created with this command: Package mdtopdf converts markdown to PDF.
Package graph is a library for creating generic graph data structures and modifying, analyzing, and visualizing them. A graph consists of vertices of type T, which are identified by a hash value of type K. The hash value for a given vertex is obtained using the hashing function passed to New. A hashing function takes a T and returns a K. For primitive types like integers, you may use a predefined hashing function such as IntHash – a function that takes an integer and uses that integer as the hash value at the same time: For storing custom data types, you need to provide your own hashing function. This example takes a City instance and returns its name as the hash value: Creating a graph using this hashing function will yield a graph of vertices of type City identified by hash values of type string. Adding vertices to a graph of integers is simple. graph.Graph.AddVertex takes a vertex and adds it to the graph. Most functions accept and return only hash values instead of entire instances of the vertex type T. For example, graph.Graph.AddEdge creates an edge between two vertices and accepts the hash values of those vertices. Because this graph uses the IntHash hashing function, the vertex values and hash values are the same. All operations that modify the graph itself are methods of Graph. All other operations are top-level functions of by this library. For detailed usage examples, take a look at the README.
Package mdtopdf implements a PDF document generator for markdown documents. This package depends on two other packages: * The BlackFriday v2 parser to read the markdown source * The fpdf packace to generate the PDF The tests included here are from the BlackFriday package. See the "testdata" folder. The tests create PDF files and thus while the tests may complete without errors, visual inspection of the created PDF is the only way to determine if the tests *really* pass! The tests create log files that trace the BlackFriday parser callbacks. This is a valuable debug tool showing each callback and data provided in each while the AST is presented. To install the package: In the cmd folder is an example using the package. It demonstrates a number of features. The test PDF was created with this command: Package mdtopdf converts markdown to PDF.
inertia is a Go package for real-time estimation of a power system's inertia levels. It defines software interfaces for ingesting and reporting data in real-time. Unit commitment ("H-constant")-based estimation logic and data interfaces are available in the inertia/uc package. PMU-based estimation methods are planned as future work. System integrators can provide deployment-specfic data ingestion code (e.g., developed for use with a specific EMS or historian system) that conforms to the stated data interfaces for the desired estimation method. Once these input interfaces are implemented, ingested data can be automatically processed and reported out via the package's real-time visualization framework. This package provides two off-the-shelf visualization modules in inertia/sink/text and inertia/sink/web, but custom implementations of the [Visualizer] interface can also be used. Multiple Visualizers can be associated with a single real-time data stream, allowing for reporting to multiple outputs at the same time, for example logging to a text file while also visualizing results in a web browser.
Package graph is a library for creating generic graph data structures and modifying, analyzing, and visualizing them. A graph consists of vertices of type T, which are identified by a hash value of type K. The hash value for a given vertex is obtained using the hashing function passed to New. A hashing function takes a T and returns a K. For primitive types like integers, you may use a predefined hashing function such as IntHash – a function that takes an integer and uses that integer as the hash value at the same time: For storing custom data types, you need to provide your own hashing function. This example takes a City instance and returns its name as the hash value: Creating a graph using this hashing function will yield a graph of vertices of type City identified by hash values of type string. Adding vertices to a graph of integers is simple. graph.Graph.AddVertex takes a vertex and adds it to the graph. Most functions accept and return only hash values instead of entire instances of the vertex type T. For example, graph.Graph.AddEdge creates an edge between two vertices and accepts the hash values of those vertices. Because this graph uses the IntHash hashing function, the vertex values and hash values are the same. All operations that modify the graph itself are methods of Graph. All other operations are top-level functions of by this library. For detailed usage examples, take a look at the README.