Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package bluemonday provides a way of describing an allowlist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the allowlist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on its allowlist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not allow iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially:
Package vfsgen takes an http.FileSystem (likely at `go generate` time) and generates Go code that statically implements the provided http.FileSystem. Features: - Efficient generated code without unneccessary overhead. - Uses gzip compression internally (selectively, only for files that compress well). - Enables direct access to internal gzip compressed bytes via an optional interface. - Outputs `gofmt`ed Go code. This code will generate an assets_vfsdata.go file with `var assets http.FileSystem = ...` that statically implements the contents of "assets" directory. vfsgen is great to use with go generate directives. This code can go in an assets_gen.go file, which can then be invoked via "//go:generate go run assets_gen.go". The input virtual filesystem can read directly from disk, or it can be more involved.
Package ql implements a pure Go embedded SQL database engine. QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (github.com/cznic/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors github.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. An identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example No identifiers are predeclared, however note that no keyword can be used as an identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Ivy is an interpreter for an APL-like language. It is a plaything and a work in progress. Unlike APL, the input is ASCII and the results are exact (but see the next paragraph). It uses exact rational arithmetic so it can handle arbitrary precision. Values to be input may be integers (3, -1), rationals (1/3, -45/67) or floating point values (1e3, -1.5 (representing 1000 and -3/2)). Some functions such as sqrt are irrational. When ivy evaluates an irrational function, the result is stored in a high-precision floating-point number (default 256 bits of mantissa). Thus when using irrational functions, the values have high precision but are not exact. Unlike in most other languages, operators always have the same precedence and expressions are evaluated in right-associative order. That is, unary operators apply to everything to the right, and binary operators apply to the operand immediately to the left and to everything to the right. Thus, 3*4+5 is 27 (it groups as 3*(4+5)) and iota 3+2 is 1 2 3 4 5 while 3+iota 2 is 4 5. A vector is a single operand, so 1 2 3 + 3 + 3 4 5 is (1 2 3) + 3 + (3 4 5), or 7 9 11. As a special but important case, note that 1/3, with no intervening spaces, is a single rational number, not the expression 1 divided by 3. This can affect precedence: 3/6*4 is 2 while 3 / 6*4 is 1/8 since the spacing turns the / into a division operator. Use parentheses or spaces to disambiguate: 3/(6*4) or 3 /6*4. Ivy has complex numbers, which are constructed using the unary or binary j operator. As with rationals, the token 1j2 (the representation of 1+2i) is a single token. The individual parts can be rational, so 1/2j-3/2 is the complex number 0.5-1.5i and scans as a single value. Indexing uses [] notation: x[1], x[1; 2], and so on. Indexing by a vector selects multiple elements: x[1 2] creates a new item from x[1] and x[2]. An empty index slot is a shorthand for all the elements along that dimension, so x[] is equivalent to x, and x[;3] gives the third column of two-dimensional array x. Only a subset of APL's functionality is implemented, but all numerical operations are supported. Semicolons separate multiple statements on a line. Variables are alphanumeric and are assigned with the = operator. Assignment is an expression. After each successful expression evaluation, the result is stored in the variable called _ (underscore) so it can be used in the next expression. The APL operators, adapted from https://en.wikipedia.org/wiki/APL_syntax_and_symbols, and their correspondence are listed here. The correspondence is incomplete and inexact. Unary operators Binary operators Operators and axis indicator Type-converting operations The constants e (base of natural logarithms) and pi (π) are pre-defined to high precision, about 3000 decimal digits truncated according to the floating point precision setting. Strings are vectors of "chars", which are Unicode code points (not bytes). Syntactically, string literals are very similar to those in Go, with back-quoted raw strings and double-quoted interpreted strings. Unlike Go, single-quoted strings are equivalent to double-quoted, a nod to APL syntax. A string with a single char is just a singleton char value; all others are vectors. Thus “, "", and ” are empty vectors, `a`, "a", and 'a' are equivalent representations of a single char, and `ab`, `a` `b`, "ab", "a" "b", 'ab', and 'a' 'b' are equivalent representations of a two-char vector. Unlike in Go, a string in ivy comprises code points, not bytes; as such it can contain only valid Unicode values. Thus in ivy "\x80" is illegal, although it is a legal one-byte string in Go. Strings can be printed. If a vector contains only chars, it is printed without spaces between them. Chars have restricted operations. Printing, comparison, indexing and so on are legal but arithmetic is not, and chars cannot be converted automatically into other singleton values (ints, floats, and so on). The unary operators char and code enable transcoding between integer and char values. Users can define unary and binary operators, which then behave just like built-in operators. Both a unary and a binary operator may be defined for the same name. The syntax of a definition is the 'op' keyword, the operator and formal arguments, an equals sign, and then the body. The names of the operator and its arguments must be identifiers. For unary operators, write "op name arg"; for binary write "op leftarg name rightarg". The final expression in the body is the return value. Operators may have recursive definitions; see the paragraph about conditional execution for an example. The body may be a single line (possibly containing semicolons) on the same line as the 'op', or it can be multiple lines. For a multiline entry, there is a newline after the '=' and the definition ends at the first blank line (ignoring spaces). Conditional execution is done with the ":" binary conditional return operator, which is valid only within the code for a user-defined operator. The left operand must be a scalar. If it is non-zero, the right operand is returned as the value of the function. Otherwise, execution continues normally. The ":" operator has a lower precedence than any other operator; in effect it breaks the line into two separate expressions. Example: average of a vector (unary): Example: n largest entries in a vector (binary): Example: multiline operator definition (binary): Example: primes less than N (unary): Example: greatest common divisor (binary): On mobile platforms only, due to I/O restrictions, user-defined operators must be presented on a single line. Use semicolons to separate expressions: To declare an operator but not define it, omit the equals sign and what follows. Within a user-defined operator body, identifiers are local to the invocation if they are assigned before being read, and global if read before being written. To write to a global without reading it first, insert an unused read. To remove the definition of a unary or binary user-defined operator, Ivy accepts a number of special commands, introduced by a right paren at the beginning of the line. Most report the current value if a new value is not specified. For these commands, numbers are always read and printed base 10 and must be non-negative on input.
Package vfsgen takes an http.FileSystem (likely at `go generate` time) and generates Go code that statically implements the provided http.FileSystem. Features: - Efficient generated code without unneccessary overhead. - Uses gzip compression internally (selectively, only for files that compress well). - Enables direct access to internal gzip compressed bytes via an optional interface. - Outputs `gofmt`ed Go code. This code will generate an assets_vfsdata.go file with `var assets http.FileSystem = ...` that statically implements the contents of "assets" directory. vfsgen is great to use with go generate directives. This code can go in an assets_gen.go file, which can then be invoked via "//go:generate go run assets_gen.go". The input virtual filesystem can read directly from disk, or it can be more involved.
Package yptr is a JSONPointer implementation that can walk though a yaml.Node tree. yaml.Nodes preserve comments and locations in the source and can be useful to implement editing in-place functionality that uses JSONPointer to locate the fields to be edited. It also implements a simple extension to the JSONPointers standard that handles pointers into k8s manifests which usually contain arrays whose elements are objects with a field that uniquely specifies the array entry (e.g. "name"). For example, given a JSON/YAML input document: If "k" is a field that contains a key that uniquiely identifies an element in a given array, we can select the node with the scalar 42 by first selecting the array element for which "k" has the value of "x", and then by walking to the field "v": The "~" token accepts an argument which is interpreted as JSON value to be used as "query-by-example" filter against elements of an array. The array element is selected if the query-by-example object is a (recursive) subset of the element. The ~{...} extension can potentially locate multiple matches. For example, "~{}" effectively acts as a wildcard. This library offers an API to retrieve multiple matches ("FindAll") or to fetch only one match and error if multiple matches are found ("Find"). JSONPointer is designed to locate exactly one node in the tree. This can be achieved only if the effective schema of the JSON/YAML document mandates that there is an identifying key in each array element you want to point to. Using the "Find" function effectively performs a dynamic check of that invariant.
Package ajson implements decoding of JSON as defined in RFC 7159 without predefined mapping to a struct of golang, with support of JSONPath. All JSON structs reflects to a custom struct of Node, witch can be presented by it type and value. Method Unmarshal will scan all the byte slice to create a root node of JSON structure, with all it behaviors. Each Node has it's own type and calculated value, which will be calculated on demand. Calculated value saves in atomic.Value, so it's thread safe. Method JSONPath will returns slice of founded elements in current JSON data, by it's JSONPath. JSONPath selection described at http://goessner.net/articles/JsonPath/ JSONPath expressions always refer to a JSON structure in the same way as XPath expression are used in combination with an XML document. Since a JSON structure is usually anonymous and doesn't necessarily have a "root member object" JSONPath assumes the abstract name $ assigned to the outer level object. JSONPath expressions can use the dot–notation or the bracket–notation for input pathes. Internal or output pathes will always be converted to the more general bracket–notation. JSONPath allows the wildcard symbol * for member names and array indices. It borrows the descendant operator '..' from E4X and the array slice syntax proposal [start:end:step] from ECMASCRIPT 4. Expressions of the underlying scripting language (<expr>) can be used as an alternative to explicit names or indices as in using the symbol '@' for the current object. Filter expressions are supported via the syntax ?(<boolean expr>) as in Here is a complete overview and a side by side comparison of the JSONPath syntax elements with its XPath counterparts. Package has several predefined constants. You are free to add new one with AddConstant Package has several predefined operators. You are free to add new one with AddOperator Operator precedence: https://golang.org/ref/spec#Operator_precedence Arithmetic operators: https://golang.org/ref/spec#Arithmetic_operators Package has several predefined functions. You are free to add new one with AddFunction
Package nlp provides implementations of selected machine learning algorithms for natural language processing of text corpora. The primary focus is the statistical semantics of plain-text documents supporting semantic analysis and retrieval of semantically similar documents. The package makes use of the Gonum (http://http//www.gonum.org/) library for linear algebra and scientific computing with some inspiration taken from Python's scikit-learn (http://scikit-learn.org/stable/) and Gensim(https://radimrehurek.com/gensim/) The primary intended use case is to support document input as text strings encoded as a matrix of numerical feature vectors called a `term document matrix`. Each column in the matrix corresponds to a document in the corpus and each row corresponds to a unique term occurring in the corpus. The individual elements within the matrix contain the frequency with which each term occurs within each document (referred to as `term frequency`). Whilst textual data from document corpora are the primary intended use case, the algorithms can be used with other types of data from other sources once encoded (vectorised) into a suitable matrix e.g. image data, sound data, users/products, etc. These matrices can be processed and manipulated through the application of additional transformations for weighting features, identifying relationships or optimising the data for analysis, information retrieval and/or predictions. Typically the algorithms in this package implement one of three primary interfaces: One of the implementations of Vectoriser is Pipeline which can be used to wire together pipelines composed of a Vectoriser and one or more Transformers arranged in serial so that the output from each stage forms the input of the next. This can be used to construct a classic LSI (Latent Semantic Indexing) pipeline (vectoriser -> TF.IDF weighting -> Truncated SVD): Whilst they take different inputs, both Vectorisers and Transformers have 3 primary methods:
Package goncurses is a new curses (ncurses) library for the Go programming language. It implements all the ncurses extension libraries: form, menu and panel. Minimal operation would consist of initializing the display: It is important to always call End() before your program exits. If you fail to do so, the terminal will not perform properly and will either need to be reset or restarted completely. CAUTION: Calls to ncurses functions are normally not atomic nor reentrant and therefore extreme care should be taken to ensure ncurses functions are not called concurrently. Specifically, never write data to the same window concurrently nor accept input and send output to the same window as both alter the underlying C data structures in a non safe manner. Ideally, you should structure your program to ensure all ncurses related calls happen in a single goroutine. This is probably most easily achieved via channels and Go's built-in select. Alternatively, or additionally, you can use a mutex to protect any calls in multiple goroutines from happening concurrently. Failure to do so will result in unpredictable and undefined behaviour in your program. The examples directory contains demonstrations of many of the capabilities goncurses can provide.
Package ql implements a pure Go embedded SQL database engine. Builder results available at QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2020-12-10: sql/database driver now supports url parameter removeemptywal=N which has the same semantics as passing RemoveEmptyWAL = N != 0 to OpenFile options. 2020-11-09: Add IF NOT EXISTS support for the INSERT INTO statement. Add IsDuplicateUniqueIndexError function. 2018-11-04: Back end file format V2 is now released. To use the new format for newly created databases set the FileFormat field in *Options passed to OpenFile to value 2 or use the driver named "ql2" instead of "ql". - Both the old and new driver will properly open and use, read and write the old (V1) or new file (V2) format of an existing database. - V1 format has a record size limit of ~64 kB. V2 format record size limit is math.MaxInt32. - V1 format uncommitted transaction size is limited by memory resources. V2 format uncommitted transaction is limited by free disk space. - A direct consequence of the previous is that small transactions perform better using V1 format and big transactions perform better using V2 format. - V2 format uses substantially less memory. 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (modernc.org/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors gitlab.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. There are two kinds of identifiers, normal idententifiers and quoted identifiers. An normal identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example A quoted identifier is a string of any charaters between guillmets «». Quoted identifiers allow QL key words or phrases with spaces to be used as identifiers. The guillemets were chosen because QL already uses double quotes, single quotes, and backticks for other quoting purposes. «TRANSACTION» «duration» «lovely stories» No identifiers are predeclared, however note that no keyword can be used as a normal identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. If there exists an unique index that would make the insert statement fail, the optional IF NOT EXISTS turns the insert statement in such case into a no-op. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function coalesce takes at least one argument and returns the first of its arguments which is not NULL. If all arguments are NULL, this function returns NULL. This is useful for providing defaults for NULL values in a select query. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package protocompile provides the entry point for a high performance native Go protobuf compiler. "Compile" in this case just means parsing and validating source and generating fully-linked descriptors in the end. Unlike the protoc command-line tool, this package does not try to use the descriptors to perform code generation. The various sub-packages represent the various compile phases and contain models for the intermediate results. Those phases follow: This package provides an easy-to-use interface that does all the relevant phases, based on the inputs given. If an input is provided as source, all phases apply. If an input is provided as a descriptor proto, only phases 3 to 5 apply. Nothing is necessary if provided a linked descriptor (which is usually only the case for select system dependencies). This package is also capable of taking advantage of multiple CPU cores, so a compilation involving thousands of files can be done very quickly by compiling things in parallel. A Resolver is how the compiler locates artifacts that are inputs to the compilation. For example, it can load protobuf source code that must be processed. A Resolver could also supply some already-compiled dependencies as fully-linked descriptors, alleviating the need to re-compile them. A Resolver can provide any of the following in response to a query for an input. Compilation will use the Resolver to load the files that are to be compiled and also to load all dependencies (i.e. other files imported by those being compiled). A Compiler accepts a list of file names and produces the list of descriptors. A Compiler has several fields that control how it works but only the Resolver field is required. A minimal Compiler, that resolves files by loading them from the file system based on the current working directory, can be had with the following simple snippet: This minimal Compiler will use default parallelism, equal to the number of CPU cores detected; it will not generate source code info in the resulting descriptors; and it will fail fast at the first sign of any error. All of these aspects can be customized by setting other fields.
2fa is a two-factor authentication agent. Usage: “2fa -add name” adds a new key to the 2fa keychain with the given name. It prints a prompt to standard error and reads a two-factor key from standard input. Two-factor keys are short case-insensitive strings of letters A-Z and digits 2-7. By default the new key generates time-based (TOTP) authentication codes; the -hotp flag makes the new key generate counter-based (HOTP) codes instead. By default the new key generates 6-digit codes; the -7 and -8 flags select 7- and 8-digit codes instead. “2fa -list” lists the names of all the keys in the keychain. “2fa name” prints a two-factor authentication code from the key with the given name. If “-clip” is specified, 2fa also copies the code to the system clipboard. With no arguments, 2fa prints two-factor authentication codes from all known time-based keys. The default time-based authentication codes are derived from a hash of the key and the current time, so it is important that the system clock have at least one-minute accuracy. The keychain is stored unencrypted in the text file $HOME/.2fa. During GitHub 2FA setup, at the “Scan this barcode with your app” step, click the “enter this text code instead” link. A window pops up showing “your two-factor secret,” a short string of letters and digits. Add it to 2fa under the name github, typing the secret at the prompt: Then whenever GitHub prompts for a 2FA code, run 2fa to obtain one: Or to type less:
Package ccgo translates C to Go source code. This v3 package is obsolete. Please use current ccgo/v4: Invocation 2021-12-23: v3.13.0 add clang support. To compile the resulting Go programs the package modernc.org/libc has to be installed. CCGO_CPP selects which command is used by the C front end to obtain target configuration. Defaults to `cpp`. Ignored when --load-config <path> is used. TARGET_GOARCH selects the GOARCH of the resulting Go code. Defaults to $GOARCH or runtime.GOARCH if $GOARCH is not set. Ignored when --load-config <path> is used. TARGET_GOOS selects the GOOS of the resulting Go code. Defaults to $GOOS or runtime.GOOS if $GOOS is not set. Ignored when --load-config <path> is used. To compile for the host invoke something like To cross compile set TARGET_GOARCH and/or TARGET_GOOS, not GOARCH/GOOS. Cross compile depends on availability of C stdlib headers for the target platform as well on the set of predefined macros for the target platform. For example, to cross compile on a Linux host, targeting windows/amd64, it's necessary to have mingw64 installed in $PATH. Then invoke something like Only files with extension .c, .h or .json are recognized as input files. A .json file is interpreted as a compile database. All other command line arguments following the .json file are interpreted as items that should be found in the database and included in the output file. Each item should be on object file (.o) or static archive (.a) or a command (no extension). Command line options requiring an argument. -Dfoo Equals `#define foo 1`. -Dfoo=bar Equals `#define foo bar`. -Ipath Add path to the list of include files search path. The option is a capital letter I (India), not a lowercase letter l (Lima). -limport-path The package at <import-path> must have been produced without using the -nocapi option, ie. the package must have a proper capi_$GOOS_$GOARCH.go file. The option is a lowercase letter l (Lima), not a capital letter I (India). -Ufoo Equals `#undef foo`. -compiledb name When this option appears anywhere, most preceding options are ignored and all following command line arguments are interpreted as a command with arguments that will be executed to produce the compilation database. For example: This will execute `make -DFOO -w` and attempts to extract the compile and archive commands. Only POSIX operating systems are supported. The supported build system must output information about entering directories that is compatible with GNU make. The only compilers supported are `gcc` and `clang`. The only archiver supported is `ar`. Format specification: https://clang.llvm.org/docs/JSONCompilationDatabase.html Note: This option produces also information about libraries created with `ar cr` and include it in the json file, which is above the specification. -crt-import-path path Unless disabled by the -nostdlib option, every produced Go file imports the C runtime library. Default is `modernc.org/libc`. -export-defines "" Export C numeric/string defines as Go constants by capitalizing the first letter of the define's name. -export-defines prefix Export C numeric/string defines as Go constants by prefixing the define's name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-enums "" Export C enum constants as Go constants by capitalizing the first letter of the enum constant name. -export-enums prefix Export C enum constants as Go constants by prefixing the enum constant name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-externs "" Export C extern definitions as Go definitions by capitalizing the first letter of the definition name. -export-externs prefix Export C extern definitions as Go definitions by prefixing the definition name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-fields "" Export C struct fields as Go fields by capitalizing the first letter of the field name. -export-fields prefix Export C struct fields as Go fields by prefixing the field name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-structs "" Export tagged C struct/union types as Go types by capitalizing the first letter of the tag name. -export-structs prefix Export tagged C struct/union types as Go types by prefixing the tag name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-typedefs "" Export C typedefs as Go types by capitalizing the first letter of the typedef name. -export-structs prefix Export C typedefs as as Go types by prefixing the typedef name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -static-locals-prefix prefix Prefix C static local declarators names with 'prefix'. -host-config-cmd command This option has the same effect as setting `CCGO_CPP=command`. -host-config-opts comma-separated-list The separated items of the list are added to the invocation of the configuration command. -pkgname name Set the resulting Go package name to 'name'. Defaults to `main`. -script filename Ccgo does not yet have a concept of object files. All C files that are needed for producing the resulting Go file have to be compiled together and "linked" in memory. There are some problems with this approach, one of them is the situation when foo.c has to be compiled using, for example `-Dbar=42` and "linked" with baz.c that needs to be compiled with `-Dbar=314`. Or `bar` must not defined at all for baz.c, etc. A script in a named file is a CSV file. It is opened like this (error handling omitted): The first field of every record in the CSV file is the directory to use. The remaining fields are the arguments of the ccgo command. This way different C files can be translated using different options. The CSV file may look something like: -volatile comma-separated-list The separated items of the list are added to the list of file scope extern variables the will be accessed atomically, like if their C declarator used the 'volatile' type specifier. Currently only C scalar types of size 4 and 8 bytes are supported. Other types/sizes will ignore both the volatile specifier and the -volatile option. -save-config path This option copies every header included during compilation or compile database generation to a file under the path argument. Additionally the host configuration, ie. predefined macros, include search paths, os and architecture is stored in path/config.json. When this option is used, no Go code is generated, meaning no link phase occurs and thus the memory consumption should stay low. Passing an empty string as an argument of -save-config is the same as if the option is not present at all. Possibly useful when the option set is generated in code. This option is ignored when -compiledb <path> is used. --load-config path Note that this option must have the double dash prefix to distinguish it from -lfoo, the [traditional] short form of `-l foo`. This option configures the compiler using path/config.json. The include paths are adjusted to be relative to path. For example: Assume on machine A the default C preprocessor reports a system include search path "/usr/include". Running ccgo on A with -save-config /tmp/foo to compile foo.c that #includes <stdlib.h>, which is found in /usr/include/stdlib.h on the host results in Assume /tmp/foo from machine A will be recursively copied to machine B, that may run a different operating system and/or architecture. Let the copy be for example in /tmp/bar. Using --load-config /tmp/bar will instruct ccgo to configure its preprocessor with a system include path /tmp/bar/usr/include and thus use the original machine A stdlib.h found there. When the --load-config is used, no host configuration from a machine B cross C preprocessor/compiler is needed to transpile the foo.c source on machine B as if the compiler would be running on machine A. The particular usefulness of this mechanism is for transpiling big projects for 32 bit architectures. There the lack if ccgo having an object format and thus linking everything in RAM can need too much memory for the system to handle. The way around this is possibly to run something like on machine A, transfer path/* to machine B and run the link phase there with eg. Note that the C sources for the project must be in the same path on both machines because the compile database stores absolute paths. It might be convenient to put the sources in path/src, the config in path/config, for example, and transfer the [archive of] path/ to the same directory on the second machine. That also solves the issue when ./configure generates files and the result differs per operating system or architecture. Passing an empty string as an argument of -load-config is the same as if the option is not present at all. Possibly useful when the option set is generated in code. These command line options don't take arguments. -E When this option is present the compiler does not produce any Go files and instead prints the preprocessor output to stdout. -all-errors Normally only the first 10 or so errors are shown. With this option the compiler will show all errors. -header Using this option suppresses producing of any function definitions. This is possibly useful for producing Go files from C header files. Including function signatures with -header. -func-sig Add this option to include fucntion signature when compiling headers (using -header). -nostdinc This option disables the default C include search paths. -nostdlib This option disables importing of the runtime library by the resulting Go code. -trace-pinning This option will print the positions and names of local declarators that are being pinned. -version Ignore all other options, print version and exit. -verbose-compiledb Enable verbose output when -compiledb is present. -ignore-undefined This option tells the linker to not insist on finding definitions for declarators that are not implicitly declared and used - but not defined. This might be useful when the intent is to define the missing function in Go functions manually. Name conflict resolution for such declarator names may or may not be applied. -ignore-unsupported-alignment This option tells the compiler to not complain about alignments that Go cannot support. -trace-included-files This option outputs the path names of all included files. This option is ignored when -compiledb <path> is used. There may exist other options not listed above. Those should be considered temporary and/or unsupported and may be removed without notice. Alternatively, they may eventually get promoted to "documented" options.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package microformats provides a microformats parser, supporting both v1 and v2 syntax. Usage: Retrieve the HTML contents of a page, and call Parse or ParseNode, depending on what input you have (an io.Reader or an html.Node). To parse only a section of an HTML document, use a package like goquery to select the root node to parse from. For example, see cmd/gomf/main.go. See also: http://microformats.org/wiki/microformats2
modgv converts “go mod graph” output into Graphviz's DOT language, for use with Graphviz visualization and analysis tools like dot, dotty, and sccmap. Usage: modgv takes no options or arguments; it reads a graph in the format generated by “go mod graph” on standard input and writes DOT language on standard output. For each module, the node representing the greatest version (i.e., the version chosen by Go's minimal version selection algorithm) is colored green. Other nodes, which aren't in the final build list, are colored grey. See http://www.graphviz.org/doc/info/lang.html for details of the DOT language and http://www.graphviz.org/about/ for Graphviz itself.
Package amt provides a reference implementation of the IPLD AMT (Array Mapped Trie) used in the Filecoin blockchain. The AMT algorithm is similar to a HAMT https://en.wikipedia.org/wiki/Hash_array_mapped_trie but instead presents an array-like interface where the indexes themselves form the mapping to nodes in the trie structure. An AMT is suitable for storing sparse array data as a minimum amount of intermediate nodes are required to address a small number of entries even when their indexes span a large distance. AMT is also a suitable means of storing non-sparse array data as required, with a small amount of storage and algorithmic overhead required to handle mapping that assumes that some elements within any range of data may not be present. The AMT algorithm produces a tree-like graph, with a single root node addressing a collection of child nodes which connect downward toward leaf nodes which store the actual entries. No terminal entries are stored in intermediate elements of the tree, unlike in a HAMT. We can divide up the AMT tree structure into "levels" or "heights", where a height of zero contains the terminal elements, and the maximum height of the tree contains the single root node. Intermediate nodes are used to span across the range of indexes. Any AMT instance uses a fixed "width" that is consistent across the tree's nodes. An AMT's "bitWidth" dictates the width, or maximum-brancing factor (arity) of the AMT's nodes by determining how many bits of the original index are used to determine the index at any given level. A bitWidth of 3 (the default for this implementation) can generate indexes in the range of 0 to (3^2)-1=7, i.e. a "width" of 8. In practice, this means that an AMT with a bitWidth of 3 has a branching factor of _between 1 and 8_ for any node in the structure. Considering the minimal case: a minimal AMT contains a single node which serves as both the root and the leaf node and can hold zero or more elements (an empty AMT is possible, although a special-case, and consists of a zero-length root). This minimal AMT can store array indexes from 0 to width-1 (8 for the default bitWidth of 3) without requiring the addition of additional nodes. Attempts to add additional indexes beyond width-1 will result in additional nodes being added and a tree structure in order to address the new elements. The minimal AMT node is said to have a height of 0. Every node in an AMT has a height that indicates its distance from the leaf nodes. All leaf nodes have a height of 0. The height of the root node dictates the overall height of the entire AMT. In the case of the minimal AMT, this is 0. Elements are stored in a compacted form within nodes, they are "position-mapped" by a bitmap field that is stored with the node. The bitmap is a simple byte array, where each bit represents an element of the data that can be stored in the node. With a width of 8, the bitmap is a single byte and up to 8 elements can be stored in the node. The data array of a node _only stores elements that are present in that node_, so the array is commonly shorter than the maximum width. An empty AMT is a special-case where the single node can have zero elements, therefore a zero-length data array and a bitmap of `0x00`. In all other cases, the data array must have between 1 and width elements. Determining the position of an index within the data array requires counting the number of set bits within the bitmap up to the element we are concerned with. If the bitmap has bits 2, 4 and 6 set, we can see that only 3 of the bits are set so our data array should hold 3 elements. To address index 4, we know that the first element will be index 2 and therefore the second will hold index 4. This format allows us to store only the elements that are set in the node. Overflow beyond the single node AMT by adding an index beyond width-1 requires an increase in height in order to address all elements. If an element in the range of width to (width*2)-1 is added, a single additional height is required which will result in a new root node which is used to address two consecutive leaf nodes. Because we have an arity of up to width at any node, the addition of indexes in the range of 0 to (width^2)-1 will still require only the addition of a single additional height above the leaf nodes, i.e. height 1. From the width of an AMT we can derive the maximum range of indexes that can be contained by an AMT at any given `height` with the formula width^(height+1)-1. e.g. an AMT with a width of 8 and a height of 2 can address indexes 0 to 8^(2+1)-1=511. Incrementing the height doubles the range of indexes that can be contained within that structure. Nodes above height 0 (non-leaf nodes) do not contain terminal elements, but instead, their data array contains links to child nodes. The index compaction using the bitmap is the same as for leaf nodes, so each non-leaf node only stores as many links as it has child nodes. Because additional height is required to address larger indexes, even a single-element AMT will require more than one node where the index is greater than the width of the AMT. For a width of 8, indexes 8 to 63 require a height of 1, indexes 64 to 511 require a height of 2, indexes 512 to 4095 require a height of 3, etc. Retrieving elements from the AMT requires extracting only the portion of the requested index that is required at each height to determine the position in the data array to navigate into. When traversing through the tree, we only need to select from indexes 0 to width-1. To do this, we take log2(width) bits from the index to form a number that is between 0 and width-1. e.g. for a width of 8, we only need 3 bits to form a number between 0 and 7, so we only consume 3 bits per level of the AMT as we traverse. A simple method to calculate this at any height in the AMT (assuming bitWidth of 3, i.e. a width of 8) is: 1. Calculate the maximum number of nodes (not entries) that may be present in an sub-tree rooted at the current height. width^height provides this number. e.g. at height 0, only 1 node can be present, but at height 3, we may have a tree of up to 512 nodes (storing up to 8^(3+1)=4096 entries). 2. Divide the index by this number to find the index for this height. e.g. an index of 3 at height 0 will be 3/1=3, or an index of 20 at height 1 will be 20/8=2. 3. If we are at height 0, the element we want is at the data index, position-mapped via the bitmap. 4. If we are above height 0, we need to navigate to the child element at the index we calculated, position-mapped via the bitmap. When traversing to the child, we discard the upper portion of the index that we no longer need. This can be achieved by a mod operation against the number-of-nodes value. e.g. an index of 20 at height 1 requires navigation to the element at position 2, when moving to that element (which is height 0), we truncate the index with 20%8=4, at height 0 this index will be the index in our data array (position-mapped via the bitmap). In this way, each sub-tree root consumes a small slice, log2(width) bits long, of the original index. Adding new elements to an AMT may require up to 3 steps: 1. Increasing the height to accommodate a new index if the current height is not sufficient to address the new index. Increasing the height requires turning the current root node into an intermediate and adding a new root which links to the old (repeated until the required height is reached). 2. Adding any missing intermediate and leaf nodes that are required to address the new index. Depending on the density of existing indexes, this may require the addition of up to height-1 new nodes to connect the root to the required leaf. Sparse indexes will mean large gaps in the tree that will need filling to address new, equally sparse, indexes. 3. Setting the element at the leaf node in the appropriate position in the data array and setting the appropriate bit in the bitmap. Removing elements requires a reversal of this process. Any empty node (other than the case of a completely empty AMT) must be removed and its parent should have its child link removed. This removal may recurse up the tree to remove many unnecessary intermediate nodes. The root node may also be removed if the current height is no longer necessary to contain the range of indexes still in the AMT. This can be easily determined if _only_ the first bit of the root's bitmap is set, meaning only the left-most is present, which will become the new root node (repeated until the new root has more than the first bit set or height of 0, the single-node case). See https://github.com/ipld/specs/blob/master/data-structures/hashmap.md for a description of a HAMT algorithm. And https://github.com/ipld/specs/blob/master/data-structures/vector.md for a description of a similar algorithm to an AMT that doesn't support internal node compression and therefore doesn't support sparse arrays. Unlike a HAMT, the AMT algorithm doesn't benefit from randomness introduced by a hash algorithm. Therefore an AMT used in cases where user-input can influence indexes, larger-than-necessary tree structures may present risks as well as the challenge imposed by having a strict upper-limit on the indexes addressable by the AMT. A width of 8, using 64-bit integers for indexing, allows for a tree height of up to 64/log2(8)=21 (i.e. a width of 8 has a bitWidth of 3, dividing the 64 bits of the uint into 21 separate per-height indexes). Careful placement of indexes could create extremely sub-optimal forms with large heights connecting leaf nodes that are sparsely packed. The overhead of the large number of intermediate nodes required to connect leaf nodes in AMTs that contain high indexes can be abused to create perverse forms that contain large numbers of nodes to store a minimal number of elements. Minimal nodes will be created where indexes are all in the lower-range. The optimal case for an AMT is contiguous index values starting from zero. As larger indexes are introduced that span beyond the current maximum, more nodes are required to address the new nodes _and_ the existing lower index nodes. Consider a case where a width=8 AMT is only addressing indexes less than 8 and requiring a single height. The introduction of a single index within 8 of the maximum 64-bit unsigned integer range will require the new root to have a height of 21 and have enough connecting nodes between it and both the existing elements and the new upper index. This pattern of behavior may be acceptable if there is significant density of entries under a particular maximum index. There is a direct relationship between the sparseness of index values and the number of nodes required to address the entries. This should be the key consideration when determining whether an AMT is a suitable data-structure for a given application.
Package amt provides a reference implementation of the IPLD AMT (Array Mapped Trie) used in the Filecoin blockchain. The AMT algorithm is similar to a HAMT https://en.wikipedia.org/wiki/Hash_array_mapped_trie but instead presents an array-like interface where the indexes themselves form the mapping to nodes in the trie structure. An AMT is suitable for storing sparse array data as a minimum amount of intermediate nodes are required to address a small number of entries even when their indexes span a large distance. AMT is also a suitable means of storing non-sparse array data as required, with a small amount of storage and algorithmic overhead required to handle mapping that assumes that some elements within any range of data may not be present. The AMT algorithm produces a tree-like graph, with a single root node addressing a collection of child nodes which connect downward toward leaf nodes which store the actual entries. No terminal entries are stored in intermediate elements of the tree, unlike in a HAMT. We can divide up the AMT tree structure into "levels" or "heights", where a height of zero contains the terminal elements, and the maximum height of the tree contains the single root node. Intermediate nodes are used to span across the range of indexes. Any AMT instance uses a fixed "width" that is consistent across the tree's nodes. An AMT's "bitWidth" dictates the width, or maximum-brancing factor (arity) of the AMT's nodes by determining how many bits of the original index are used to determine the index at any given level. A bitWidth of 3 (the default for this implementation) can generate indexes in the range of 0 to (2^3)-1=7, i.e. a "width" of 8. In practice, this means that an AMT with a bitWidth of 3 has a branching factor of _between 1 and 8_ for any node in the structure. Considering the minimal case: a minimal AMT contains a single node which serves as both the root and the leaf node and can hold zero or more elements (an empty AMT is possible, although a special-case, and consists of a zero-length root). This minimal AMT can store array indexes from 0 to width-1 (8 for the default bitWidth of 3) without requiring the addition of additional nodes. Attempts to add additional indexes beyond width-1 will result in additional nodes being added and a tree structure in order to address the new elements. The minimal AMT node is said to have a height of 0. Every node in an AMT has a height that indicates its distance from the leaf nodes. All leaf nodes have a height of 0. The height of the root node dictates the overall height of the entire AMT. In the case of the minimal AMT, this is 0. Elements are stored in a compacted form within nodes, they are "position-mapped" by a bitmap field that is stored with the node. The bitmap is a simple byte array, where each bit represents an element of the data that can be stored in the node. With a width of 8, the bitmap is a single byte and up to 8 elements can be stored in the node. The data array of a node _only stores elements that are present in that node_, so the array is commonly shorter than the maximum width. An empty AMT is a special-case where the single node can have zero elements, therefore a zero-length data array and a bitmap of `0x00`. In all other cases, the data array must have between 1 and width elements. Determining the position of an index within the data array requires counting the number of set bits within the bitmap up to the element we are concerned with. If the bitmap has bits 2, 4 and 6 set, we can see that only 3 of the bits are set so our data array should hold 3 elements. To address index 4, we know that the first element will be index 2 and therefore the second will hold index 4. This format allows us to store only the elements that are set in the node. Overflow beyond the single node AMT by adding an index beyond width-1 requires an increase in height in order to address all elements. If an element in the range of width to (width*2)-1 is added, a single additional height is required which will result in a new root node which is used to address two consecutive leaf nodes. Because we have an arity of up to width at any node, the addition of indexes in the range of 0 to (width^2)-1 will still require only the addition of a single additional height above the leaf nodes, i.e. height 1. From the width of an AMT we can derive the maximum range of indexes that can be contained by an AMT at any given `height` with the formula width^(height+1)-1. e.g. an AMT with a width of 8 and a height of 2 can address indexes 0 to 8^(2+1)-1=511. Incrementing the height doubles the range of indexes that can be contained within that structure. Nodes above height 0 (non-leaf nodes) do not contain terminal elements, but instead, their data array contains links to child nodes. The index compaction using the bitmap is the same as for leaf nodes, so each non-leaf node only stores as many links as it has child nodes. Because additional height is required to address larger indexes, even a single-element AMT will require more than one node where the index is greater than the width of the AMT. For a width of 8, indexes 8 to 63 require a height of 1, indexes 64 to 511 require a height of 2, indexes 512 to 4095 require a height of 3, etc. Retrieving elements from the AMT requires extracting only the portion of the requested index that is required at each height to determine the position in the data array to navigate into. When traversing through the tree, we only need to select from indexes 0 to width-1. To do this, we take log2(width) bits from the index to form a number that is between 0 and width-1. e.g. for a width of 8, we only need 3 bits to form a number between 0 and 7, so we only consume 3 bits per level of the AMT as we traverse. A simple method to calculate this at any height in the AMT (assuming bitWidth of 3, i.e. a width of 8) is: 1. Calculate the maximum number of nodes (not entries) that may be present in an sub-tree rooted at the current height. width^height provides this number. e.g. at height 0, only 1 node can be present, but at height 3, we may have a tree of up to 512 nodes (storing up to 8^(3+1)=4096 entries). 2. Divide the index by this number to find the index for this height. e.g. an index of 3 at height 0 will be 3/1=3, or an index of 20 at height 1 will be 20/8=2. 3. If we are at height 0, the element we want is at the data index, position-mapped via the bitmap. 4. If we are above height 0, we need to navigate to the child element at the index we calculated, position-mapped via the bitmap. When traversing to the child, we discard the upper portion of the index that we no longer need. This can be achieved by a mod operation against the number-of-nodes value. e.g. an index of 20 at height 1 requires navigation to the element at position 2, when moving to that element (which is height 0), we truncate the index with 20%8=4, at height 0 this index will be the index in our data array (position-mapped via the bitmap). In this way, each sub-tree root consumes a small slice, log2(width) bits long, of the original index. Adding new elements to an AMT may require up to 3 steps: 1. Increasing the height to accommodate a new index if the current height is not sufficient to address the new index. Increasing the height requires turning the current root node into an intermediate and adding a new root which links to the old (repeated until the required height is reached). 2. Adding any missing intermediate and leaf nodes that are required to address the new index. Depending on the density of existing indexes, this may require the addition of up to height-1 new nodes to connect the root to the required leaf. Sparse indexes will mean large gaps in the tree that will need filling to address new, equally sparse, indexes. 3. Setting the element at the leaf node in the appropriate position in the data array and setting the appropriate bit in the bitmap. Removing elements requires a reversal of this process. Any empty node (other than the case of a completely empty AMT) must be removed and its parent should have its child link removed. This removal may recurse up the tree to remove many unnecessary intermediate nodes. The root node may also be removed if the current height is no longer necessary to contain the range of indexes still in the AMT. This can be easily determined if _only_ the first bit of the root's bitmap is set, meaning only the left-most is present, which will become the new root node (repeated until the new root has more than the first bit set or height of 0, the single-node case). See https://github.com/ipld/specs/blob/master/data-structures/hashmap.md for a description of a HAMT algorithm. And https://github.com/ipld/specs/blob/master/data-structures/vector.md for a description of a similar algorithm to an AMT that doesn't support internal node compression and therefore doesn't support sparse arrays. Unlike a HAMT, the AMT algorithm doesn't benefit from randomness introduced by a hash algorithm. Therefore an AMT used in cases where user-input can influence indexes, larger-than-necessary tree structures may present risks as well as the challenge imposed by having a strict upper-limit on the indexes addressable by the AMT. A width of 8, using 64-bit integers for indexing, allows for a tree height of up to 64/log2(8)=21 (i.e. a width of 8 has a bitWidth of 3, dividing the 64 bits of the uint into 21 separate per-height indexes). Careful placement of indexes could create extremely sub-optimal forms with large heights connecting leaf nodes that are sparsely packed. The overhead of the large number of intermediate nodes required to connect leaf nodes in AMTs that contain high indexes can be abused to create perverse forms that contain large numbers of nodes to store a minimal number of elements. Minimal nodes will be created where indexes are all in the lower-range. The optimal case for an AMT is contiguous index values starting from zero. As larger indexes are introduced that span beyond the current maximum, more nodes are required to address the new nodes _and_ the existing lower index nodes. Consider a case where a width=8 AMT is only addressing indexes less than 8 and requiring a single height. The introduction of a single index within 8 of the maximum 64-bit unsigned integer range will require the new root to have a height of 21 and have enough connecting nodes between it and both the existing elements and the new upper index. This pattern of behavior may be acceptable if there is significant density of entries under a particular maximum index. There is a direct relationship between the sparseness of index values and the number of nodes required to address the entries. This should be the key consideration when determining whether an AMT is a suitable data-structure for a given application.
Package tfortools provides a set of functions that are designed to make it easier for developers to add template based scripting to their command line tools. Command line tools written in Go often allow users to specify a template script to tailor the output of the tool to their specific needs. This can be useful both when visually inspecting the data and also when invoking command line tools in scripts. The best example of this is go list which allows users to pass a template script to extract interesting information about Go packages. For example, prints all the imports of the current package. The aim of this package is to make it easier for developers to add template scripting support to their tools and easier for users of these tools to extract the information they need. It does this by augmenting the templating language provided by the standard library package text/template in two ways: 1. It auto generates descriptions of the data structures passed as input to a template script for use in help messages. This ensures that help usage information is always up to date with the source code. 2. It provides a suite of convenience functions to make it easy for script writers to extract the data they need. There are functions for sorting, selecting rows and columns and generating nicely formatted tables. For example, if a program passed a slice of structs containing stock data to a template script, we could use the following script to extract the names of the 3 stocks with the highest trade volume. The output might look something like this: The functions head, sort, tables and col are provided by this package.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package json implements semantic processing of JSON as specified in RFC 8259. JSON is a simple data interchange format that can represent primitive data types such as booleans, strings, and numbers, in addition to structured data types such as objects and arrays. Marshal and Unmarshal encode and decode Go values to/from JSON text contained within a []byte. MarshalWrite and UnmarshalRead operate on JSON text by writing to or reading from an io.Writer or io.Reader. MarshalEncode and UnmarshalDecode operate on JSON text by encoding to or decoding from a jsontext.Encoder or jsontext.Decoder. Options may be passed to each of the marshal or unmarshal functions to configure the semantic behavior of marshaling and unmarshaling (i.e., alter how JSON data is understood as Go data and vice versa). jsontext.Options may also be passed to the marshal or unmarshal functions to configure the syntactic behavior of encoding or decoding. The data types of JSON are mapped to/from the data types of Go based on the closest logical equivalent between the two type systems. For example, a JSON boolean corresponds with a Go bool, a JSON string corresponds with a Go string, a JSON number corresponds with a Go int, uint or float, a JSON array corresponds with a Go slice or array, and a JSON object corresponds with a Go struct or map. See the documentation on Marshal and Unmarshal for a comprehensive list of how the JSON and Go type systems correspond. Arbitrary Go types can customize their JSON representation by implementing MarshalerV1, MarshalerV2, UnmarshalerV1, or UnmarshalerV2. This provides authors of Go types with control over how their types are serialized as JSON. Alternatively, users can implement functions that match MarshalFuncV1, MarshalFuncV2, UnmarshalFuncV1, or UnmarshalFuncV2 to specify the JSON representation for arbitrary types. This provides callers of JSON functionality with control over how any arbitrary type is serialized as JSON. A Go struct is naturally represented as a JSON object, where each Go struct field corresponds with a JSON object member. When marshaling, all Go struct fields are recursively encoded in depth-first order as JSON object members except those that are ignored or omitted. When unmarshaling, JSON object members are recursively decoded into the corresponding Go struct fields. Object members that do not match any struct fields, also known as “unknown members”, are ignored by default or rejected if RejectUnknownMembers is specified. The representation of each struct field can be customized in the "json" struct field tag, where the tag is a comma separated list of options. As a special case, if the entire tag is `json:"-"`, then the field is ignored with regard to its JSON representation. The first option is the JSON object name override for the Go struct field. If the name is not specified, then the Go struct field name is used as the JSON object name. JSON names containing commas or quotes, or names identical to "" or "-", can be specified using a single-quoted string literal, where the syntax is identical to the Go grammar for a double-quoted string literal, but instead uses single quotes as the delimiters. By default, unmarshaling uses case-sensitive matching to identify the Go struct field associated with a JSON object name. After the name, the following tag options are supported: omitzero: When marshaling, the "omitzero" option specifies that the struct field should be omitted if the field value is zero as determined by the "IsZero() bool" method if present, otherwise based on whether the field is the zero Go value. This option has no effect when unmarshaling. omitempty: When marshaling, the "omitempty" option specifies that the struct field should be omitted if the field value would have been encoded as a JSON null, empty string, empty object, or empty array. This option has no effect when unmarshaling. string: The "string" option specifies that StringifyNumbers be set when marshaling or unmarshaling a struct field value. This causes numeric types to be encoded as a JSON number within a JSON string, and to be decoded from either a JSON number or a JSON string containing a JSON number. This extra level of encoding is often necessary since many JSON parsers cannot precisely represent 64-bit integers. nocase: When unmarshaling, the "nocase" option specifies that if the JSON object name does not exactly match the JSON name for any of the struct fields, then it attempts to match the struct field using a case-insensitive match that also ignores dashes and underscores. If multiple fields match, the first declared field in breadth-first order takes precedence. This takes precedence even if MatchCaseInsensitiveNames is set to false. This cannot be specified together with the "strictcase" option. strictcase: When unmarshaling, the "strictcase" option specifies that the JSON object name must exactly match the JSON name for the struct field. This takes precedence even if MatchCaseInsensitiveNames is set to true. This cannot be specified together with the "nocase" option. inline: The "inline" option specifies that the JSON representable content of this field type is to be promoted as if they were specified in the parent struct. It is the JSON equivalent of Go struct embedding. A Go embedded field is implicitly inlined unless an explicit JSON name is specified. The inlined field must be a Go struct (that does not implement any JSON methods), jsontext.Value, map[string]T, or an unnamed pointer to such types. When marshaling, inlined fields from a pointer type are omitted if it is nil. Inlined fields of type jsontext.Value and map[string]T are called “inlined fallbacks” as they can represent all possible JSON object members not directly handled by the parent struct. Only one inlined fallback field may be specified in a struct, while many non-fallback fields may be specified. This option must not be specified with any other option (including the JSON name). unknown: The "unknown" option is a specialized variant of the inlined fallback to indicate that this Go struct field contains any number of unknown JSON object members. The field type must be a jsontext.Value, map[string]T, or an unnamed pointer to such types. If DiscardUnknownMembers is specified when marshaling, the contents of this field are ignored. If RejectUnknownMembers is specified when unmarshaling, any unknown object members are rejected regardless of whether an inlined fallback with the "unknown" option exists. This option must not be specified with any other option (including the JSON name). format: The "format" option specifies a format flag used to specialize the formatting of the field value. The option is a key-value pair specified as "format:value" where the value must be either a literal consisting of letters and numbers (e.g., "format:RFC3339") or a single-quoted string literal (e.g., "format:'2006-01-02'"). The interpretation of the format flag is determined by the struct field type. The "omitzero" and "omitempty" options are mostly semantically identical. The former is defined in terms of the Go type system, while the latter in terms of the JSON type system. Consequently they behave differently in some circumstances. For example, only a nil slice or map is omitted under "omitzero", while an empty slice or map is omitted under "omitempty" regardless of nilness. The "omitzero" option is useful for types with a well-defined zero value (e.g., net/netip.Addr) or have an IsZero method (e.g., time.Time.IsZero). Every Go struct corresponds to a list of JSON representable fields which is constructed by performing a breadth-first search over all struct fields (excluding unexported or ignored fields), where the search recursively descends into inlined structs. The set of non-inlined fields in a struct must have unique JSON names. If multiple fields all have the same JSON name, then the one at shallowest depth takes precedence and the other fields at deeper depths are excluded from the list of JSON representable fields. If multiple fields at the shallowest depth have the same JSON name, but exactly one is explicitly tagged with a JSON name, then that field takes precedence and all others are excluded from the list. This is analogous to Go visibility rules for struct field selection with embedded struct types. Marshaling or unmarshaling a non-empty struct without any JSON representable fields results in a SemanticError. Unexported fields must not have any `json` tags except for `json:"-"`. Unmarshal matches JSON object names with Go struct fields using a case-sensitive match, but can be configured to use a case-insensitive match with the "nocase" option. This permits unmarshaling from inputs that use naming conventions such as camelCase, snake_case, or kebab-case. By default, JSON object names for Go struct fields are derived from the Go field name, but may be specified in the `json` tag. Due to JSON's heritage in JavaScript, the most common naming convention used for JSON object names is camelCase. The "format" tag option can be used to alter the formatting of certain types. JSON objects can be inlined within a parent object similar to how Go structs can be embedded within a parent struct. The inlining rules are similar to those of Go embedding, but operates upon the JSON namespace. Go struct fields can be omitted from the output depending on either the input Go value or the output JSON encoding of the value. The "omitzero" option omits a field if it is the zero Go value or implements a "IsZero() bool" method that reports true. The "omitempty" option omits a field if it encodes as an empty JSON value, which we define as a JSON null or empty JSON string, object, or array. In many cases, the behavior of "omitzero" and "omitempty" are equivalent. If both provide the desired effect, then using "omitzero" is preferred. The exact order of JSON object can be preserved through the use of a specialized type that implements MarshalerV2 and UnmarshalerV2. Some Go types have a custom JSON representation where the implementation is delegated to some external package. Consequently, the "json" package will not know how to use that external implementation. For example, the google.golang.org/protobuf/encoding/protojson package implements JSON for all google.golang.org/protobuf/proto.Message types. WithMarshalers and WithUnmarshalers can be used to configure "json" and "protojson" to cooperate together. When implementing HTTP endpoints, it is common to be operating with an io.Reader and an io.Writer. The MarshalWrite and UnmarshalRead functions assist in operating on such input/output types. UnmarshalRead reads the entirety of the io.Reader to ensure that io.EOF is encountered without any unexpected bytes after the top-level JSON value. If a type implements encoding.TextMarshaler and/or encoding.TextUnmarshaler, then the MarshalText and UnmarshalText methods are used to encode/decode the value to/from a JSON string. Due to version skew, the set of JSON object members known at compile-time may differ from the set of members encountered at execution-time. As such, it may be useful to have finer grain handling of unknown members. This package supports preserving, rejecting, or discarding such members.
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/ryanbressler/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/ryanbressler/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
modgv converts “go mod graph” output into Graphviz's DOT language, for use with Graphviz visualization and analysis tools like dot, dotty, and sccmap. Usage: modgv takes no options or arguments; it reads a graph in the format generated by “go mod graph” on standard input and writes DOT language on standard output. For each module, the node representing the greatest version (i.e., the version chosen by Go's minimal version selection algorithm) is colored green. Other nodes, which aren't in the final build list, are colored grey. See http://www.graphviz.org/doc/info/lang.html for details of the DOT language and http://www.graphviz.org/about/ for Graphviz itself.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package proton provides the API client, operations, and parameter types for AWS Proton. This is the Proton Service API Reference. It provides descriptions, syntax and usage examples for each of the actionsand data types for the Proton service. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use the Amazon Web Services CLI to access an API. For more information, see the Amazon Web Services Command Line Interface User Guide. The Proton service is a two-pronged automation framework. Administrators create service templates to provide standardized infrastructure and deployment tooling for serverless and container based applications. Developers, in turn, select from the available service templates to automate their application or service deployments. Because administrators define the infrastructure and tooling that Proton deploys and manages, they need permissions to use all of the listed API operations. When developers select a specific infrastructure and tooling set, Proton deploys their applications. To monitor their applications that are running on Proton, developers need permissions to the service create, list, update and delete API operations and the service instance list and update API operations. To learn more about Proton, see the Proton User Guide. When you make a mutating API request, the request typically returns a result before the asynchronous workflows of the operation are complete. Operations might also time out or encounter other server issues before they're complete, even if the request already returned a result. This might make it difficult to determine whether the request succeeded. Moreover, you might need to retry the request multiple times to ensure that the operation completes successfully. However, if the original request and the subsequent retries are successful, the operation occurs multiple times. This means that you might create more resources than you intended. Idempotency ensures that an API request action completes no more than one time. With an idempotent request, if the original request action completes successfully, any subsequent retries complete successfully without performing any further actions. However, the result might contain updated information, such as the current creation status. The following lists of APIs are grouped according to methods that ensure idempotency. The API actions in this list support idempotency with the use of a client token. The corresponding Amazon Web Services CLI commands also support idempotency using a client token. A client token is a unique, case-sensitive string of up to 64 ASCII characters. To make an idempotent API request using one of these actions, specify a client token in the request. We recommend that you don't reuse the same client token for other API requests. If you don’t provide a client token for these APIs, a default client token is automatically provided by SDKs. Given a request action that has succeeded: If you retry the request using the same client token and the same parameters, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If you retry the request using the same client token, but one or more of the parameters are different, the retry throws a ValidationException with an IdempotentParameterMismatch error. Client tokens expire eight hours after a request is made. If you retry the request with the expired token, a new resource is created. If the original resource is deleted and you retry the request, a new resource is created. Idempotent create APIs with a client token: CreateEnvironmentTemplateVersion CreateServiceTemplateVersion CreateEnvironmentAccountConnection Given a request action that has succeeded: If you retry the request with an API from this group, and the original resource hasn't been modified, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If the original resource has been modified, the retry throws a ConflictException . If you retry with different input parameters, the retry throws a ValidationException with an IdempotentParameterMismatch error. Idempotent create APIs: CreateEnvironmentTemplate CreateServiceTemplate CreateEnvironment CreateService Given a request action that has succeeded: When you retry the request with an API from this group and the resource was deleted, its metadata is returned in the response. If you retry and the resource doesn't exist, the response is empty. In both cases, the retry succeeds. Idempotent delete APIs: DeleteEnvironmentTemplate DeleteEnvironmentTemplateVersion DeleteServiceTemplate DeleteServiceTemplateVersion DeleteEnvironmentAccountConnection Given a request action that has succeeded: If you retry the request with an API from this group, if the original request delete operation status is DELETE_IN_PROGRESS , the retry returns the resource detail data in the response without performing any further actions. If the original request delete operation is complete, a retry returns an empty response. Asynchronous idempotent delete APIs: DeleteEnvironment DeleteService
Package bluemonday provides a way of describing a whitelist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the whitelist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on its whitelist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not whitelist iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially:
Package goncurses is a new curses (ncurses) library for the Go programming language. It implements all the ncurses extension libraries: form, menu and panel. Minimal operation would consist of initializing the display: It is important to always call End() before your program exits. If you fail to do so, the terminal will not perform properly and will either need to be reset or restarted completely. CAUTION: Calls to ncurses functions are normally not atomic nor reentrant and therefore extreme care should be taken to ensure ncurses functions are not called concurrently. Specifically, never write data to the same window concurrently nor accept input and send output to the same window as both alter the underlying C data structures in a non safe manner. Ideally, you should structure your program to ensure all ncurses related calls happen in a single goroutine. This is probably most easily achieved via channels and Go's built-in select. Alternatively, or additionally, you can use a mutex to protect any calls in multiple goroutines from happening concurrently. Failure to do so will result in unpredictable and undefined behaviour in your program. The examples directory contains demonstrations of many of the capabilities goncurses can provide.
Ivy is an interpreter for an APL-like language. It is a plaything and a work in progress. Unlike APL, the input is ASCII and the results are exact (but see the next paragraph). It uses exact rational arithmetic so it can handle arbitrary precision. Values to be input may be integers (3, -1), rationals (1/3, -45/67) or floating point values (1e3, -1.5 (representing 1000 and -3/2)). Some functions such as sqrt are irrational. When ivy evaluates an irrational function, the result is stored in a high-precision floating-point number (default 256 bits of mantissa). Thus when using irrational functions, the values have high precision but are not exact. Unlike in most other languages, operators always have the same precedence and expressions are evaluated in right-associative order. That is, unary operators apply to everything to the right, and binary operators apply to the operand immediately to the left and to everything to the right. Thus, 3*4+5 is 27 (it groups as 3*(4+5)) and iota 3+2 is 1 2 3 4 5 while 3+iota 2 is 4 5. A vector is a single operand, so 1 2 3 + 3 + 3 4 5 is (1 2 3) + 3 + (3 4 5), or 7 9 11. As a special but important case, note that 1/3, with no intervening spaces, is a single rational number, not the expression 1 divided by 3. This can affect precedence: 3/6*4 is 2 while 3 / 6*4 is 1/8 since the spacing turns the / into a division operator. Use parentheses or spaces to disambiguate: 3/(6*4) or 3 /6*4. Indexing uses [] notation: x[1], x[1][2], and so on. Indexing by a vector selects multiple elements: x[1 2] creates a new item from x[1] and x[2]. Only a subset of APL's functionality is implemented, but the intention is to have most numerical operations supported eventually. Semicolons separate multiple statements on a line. Variables are alphanumeric and are assigned with the = operator. Assignment is an expression. After each successful expression evaluation, the result is stored in the variable called _ (underscore) so it can be used in the next expression. The APL operators, adapted from https://en.wikipedia.org/wiki/APL_syntax_and_symbols, and their correspondence are listed here. The correspondence is incomplete and inexact. Unary operators Binary operators Operators and axis indicator Type-converting operations The constants e (base of natural logarithms) and pi (π) are pre-defined to high precision, about 3000 decimal digits truncated according to the floating point precision setting. Strings are vectors of "chars", which are Unicode code points (not bytes). Syntactically, string literals are very similar to those in Go, with back-quoted raw strings and double-quoted interpreted strings. Unlike Go, single-quoted strings are equivalent to double-quoted, a nod to APL syntax. A string with a single char is just a singleton char value; all others are vectors. Thus “, "", and ” are empty vectors, `a`, "a", and 'a' are equivalent representations of a single char, and `ab`, `a` `b`, "ab", "a" "b", 'ab', and 'a' 'b' are equivalent representations of a two-char vector. Unlike in Go, a string in ivy comprises code points, not bytes; as such it can contain only valid Unicode values. Thus in ivy "\x80" is illegal, although it is a legal one-byte string in Go. Strings can be printed. If a vector contains only chars, it is printed without spaces between them. Chars have restricted operations. Printing, comparison, indexing and so on are legal but arithmetic is not, and chars cannot be converted automatically into other singleton values (ints, floats, and so on). The unary operators char and code enable transcoding between integer and char values. Users can define unary and binary operators, which then behave just like built-in operators. Both a unary and a binary operator may be defined for the same name. The syntax of a definition is the 'op' keyword, the operator and formal arguments, an equals sign, and then the body. The names of the operator and its arguments must be identifiers. For unary operators, write "op name arg"; for binary write "op leftarg name rightarg". The final expression in the body is the return value. Operators may have recursive definitions, but since there are no conditional or looping constructs (yet), such operators are problematic when executed. The body may be a single line (possibly containing semicolons) on the same line as the 'op', or it can be multiple lines. For a multiline entry, there is a newline after the '=' and the definition ends at the first blank line (ignoring spaces). Example: average of a vector (unary): Example: n largest entries in a vector (binary): Example: multiline operator definition (binary): Example: primes less than N (unary): To declare an operator but not define it, omit the equals sign and what follows. Within a user-defined operator, identifiers are local to the invocation unless they are undefined in the operator but defined globally, in which case they refer to the global variable. A mechanism to declare locals may come later. Ivy accepts a number of special commands, introduced by a right paren at the beginning of the line. Most report the current value if a new value is not specified. For these commands, numbers are always read and printed base 10 and must be non-negative on input.
Package goncurses is a new curses (ncurses) library for the Go programming language. It implements all the ncurses extension libraries: form, menu and panel. Minimal operation would consist of initializing the display: It is important to always call End() before your program exits. If you fail to do so, the terminal will not perform properly and will either need to be reset or restarted completely. CAUTION: Calls to ncurses functions are normally not atomic nor reentrant and therefore extreme care should be taken to ensure ncurses functions are not called concurrently. Specifically, never write data to the same window concurrently nor accept input and send output to the same window as both alter the underlying C data structures in a non safe manner. Ideally, you should structure your program to ensure all ncurses related calls happen in a single goroutine. This is probably most easily achieved via channels and Go's built-in select. Alternatively, or additionally, you can use a mutex to protect any calls in multiple goroutines from happening concurrently. Failure to do so will result in unpredictable and undefined behaviour in your program. The examples directory contains demontrations of many of the capabilities goncurses can provide.
2fa is a two-factor authentication agent. Usage: “2fa -add name” adds a new key to the 2fa keychain with the given name. It prints a prompt to standard error and reads a two-factor key from standard input. Two-factor keys are short case-insensitive strings of letters A-Z and digits 2-7. By default the new key generates time-based (TOTP) authentication codes; the -hotp flag makes the new key generate counter-based (HOTP) codes instead. By default the new key generates 6-digit codes; the -7 and -8 flags select 7- and 8-digit codes instead. “2fa -list” lists the names of all the keys in the keychain. “2fa name” prints a two-factor authentication code from the key with the given name. If “-clip” is specified, 2fa also copies the code to the system clipboard. With no arguments, 2fa prints two-factor authentication codes from all known time-based keys. The default time-based authentication codes are derived from a hash of the key and the current time, so it is important that the system clock have at least one-minute accuracy. The keychain is stored unencrypted in the text file $HOME/.2fa. During GitHub 2FA setup, at the “Scan this barcode with your app” step, click the “enter this text code instead” link. A window pops up showing “your two-factor secret,” a short string of letters and digits. Add it to 2fa under the name github, typing the secret at the prompt: Then whenever GitHub prompts for a 2FA code, run 2fa to obtain one: Or to type less:
Package ql implements a pure Go embedded SQL database engine. QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (github.com/cznic/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors github.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. An identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example No identifiers are predeclared, however note that no keyword can be used as an identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package vfsgen takes an http.FileSystem (likely at `go generate` time) and generates Go code that statically implements the provided http.FileSystem. Features: - Efficient generated code without unneccessary overhead. - Uses gzip compression internally (selectively, only for files that compress well). - Enables direct access to internal gzip compressed bytes via an optional interface. - Outputs `gofmt`ed Go code. This code will generate an assets_vfsdata.go file with `var assets http.FileSystem = ...` that statically implements the contents of "assets" directory. vfsgen is great to use with go generate directives. This code can go in an assets_gen.go file, which can then be invoked via "//go:generate go run assets_gen.go". The input virtual filesystem can read directly from disk, or it can be more involved.
Package vfsgen takes an http.FileSystem (likely at `go generate` time) and generates Go code that statically implements the provided http.FileSystem. Features: - Efficient generated code without unneccessary overhead. - Uses gzip compression internally (selectively, only for files that compress well). - Enables direct access to internal gzip compressed bytes via an optional interface. - Outputs `gofmt`ed Go code. This code will generate an assets_vfsdata.go file with `var assets http.FileSystem = ...` that statically implements the contents of "assets" directory. vfsgen is great to use with go generate directives. This code can go in an assets_gen.go file, which can then be invoked via "//go:generate go run assets_gen.go". The input virtual filesystem can read directly from disk, or it can be more involved.
Package bluemonday provides a way of describing a whitelist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the whitelist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on it's whitelist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not whitelist iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the nifcloud.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.nifcloud/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/credentials The SDK has support for the shared configuration file (~/.nifcloud/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
rm2pdf MIT Licensed RCL January 2020 This programme attempts to create annotated A4 PDF files from reMarkable tablet file groups (RM bundles), including .rm files recording marks. Normally these files will be in a local directory, such as an xochitl directory synchronised to a tablet over sshfs. The programme takes as input either: * The path to the PDF file which has had annotations made to it * The path to the RM bundle with uuid, such as <path>/<uuid> with no filename extension, together with a PDF template to use for the background (a blank A4 template is provided in templates/A4.pdf). The resulting PDF is layered with the background and .rm file layers each in a separated PDF layer. The .rm file marks are stroked using the fpdf PDF library, although .rm tilt and pressure characteristics are not represented in the PDF output. PDF files from sources such as Microsoft Word do not always work well. It can help to rewrite them using the pdftk tool, e.g. by doing Custom colours for some pens can be specified using the -c or --colours switch, which overrides the default pen selection. A second -c switch sets the colours on the second layer, and so on. Example of processing an rm bundle without a pdf: Example of processing an rm bundle with a pdf, and per-layer colours: General options: Warning: the OutputFile will be overwritten if it exists. The parser is a go port of reMarkable tablet "lines" or ".rm" file parser, with binary decoding hints drawn from rm2svg https://github.com/reHackable/maxio/blob/master/tools/rM2svg which in turn refers to https://github.com/lschwetlick/maxio/tree/master/tools. Python struct format codes referred to in the parser, such as "<{}sI" are from rm2svg. RMParser provides a python-like iterator based on bufio.Scan, which iterates over the referenced reMarkable .rm file returning a data structure consisting of each path with its associated layer and path segments. Usage example: Pen selections are hard-coded in stroke.go with widths, opacities and colours. The StrokeSetting interface "Width" is used to scale strokes based on nothing more than what seems to be about right. Resolving the page sizes and reMarkable output resolution was based on the reMarkable png templates and viewing the reMarkable app's output x and y widths. These dimensions are noted in pdf.go in PDF_WIDTH_IN_MM and PDF_HEIGHT_IN_MM. Conversion from mm to points (MM_TO_RMPOINTS) and from points to the resolution of the reMarkable tablet (PTS_2_RMPTS) is also set in pdf.go. The theoretical conversion factor is slightly altered based on the output from various tests, including those in the testfiles directory. To view the testfiles after processing use or alter the paths used in the tests.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package microformats provides a microformats parser, supporting both v1 and v2 syntax. Usage: Retrive the HTML contents of a page, and call Parse or ParseNode, depending on what input you have (an io.Reader or an html.Node). To parse only a section of an HTML document, use a package like goquery to select the root node to parse from. For example, see cmd/gomf/main.go. See also: http://microformats.org/wiki/microformats2
The Escher HTTP request signing framework is intended to provide a secure way for clients to sign HTTP requests, and servers to check the integrity of these messages. The goal of the protocol is to introduce an authentication solution for REST API services, that is more secure than the currently available protocols. RFC 2617 (HTTP Authentication) defines Basic and Digest Access Authentication. They’re widely used, but Basic Access Authentication doesn’t encrypt the secret and doesn’t add integrity checks to the requests. Digest Access Authentication sends the secret encrypted, but the algorithm with creating a checksum with a nonce and using md5 should not be considered highly secure these days, and as with Basic Access Authentication, there’s no way to check the integrity of the message. RFC 6749 (OAuth 2.0 Authorization) enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. This is not helpful for a machine-to-machine communication situation, like a REST API authentication, because typically there’s no third-party user involved. Additionally, after a token is obtained from the authorization endpoint, it is used with no encryption, and doesn’t provide integration checking, or prevent repeating messages. OAuth 2.0 is a stateful protocol which needs a database to store the tokens for client sessions. Amazon and other service providers created protocols addressing these issues, however there is no public standard with open source implementations available from them. As Escher is based on a publicly documented, widely, in-the-wild used protocol, the specification does not include novelty techniques. 2. Signing an HTTP Request Escher defines a stateless signature generation mechanism. The signature is calculated from the key parts of the HTTP request, a service identifier string called credential scope, and a client key and client secret. The signature generation steps are: canonicalizing the request, creating a string to calculate the signature, and adding the signature to the original request. Escher supports two hash algorithms: SHA256 and SHA512 designed by the NSA (U.S. National Security Agency). 2.1. Canonicalizing the Request In order to calculate a checksum from the key HTTP request parts, the HTTP request method, the request URI, the query parts, the headers, and the request body have to be canonicalized. The output of the canonicalization step will be a string including the request parts separated by LF (line feed, “n”) characters. The string will be used to calculate a checksum for the request. 2.1.1. The HTTP method The HTTP method defined by RFC2616 (Hypertext Transfer Protocol) is case sensitive, and must be available in upper case, no transformation has to be applied: POST 2.1.2. The Path The path is the absolute path of the URL. Starts with a slash (/) character, and does not include the query part (and the question mark). Escher follows the rules defined by RFC3986 (Uniform Resource Identifier) to normalize the path. Basically it means: Convert relative paths to absolute, remove redundant path components. URI-encode each path components: the “reserved characters” defined by RFC3986 (Uniform Resource Identifier) have to be kept as they are (no encoding applied) all other characters have to be percent encoded, including SPACE (to %20, instead of +) non-ASCII, UTF-8 characters should be percent encoded to 2 or more pieces (á to %C3%A1) percent encoded hexadecimal numbers have to be upper cased (eg: a%c2%b1b to a%C2%B1b) Normalize empty paths to /. For example: 2.1.3. The Query String RFC3986 (Uniform Resource Identifier) should provide guidance for canonicalization of the query string, but here’s the complete list of the rules to be applied: URI-encode each query parameter names and values the “reserved characters” defined by RFC3986 (Uniform Resource Identifier) have to be kept as they are (no encoding applied) all other characters have to be percent encoded, including SPACE (to %20, instead of +) non-ASCII, UTF-8 characters should be percent encoded to 2 or more pieces (á to %C3%A1) percent encoded hexadecimal numbers have to be upper cased (eg: a%c2%b1b to a%C2%B1b) Normalize empty query strings to empty string. Sort query parameters by the encoded parameter names (ASCII order). Do not shorten parameter values if their parameter name is the same (key=B&key=A is a valid output), the order of parameters in a URL may be significant (this is not defined by the HTTP standard). Separate parameter names and values by = signs, include = for empty values, too Separate parameters by & For example: To canonicalize the headers, the following rules have to be followed: Lower case the header names. Separate header names and values by a :, with no spaces. Sort header names to alphabetical order (ASCII). Group headers with the same names into a header, and separate their values by commas, without sorting. Trim header values, keep all the spaces between quote characters ("). For example: 2.1.5. Signed Headers The list of headers to include when calculating the signature. Lower cased value of header names, separated by ;, like this: date;host 2.1.6. Body Checksum A checksum for the request body, aka the payload has to be calculated. Escher supports SHA-256 and SHA-512 algorithms for checksum calculation. If the request contains no body, an empty string has to be used as the input for the hash algorithm. The selected algorithm will be added later to the authorization header, so the server will be able to use the same algorithm for validation. The checksum of the body has to be presented as a lower cased hexadecimal string, for example: 2.1.7. Concatenating the Canonicalized Parts All the steps above produce a row of data, except the headers canonicalization, as it creates one row per headers. These have to be concatenated with LF (line feed, “n”) characters into a string. An example: 2.2. Creating the Signature The next step is creating another string which will be directly used to calculate the signature. 2.2.1. Algorithm ID The algorithm ID comes from the algo_prefix (default value is ESR) and the algorithm used to calculate checksums during the signing process. The string algo_prefix, “HMAC”, and the algorithm name should be concatenated with dashes, like this: 2.2.2. Long Date The long date is the request date in the ISO 8601 basic format, like YYYYMMDD + T + HHMMSS + Z. Note that the basic format uses no punctuation. Example is: This date has to be added later, too, as a date header (default header name is X-Escher-Date). 2.2.3. Date and Credential Scope Next information is the short date, and the credential scope concatenated with a / character. The short date is the request date’s date part, an ISO 8601 basic formatted representation, the credential scope is defined by the service. Example: This will be added later, too, as part of the authorization header (default header name is X-Escher-Auth). 2.2.4. Checksum of the Canonicalized Request Take the output of step 2.1.7., and create a checksum from the canonicalized checksum string. This checksum has to be represented as a lower cased hexadecimal string, too. Something like this will be an output: 2.2.5. Concatenating the Signing String Concatenate the outputs of steps 2.2. with LF characters. Example output: 2.2.6. The Signing Key The signing key is based on the algo_prefix, the client secret, the parts of the credential scope, and the request date. Take the algo_prefix, concatenate the client secret to it. First apply the HMAC algorithm to the request date, then apply the actual value on each of the credential scope parts (splitted at /). The end result is a binary signing key. Pseudo code: 2.2.7. Create the Signature The signature is created from the output of steps 2.2.5. (Signing String) and 2.2.6. (Signing Key). With the selected algorithm, create a checksum. It has to be represented as a lower cased hexadecimal string. Something like this will be an output: 2.3. Adding the Signature to the Request The final step of the Escher signing process is adding the Signature to the request. Escher adds a new header to the request, by default, the header name is X-Escher-Auth. The header value will include the algorithm ID (see 2.2.1.), the client key, the short date and the credential scope (see 2.2.3.), the signed headers string (see 2.1.5.) and finally the signature (see 2.2.7.). The values of this inputs have to be concatenated like this: 3. Presigning a URL The URL presigning process is very similar to the request signing procedure. But for a URL, there are no headers, no request body, so the calculation of the Signature is different. Also, the Signature cannot be added to the headers, but is included as query parameters. A significant difference is that the presigning allows defining an expiration time. By default, it is 86400 secs, 24 hours. The current time and the expiration time will be included in the URL, and the server has to check if the URL is expired. 3.1. Canonicalizing the URL to Presign The canonicalization for URL presigning is the same process as for HTTP requests, in this section we will cover the differences only. 3.1.1. The HTTP method The HTTP method for presigned URLs is fixed to: For example: 3.1.3. The Query String The query is coming from the URL, but the algorithm, credentials, date, expiration time, and signed headers have to be added to the query parts. 3.1.4. The Headers A URL has no headers, Escher creates the Host header based on the URL’s domain information, and adds it to the canonicalized request. For example: 3.1.5. Signed Headers It will be host, as that’s the only header included. Example:
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package goaoc provides a framework to facilitate running Advent of Code challenges. This package encompasses utilities for handling input and outputs, selecting challenge parts, and executing them with configurable options. The goaoc package is designed to simplify the execution of Advent of Code challenges by abstracting I/O operations and enabling easy switching between parts 1 and 2 of each challenge. The main entry point for executing a challenge is the Run function. To run a challenge, you need to provide input data and two functions implementing the Challenge type, each corresponding to part 1 and part 2 of the challenge. Example: Additional RunOptions such as WithManager and WithPart allow customization of input/output management and challenge part selection, respectively.