Package bigtable is an API to Google Cloud Bigtable. See https://cloud.google.com/bigtable/docs/ for general product documentation. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. The principal way to read from a Bigtable is to use the ReadRows method on *Table. A RowRange specifies a contiguous portion of a table. A Filter may be provided through RowFilter to limit or transform the data that is returned. To read a single row, use the ReadRow helper method: This API exposes two distinct forms of writing to a Bigtable: a Mutation and a ReadModifyWrite. The former expresses idempotent operations. The latter expresses non-idempotent operations and returns the new values of updated cells. These operations are performed by creating a Mutation or ReadModifyWrite (with NewMutation or NewReadModifyWrite), building up one or more operations on that, and then using the Apply or ApplyReadModifyWrite methods on a Table. For instance, to set a couple of cells in a table: To increment an encoded value in one cell: If a read or write operation encounters a transient error it will be retried until a successful response, an unretryable error or the context deadline is reached. Non-idempotent writes (where the timestamp is set to ServerTime) will not be retried. In the case of ReadRows, retried calls will not re-scan rows that have already been processed.
Create & Generate text based table
Package aztables can access an Azure Storage or CosmosDB account. The aztables package is capable of: The Azure Data Tables library allows you to interact with two types of resources: * the tables in your account * the entities within those tables. Interaction with these resources starts with an instance of a client. To create a client object, you will need the account's table service endpoint URL and a credential that allows you to access the account. The clients support different forms of authentication. The aztables library supports any of the `azcore.TokenCredential` interfaces, authorization via a Connection String, or authorization with a Shared Access Signature token. To use an account shared key (aka account key or access key), provide the key as a string. This can be found in your storage account in the Azure Portal under the "Access Keys" section. Use the key as the credential parameter to authenticate the client: Using a Connection String Depending on your use case and authorization method, you may prefer to initialize a client instance with a connection string instead of providing the account URL and credential separately. To do this, pass the connection string to the client's `from_connection_string` class method. The connection string can be found in your storage account in the [Azure Portal][azure_portal_account_url] under the "Access Keys" section or with the following Azure CLI command: Using a Shared Access Signature To use a shared access signature (SAS) token, provide the token at the end of your service URL. You can generate a SAS token from the Azure Portal under Shared Access Signature or use the ServiceClient.GetAccountSASToken or Client.GetTableSASToken() functions. Common uses of the Table service included: * Storing TBs of structured data capable of serving web scale applications * Storing datasets that do not require complex joins, foreign keys, or stored procedures and can be de-normalized for fast access * Quickly querying data using a clustered index * Accessing data using the OData protocol and LINQ filter expressions The following components make up the Azure Data Tables Service: * The account * A table within the account, which contains a set of entities * An entity within a table, as a dictionary The Azure Data Tables client library for Go allows you to interact with each of these components through the use of a dedicated client object. Two different clients are provided to interact with the various components of the Table Service: 1. **`ServiceClient`** - 2. **`Client`** - Entities are similar to rows. An entity has a PartitionKey, a RowKey, and a set of properties. A property is a name value pair, similar to a column. Every entity in a table does not need to have the same properties. Entities are returned as JSON, allowing developers to use JSON marshalling and unmarshalling techniques. Additionally, you can use the aztables.EDMEntity to ensure proper round-trip serialization of all properties. The following sections provide several code snippets covering some of the most common Table tasks, including: * Creating a table * Creating entities * Querying entities Create a table in your account and get a `Client` to perform operations on the newly created table: Creating Entities Querying entities
Package tableflip implements zero downtime upgrades. An upgrade spawns a new copy of argv[0] and passes file descriptors of used listening sockets to the new process. The old process exits once the new process signals readiness. Thus new code can use sockets allocated in the old process. This is similar to the approach used by nginx, but as a library. At any point in time there are one or two processes, with at most one of them in non-ready state. A successful upgrade fully replaces all old configuration and code. To use this library with systemd you need to use the PIDFile option in the service file. Then pass /path/to/pid-file to New. You can use systemd-run to test your implementation: systemd-run will print a unit name, which you can use with systemctl to inspect the service. NOTES: Requires at least Go 1.9, since there is a race condition on the pipes used for communication between parent and child. If you're seeing "can't start process: no such file or directory", you're probably using "go run main.go", for graceful reloads to work, you'll need use "go build main.go". Tableflip does not work on Windows, because Windows does not have the mechanisms required to support this method of graceful restarting. It is still possible to include this package in code that runs on Windows, which may be necessary in certain development circumstances, but it will not provide zero downtime upgrades when running on Windows. See the `testing` package for an example of how to use it. This shows how to use the upgrader with the graceful shutdown facilities of net/http. This shows how to use the Upgrader with a listener based service.
Package nftables manipulates Linux nftables (the iptables successor).
Package uitable provides a decorator for formating data as a table
Package immutable provides immutable collection types. Immutable collections provide an efficient, safe way to share collections of data while minimizing locks. The collections in this package provide List, Map, and SortedMap implementations. These act similarly to slices and maps, respectively, except that altering a collection returns a new copy of the collection with that change. Because collections are unable to change, they are safe for multiple goroutines to read from at the same time without a mutex. However, these types of collections come with increased CPU & memory usage as compared with Go's built-in collection types so please evaluate for your specific use. The List type provides an API similar to Go slices. They allow appending, prepending, and updating of elements. Elements can also be fetched by index or iterated over using a ListIterator. The Map & SortedMap types provide an API similar to Go maps. They allow values to be assigned to unique keys and allow for the deletion of keys. Values can be fetched by key and key/value pairs can be iterated over using the appropriate iterator type. Both map types provide the same API. The SortedMap, however, provides iteration over sorted keys while the Map provides iteration over unsorted keys. Maps improved performance and memory usage as compared to SortedMaps. Map types require the use of a Hasher implementation to calculate hashes for their keys and check for key equality. SortedMaps require the use of a Comparer implementation to sort keys in the map. These collection types automatically provide built-in hasher and comparers for int, string, and byte slice keys. If you are using one of these key types then simply pass a nil into the constructor. Otherwise you will need to implement a custom Hasher or Comparer type. Please see the provided implementations for reference.
Package simpletable allows to generate and display ascii tables in the terminal, f.e.: There are the following key features: * Declarative style. Have to write more code, and hell with it. * Styling. With 6 predefined styles: MySql-like (default), compact, compact lite, markdown, rounded and unicode. And you can change it. * Header and footer. Separeted from table body. * Multiline cells support. See https://github.com/alexeyco/simpletable/blob/master/_example/04-multiline/main.go for example. * cellInterface content alignment. Left, right or center. * Row spanning. By analogy with the way it is done in HTML. See Cell.Span attribute description. * Fast! Really fast, see https://github.com/alexeyco/simpletable/blob/master/_example/03-benchmarks-with-others Examples: https://github.com/alexeyco/simpletable/tree/master/_example
Package table provides a convenient way to generate tabular output of any data, primarily useful for CLI tools. Columns are left-aligned and padded to accomodate the largest cell in that column. Source: https://github.com/rodaine/table
Package table produces a string that represents slice of structs data in a text table
The macaroon package implements macaroons as described in the paper "Macaroons: Cookies with Contextual Caveats for Decentralized Authorization in the Cloud" (http://theory.stanford.edu/~ataly/Papers/macaroons.pdf) See the macaroon bakery packages at http://godoc.org/gopkg.in/macaroon-bakery.v1 for higher level services and operations that use macaroons.
Package quotedprintable implements quoted-printable encoding as specified by RFC 2045.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get DNS message. A DNS message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. A custom TSIG implementation can be used. This requires additional code to perform any session establishment and signature generation/verification. The client must be configured with an implementation of the TsigProvider interface: Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package pq is a pure Go Postgres driver for the database/sql package. In most cases clients will use the database/sql package instead of using this package directly. For example: You can also connect to a database using a URL. For example: Similarly to libpq, when establishing a connection using pq you are expected to supply a connection string containing zero or more parameters. A subset of the connection parameters supported by libpq are also supported by pq. Additionally, pq also lets you specify run-time parameters (such as search_path or work_mem) directly in the connection string. This is different from libpq, which does not allow run-time parameters in the connection string, instead requiring you to supply them in the options parameter. For compatibility with libpq, the following special connection parameters are supported: Valid values for sslmode are: See http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING for more information about connection string parameters. Use single quotes for values that contain whitespace: A backslash will escape the next character in values: Note that the connection parameter client_encoding (which sets the text encoding for the connection) may be set but must be "UTF8", matching with the same rules as Postgres. It is an error to provide any other value. In addition to the parameters listed above, any run-time parameter that can be set at backend start time can be set in the connection string. For more information, see http://www.postgresql.org/docs/current/static/runtime-config.html. Most environment variables as specified at http://www.postgresql.org/docs/current/static/libpq-envars.html supported by libpq are also supported by pq. If any of the environment variables not supported by pq are set, pq will panic during connection establishment. Environment variables have a lower precedence than explicitly provided connection parameters. The pgpass mechanism as described in http://www.postgresql.org/docs/current/static/libpq-pgpass.html is supported, but on Windows PGPASSFILE must be specified explicitly. database/sql does not dictate any specific format for parameter markers in query strings, and pq uses the Postgres-native ordinal markers, as shown above. The same marker can be reused for the same parameter: pq does not support the LastInsertId() method of the Result type in database/sql. To return the identifier of an INSERT (or UPDATE or DELETE), use the Postgres RETURNING clause with a standard Query or QueryRow call: For more details on RETURNING, see the Postgres documentation: For additional instructions on querying see the documentation for the database/sql package. Parameters pass through driver.DefaultParameterConverter before they are handled by this package. When the binary_parameters connection option is enabled, []byte values are sent directly to the backend as data in binary format. This package returns the following types for values from the PostgreSQL backend: All other types are returned directly from the backend as []byte values in text format. pq may return errors of type *pq.Error which can be interrogated for error details: See the pq.Error type for details. You can perform bulk imports by preparing a statement returned by pq.CopyIn (or pq.CopyInSchema) in an explicit transaction (sql.Tx). The returned statement handle can then be repeatedly "executed" to copy data into the target table. After all data has been processed you should call Exec() once with no arguments to flush all buffered data. Any call to Exec() might return an error which should be handled appropriately, but because of the internal buffering an error returned by Exec() might not be related to the data passed in the call that failed. CopyIn uses COPY FROM internally. It is not possible to COPY outside of an explicit transaction in pq. Usage example: PostgreSQL supports a simple publish/subscribe model over database connections. See http://www.postgresql.org/docs/current/static/sql-notify.html for more information about the general mechanism. To start listening for notifications, you first have to open a new connection to the database by calling NewListener. This connection can not be used for anything other than LISTEN / NOTIFY. Calling Listen will open a "notification channel"; once a notification channel is open, a notification generated on that channel will effect a send on the Listener.Notify channel. A notification channel will remain open until Unlisten is called, though connection loss might result in some notifications being lost. To solve this problem, Listener sends a nil pointer over the Notify channel any time the connection is re-established following a connection loss. The application can get information about the state of the underlying connection by setting an event callback in the call to NewListener. A single Listener can safely be used from concurrent goroutines, which means that there is often no need to create more than one Listener in your application. However, a Listener is always connected to a single database, so you will need to create a new Listener instance for every database you want to receive notifications in. The channel name in both Listen and Unlisten is case sensitive, and can contain any characters legal in an identifier (see http://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS for more information). Note that the channel name will be truncated to 63 bytes by the PostgreSQL server. You can find a complete, working example of Listener usage at https://godoc.org/github.com/lib/pq/example/listen. If you need support for Kerberos authentication, add the following to your main package: This package is in a separate module so that users who don't need Kerberos don't have to download unnecessary dependencies. When imported, additional connection string parameters are supported:
Package bigquery provides a client for the BigQuery service. The following assumes a basic familiarity with BigQuery concepts. See https://cloud.google.com/bigquery/docs. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. To start working with this package, create a client with NewClient: To query existing tables, create a Client.Query and call its Query.Read method, which starts the query and waits for it to complete: Then iterate through the resulting rows. You can store a row using anything that implements the ValueLoader interface, or with a slice or map of Value. A slice is simplest: You can also use a struct whose exported fields match the query: You can also start the query running and get the results later. Create the query as above, but call Query.Run instead of Query.Read. This returns a Job, which represents an asynchronous operation. Get the job's ID, a printable string. You can save this string to retrieve the results at a later time, even in another process. To retrieve the job's results from the ID, first look up the Job with the Client.JobFromID method: Use the Job.Read method to obtain an iterator, and loop over the rows. Calling Query.Read is preferred for queries with a relatively small result set, as it will call BigQuery jobs.query API for a optimized query path. If the query doesn't meet that criteria, the method will just combine Query.Run and Job.Read. You can refer to datasets in the client's project with the Client.Dataset method, and in other projects with the Client.DatasetInProject method: These methods create references to datasets, not the datasets themselves. You can have a dataset reference even if the dataset doesn't exist yet. Use Dataset.Create to create a dataset from a reference: You can refer to tables with Dataset.Table. Like Dataset, Table is a reference to an object in BigQuery that may or may not exist. You can create, delete and update the metadata of tables with methods on Table. For instance, you could create a temporary table with: We'll see how to create a table with a schema in the next section. There are two ways to construct schemas with this package. You can build a schema by hand with the Schema struct, like so: Or you can infer the schema from a struct with the InferSchema method: Struct inference supports tags like those of the encoding/json package, so you can change names, ignore fields, or mark a field as nullable (non-required). Fields declared as one of the Null types (NullInt64, NullFloat64, NullString, NullBool, NullTimestamp, NullDate, NullTime, NullDateTime, NullGeography, and NullJSON) are automatically inferred as nullable, so the "nullable" tag is only needed for []byte, *big.Rat and pointer-to-struct fields. Having constructed a schema, you can create a table with it using the Table.Create method like so: You can copy one or more tables to another table. Begin by constructing a Copier describing the copy using the Table.CopierFrom. Then set any desired copy options, and finally call Copier.Run to get a Job: You can chain the call to Copier.Run if you don't want to set options: You can wait for your job to complete with the Job.Wait method: Job.Wait polls with exponential backoff. You can also poll yourself, if you wish: There are two ways to populate a table with this package: load the data from a Google Cloud Storage object, or upload rows directly from your program. For loading, first create a GCSReference with the NewGCSReference method, configuring it if desired. Then make a Loader from a table with the Table.LoaderFrom method with the reference, optionally configure it as well, and call its Loader.Run method. To upload, first define a type that implements the ValueSaver interface, which has a single method named Save. Then create an Inserter, and call its Inserter.Put method with a slice of values. You can also upload a struct that doesn't implement ValueSaver. Use the StructSaver type to specify the schema and insert ID by hand: Lastly, but not least, you can just supply the struct or struct pointer directly and the schema will be inferred: BigQuery allows for higher throughput when omitting insertion IDs. To enable this, specify the sentinel NoDedupeID value for the insertion ID when implementing a ValueSaver. If you've been following so far, extracting data from a BigQuery table into a Google Cloud Storage object will feel familiar. First create an Extractor, then optionally configure it, and lastly call its Extractor.Run method. Errors returned by this client are often of the type googleapi.Error. These errors can be introspected for more information by using errors.As with the richer googleapi.Error type. For example: In some cases, your client may received unstructured googleapi.Error error responses. In such cases, it is likely that you have exceeded BigQuery request limits, documented at: https://cloud.google.com/bigquery/quotas
Structable makes a loose distinction between a Record (a description of the data to be stored) and a Recorder (the thing that does the storing). A Record is a simple annotated struct that describes the properties of an object. Structable provides the Recorder (an interface usually backed by a *DbRecorder). The Recorder is capable of doing the following: Structable is pragmatic in the sense that it allows ActiveRecord-like extension of the Record object to allow business logic. A Record does not *have* to be a simple data-only struct. It can have methods -- even methods that operate on the database. Importantly, Structable does not do any relation management. There is no magic to convert structs, arrays, or maps to references to other tables. (If you want that, you may prefer GORM or GORP.) The preferred method of handling relations is to attach additional methods to the Record struct. Structable uses Squirrel for statement building, and you may also use Squirrel for working with your data. The following example is taken from the `example/users.go` file. The above pattern closely binds the Recorder to the Record. Essentially, in this usage Structable works like an ActiveRecord. It is also possible to emulate a DAO-type model and use the Recorder as a data access object and the Record as the data description object. An example of this method can be found in the `example/fence.go` code. The `stbl` tag is of the form: The field name is passed verbatim to the database. So `fieldName` will go to the database as `fieldName`. Structable is not at all opinionated about how you name your tables or fields. Some databases are, though, so you may need to be careful about your own naming conventions. `PRIMARY_KEY` tells Structable that this field is (one of the pieces of) the primary key. Aliases: 'PRIMARY KEY' `AUTO_INCREMENT` tells Structable that this field is created by the database, and should never be assigned during an Insert(). Aliases: SERIAL, AUTO INCREMENT Things Structable doesn't do (by design) However, Squirrel can ease many of these tasks.
Package tview implements rich widgets for terminal based user interfaces. The widgets provided with this package are useful for data exploration and data entry. The package implements the following widgets: The package also provides Application which is used to poll the event queue and draw widgets on screen. The following is a very basic example showing a box with the title "Hello, world!": First, we create a box primitive with a border and a title. Then we create an application, set the box as its root primitive, and run the event loop. The application exits when the application's Application.Stop function is called or when Ctrl-C is pressed. You will find more demos in the "demos" subdirectory. It also contains a presentation (written using tview) which gives an overview of the different widgets and how they can be used. Throughout this package, styles are specified using the tcell.Style type. Styles specify colors with the tcell.Color type. Functions such as tcell.GetColor, tcell.NewHexColor, and tcell.NewRGBColor can be used to create colors from W3C color names or RGB values. The tcell.Style type also allows you to specify text attributes such as "bold" or "underline" or a URL which some terminals use to display hyperlinks. Almost all strings which are displayed may contain style tags. A style tag's content is always wrapped in square brackets. In its simplest form, a style tag specifies the foreground color of the text. Colors in these tags are W3C color names or six hexadecimal digits following a hash tag. Examples: A style tag changes the style of the characters following that style tag. There is no style stack and no nesting of style tags. Style tags are used in almost everything from box titles, list text, form item labels, to table cells. In a TextView, this functionality has to be switched on explicitly. See the TextView documentation for more information. A style tag's full format looks like this: Each of the four fields can be left blank and trailing fields can be omitted. (Empty square brackets "[]", however, are not considered style tags.) Fields that are not specified will be left unchanged. A field with just a dash ("-") means "reset to default". You can specify the following flags to turn on certain attributes (some flags may not be supported by your terminal): Use uppercase letters to turn off the corresponding attribute, for example, "B" to turn off bold. Uppercase letters have no effect if the attribute was not previously set. Setting a URL allows you to turn a piece of text into a hyperlink in some terminals. Specify a dash ("-") to specify the end of the hyperlink. Hyperlinks must only contain single-byte characters (e.g. ASCII) and they may not contain bracket characters ("[" or "]"). Examples: In the rare event that you want to display a string such as "[red]" or "[#00ff1a]" without applying its effect, you need to put an opening square bracket before the closing square bracket. Note that the text inside the brackets will be matched less strictly than region or colors tags. I.e. any character that may be used in color or region tags will be recognized. Examples: You can use the Escape() function to insert brackets automatically where needed. When primitives are instantiated, they are initialized with colors taken from the global Styles variable. You may change this variable to adapt the look and feel of the primitives to your preferred style. Note that most terminals will not report information about their color theme. This package therefore does not support using the terminal's color theme. The default style is a dark theme and you must change the Styles variable to switch to a light (or other) theme. This package supports all unicode characters supported by your terminal. If your terminal supports mouse events, you can enable mouse support for your application by calling Application.EnableMouse. Note that this may interfere with your terminal's default mouse behavior. Mouse support is disabled by default. Many functions in this package are not thread-safe. For many applications, this is not an issue: If your code makes changes in response to key events, the corresponding callback function will execute in the main goroutine and thus will not cause any race conditions. (Exceptions to this are documented.) If you access your primitives from other goroutines, however, you will need to synchronize execution. The easiest way to do this is to call Application.QueueUpdate or Application.QueueUpdateDraw (see the function documentation for details): One exception to this is the io.Writer interface implemented by TextView. You can safely write to a TextView from any goroutine. See the TextView documentation for details. You can also call Application.Draw from any goroutine without having to wrap it in Application.QueueUpdate. And, as mentioned above, key event callbacks are executed in the main goroutine and thus should not use Application.QueueUpdate as that may lead to deadlocks. It is also not necessary to call Application.Draw from such callbacks as it will be called automatically. All widgets listed above contain the Box type. All of Box's functions are therefore available for all widgets, too. Please note that if you are using the functions of Box on a subclass, they will return a *Box, not the subclass. This is a Golang limitation. So while tview supports method chaining in many places, these chains must be broken when using Box's functions. Example: You will need to call Box.SetBorder separately: All widgets also implement the Primitive interface. The tview package's rendering is based on version 2 of https://github.com/gdamore/tcell. It uses types and constants from that package (e.g. colors, styles, and keyboard values).
Package spanner provides a client for reading and writing to Cloud Spanner databases. See the packages under admin for clients that operate on databases and instances. See https://cloud.google.com/spanner/docs/getting-started/go/ for an introduction to Cloud Spanner and additional help on using this API. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. To start working with this package, create a client that refers to the database of interest: Remember to close the client after use to free up the sessions in the session pool. To use an emulator with this library, you can set the SPANNER_EMULATOR_HOST environment variable to the address at which your emulator is running. This will send requests to that address instead of to Cloud Spanner. You can then create and use a client as usual: Two Client methods, Apply and Single, work well for simple reads and writes. As a quick introduction, here we write a new row to the database and read it back: All the methods used above are discussed in more detail below. Every Cloud Spanner row has a unique key, composed of one or more columns. Construct keys with a literal of type Key: The keys of a Cloud Spanner table are ordered. You can specify ranges of keys using the KeyRange type: By default, a KeyRange includes its start key but not its end key. Use the Kind field to specify other boundary conditions: A KeySet represents a set of keys. A single Key or KeyRange can act as a KeySet. Use the KeySets function to build the union of several KeySets: AllKeys returns a KeySet that refers to all the keys in a table: All Cloud Spanner reads and writes occur inside transactions. There are two types of transactions, read-only and read-write. Read-only transactions cannot change the database, do not acquire locks, and may access either the current database state or states in the past. Read-write transactions can read the database before writing to it, and always apply to the most recent database state. The simplest and fastest transaction is a ReadOnlyTransaction that supports a single read operation. Use Client.Single to create such a transaction. You can chain the call to Single with a call to a Read method. When you only want one row whose key you know, use ReadRow. Provide the table name, key, and the columns you want to read: Read multiple rows with the Read method. It takes a table name, KeySet, and list of columns: Read returns a RowIterator. You can call the Do method on the iterator and pass a callback: RowIterator also follows the standard pattern for the Google Cloud Client Libraries: Always call Stop when you finish using an iterator this way, whether or not you iterate to the end. (Failing to call Stop could lead you to exhaust the database's session quota.) To read rows with an index, use ReadUsingIndex. The most general form of reading uses SQL statements. Construct a Statement with NewStatement, setting any parameters using the Statement's Params map: You can also construct a Statement directly with a struct literal, providing your own map of parameters. Use the Query method to run the statement and obtain an iterator: Once you have a Row, via an iterator or a call to ReadRow, you can extract column values in several ways. Pass in a pointer to a Go variable of the appropriate type when you extract a value. You can extract by column position or name: You can extract all the columns at once: Or you can define a Go struct that corresponds to your columns, and extract into that: For Cloud Spanner columns that may contain NULL, use one of the NullXXX types, like NullString: To perform more than one read in a transaction, use ReadOnlyTransaction: You must call Close when you are done with the transaction. Cloud Spanner read-only transactions conceptually perform all their reads at a single moment in time, called the transaction's read timestamp. Once a read has started, you can call ReadOnlyTransaction's Timestamp method to obtain the read timestamp. By default, a transaction will pick the most recent time (a time where all previously committed transactions are visible) for its reads. This provides the freshest data, but may involve some delay. You can often get a quicker response if you are willing to tolerate "stale" data. You can control the read timestamp selected by a transaction by calling the WithTimestampBound method on the transaction before using it. For example, to perform a query on data that is at most one minute stale, use See the documentation of TimestampBound for more details. To write values to a Cloud Spanner database, construct a Mutation. The spanner package has functions for inserting, updating and deleting rows. Except for the Delete methods, which take a Key or KeyRange, each mutation-building function comes in three varieties. One takes lists of columns and values along with the table name: One takes a map from column names to values: And the third accepts a struct value, and determines the columns from the struct field names: To apply a list of mutations to the database, use Apply: If you need to read before writing in a single transaction, use a ReadWriteTransaction. ReadWriteTransactions may be aborted automatically by the backend and need to be retried. You pass in a function to ReadWriteTransaction, and the client will handle the retries automatically. Use the transaction's BufferWrite method to buffer mutations, which will all be executed at the end of the transaction: Cloud Spanner STRUCT (aka STRUCT) values (https://cloud.google.com/spanner/docs/data-types#struct-type) can be represented by a Go struct value. A proto StructType is built from the field types and field tag information of the Go struct. If a field in the struct type definition has a "spanner:<field_name>" tag, then the value of the "spanner" key in the tag is used as the name for that field in the built StructType, otherwise the field name in the struct definition is used. To specify a field with an empty field name in a Cloud Spanner STRUCT type, use the `spanner:""` tag annotation against the corresponding field in the Go struct's type definition. A STRUCT value can contain STRUCT-typed and Array-of-STRUCT typed fields and these can be specified using named struct-typed and []struct-typed fields inside a Go struct. However, embedded struct fields are not allowed. Unexported struct fields are ignored. NULL STRUCT values in Cloud Spanner are typed. A nil pointer to a Go struct value can be used to specify a NULL STRUCT value of the corresponding StructType. Nil and empty slices of a Go STRUCT type can be used to specify NULL and empty array values respectively of the corresponding StructType. A slice of pointers to a Go struct type can be used to specify an array of NULL-able STRUCT values. Spanner supports DML statements like INSERT, UPDATE and DELETE. Use ReadWriteTransaction.Update to run DML statements. It returns the number of rows affected. (You can call use ReadWriteTransaction.Query with a DML statement. The first call to Next on the resulting RowIterator will return iterator.Done, and the RowCount field of the iterator will hold the number of affected rows.) For large databases, it may be more efficient to partition the DML statement. Use client.PartitionedUpdate to run a DML statement in this way. Not all DML statements can be partitioned. This client has been instrumented to use OpenCensus tracing (http://opencensus.io). To enable tracing, see "Enabling Tracing for a Program" at https://godoc.org/go.opencensus.io/trace. OpenCensus tracing requires Go 1.8 or higher.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
SQL Schema migration tool for Go. Key features: To install the library and command line program, use the following: The main command is called sql-migrate. Each command requires a configuration file (which defaults to dbconfig.yml, but can be specified with the -config flag). This config file should specify one or more environments: The `table` setting is optional and will default to `gorp_migrations`. The environment that will be used can be specified with the -env flag (defaults to development). Use the --help flag in combination with any of the commands to get an overview of its usage: The up command applies all available migrations. By contrast, down will only apply one migration by default. This behavior can be changed for both by using the -limit parameter. The redo command will unapply the last migration and reapply it. This is useful during development, when you're writing migrations. Use the status command to see the state of the applied migrations: If you are using MySQL, you must append ?parseTime=true to the datasource configuration. For example: See https://github.com/go-sql-driver/mysql#parsetime for more information. Import sql-migrate into your application: Set up a source of migrations, this can be from memory, from a set of files or from bindata (more on that later): Then use the Exec function to upgrade your database: Note that n can be greater than 0 even if there is an error: any migration that succeeded will remain applied even if a later one fails. The full set of capabilities can be found in the API docs below. Migrations are defined in SQL files, which contain a set of SQL statements. Special comments are used to distinguish up and down migrations. You can put multiple statements in each block, as long as you end them with a semicolon (;). If you have complex statements which contain semicolons, use StatementBegin and StatementEnd to indicate boundaries: The order in which migrations are applied is defined through the filename: sql-migrate will sort migrations based on their name. It's recommended to use an increasing version number or a timestamp as the first part of the filename. Normally each migration is run within a transaction in order to guarantee that it is fully atomic. However some SQL commands (for example creating an index concurrently in PostgreSQL) cannot be executed inside a transaction. In order to execute such a command in a migration, the migration can be run using the notransaction option: If you like your Go applications self-contained (that is: a single binary): use packr (https://github.com/gobuffalo/packr) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Use the PackrMigrationSource in your application to find the migrations: If you already have a box and would like to use a subdirectory: As an alternative, but slightly less maintained, you can use bindata (https://github.com/shuLhan/go-bindata) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Then use bindata to generate a .go file with the migrations embedded: The resulting bindata.go file will contain your migrations. Remember to regenerate your bindata.go file whenever you add/modify a migration (go generate will help here, once it arrives). Use the AssetMigrationSource in your application to find the migrations: Both Asset and AssetDir are functions provided by bindata. Then proceed as usual. Adding a new migration source means implementing MigrationSource. The resulting slice of migrations will be executed in the given order, so it should usually be sorted by the Id field.
Package dynamodb provides the API client, operations, and parameter types for Amazon DynamoDB. Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the Amazon Web Services Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an Amazon Web Services Region, providing built-in high availability and data durability.
Package etable provides a DataTable structure (also known as a DataFrame) which is a collection of columnar data all having the same number of rows. Each column is an etensor.Tensor. The following sub-packages are included: * bitslice is a Go slice of bytes []byte that has methods for setting individual bits, as if it was a slice of bools, while being 8x more memory efficient. This is used for encoding null entries in etensor, and as a Tensor of bool / bits there as well, and is generally very useful for binary (boolean) data. * etensor is the emer implementation of a Tensor (n-dimensional array) object. etensor.Tensor is an interface that applies to many different type-specific instances, such as etensor.Float32. A tensor is just a etensor.Shape plus a slice holding the specific data type. Our tensor is based directly on the [Apache Arrow](https://github.com/apache/arrow/tree/master/go) project's tensor, and it fully interoperates with it. Arrow tensors are designed to be read-only, and we needed some extra support to make our etable.Table work well, so we had to roll our own. Our tensors also interoperate fully with Gonum's 2D-specific Matrix type for the 2D case, and can use the gonum/floats and stats routines for raw arithmetic etc. * etable is our Go version of DataTable from C++ emergent, which is widely useful for holding input patterns to present to the network, and logs of output from the network, among many other uses. A etable.Table is a collection of etensor.Tensor columns, that are all aligned along the outer-most *row* dimension. Index-based indirection is supported via optional args, but we do not take on the burden of ensuring full updating of the indexes across all operations, which greatly simplifies things. The etable.Table should interoperate with the under-development gonum DataFrame structure among others. The use of this data structure is always optional and orthogonal to the core network algorithm code -- in Python the pandas library has a suitable DataFrame structure that can be used instead.
Package dynamodbstreams provides the API client, operations, and parameter types for Amazon DynamoDB Streams. Amazon DynamoDB Streams provides API actions for accessing streams and processing stream records. To learn more about application development with Streams, see Capturing Table Activity with DynamoDB Streamsin the Amazon DynamoDB Developer Guide.