Package mdtopdf implements a PDF document generator for markdown documents. This package depends on two other packages: * The BlackFriday v2 parser to read the markdown source * The fpdf packace to generate the PDF The tests included here are from the BlackFriday package. See the "testdata" folder. The tests create PDF files and thus while the tests may complete without errors, visual inspection of the created PDF is the only way to determine if the tests *really* pass! The tests create log files that trace the BlackFriday parser callbacks. This is a valuable debug tool showing each callback and data provided in each while the AST is presented. To install the package: In the cmd folder is an example using the package. It demonstrates a number of features. The test PDF was created with this command: Package mdtopdf converts markdown to PDF.
Package rapid implements utilities for property-based testing. Rapid checks that properties you define hold for a large number of automatically generated test cases. If a failure is found, rapid fails the current test and presents an automatically minimized version of the failing test case. Please note that rapid is alpha software; the documentation is very incomplete, unclear and probably full of grammatical errors.
Package datastore provides a client for Google Cloud Datastore. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. Entities are the unit of storage and are associated with a key. A key consists of an optional parent key, a string application ID, a string kind (also known as an entity type), and either a StringID or an IntID. A StringID is also known as an entity name or key name. It is valid to create a key with a zero StringID and a zero IntID; this is called an incomplete key, and does not refer to any saved entity. Putting an entity into the datastore under an incomplete key will cause a unique key to be generated for that entity, with a non-zero IntID. An entity's contents are a mapping from case-sensitive field names to values. Valid value types are: Slices of structs are valid, as are structs that contain slices. The Get and Put functions load and save an entity's contents. An entity's contents are typically represented by a struct pointer. Example code: GetMulti, PutMulti and DeleteMulti are batch versions of the Get, Put and Delete functions. They take a []*Key instead of a *Key, and may return a datastore.MultiError when encountering partial failure. Mutate generalizes PutMulti and DeleteMulti to a sequence of any Datastore mutations. It takes a series of mutations created with NewInsert, NewUpdate, NewUpsert and NewDelete and applies them atomically. An entity's contents can be represented by a variety of types. These are typically struct pointers, but can also be any type that implements the PropertyLoadSaver interface. If using a struct pointer, you do not have to explicitly implement the PropertyLoadSaver interface; the datastore will automatically convert via reflection. If a struct pointer does implement PropertyLoadSaver then those methods will be used in preference to the default behavior for struct pointers. Struct pointers are more strongly typed and are easier to use; PropertyLoadSavers are more flexible. The actual types passed do not have to match between Get and Put calls or even across different calls to datastore. It is valid to put a *PropertyList and get that same entity as a *myStruct, or put a *myStruct0 and get a *myStruct1. Conceptually, any entity is saved as a sequence of properties, and is loaded into the destination value on a property-by-property basis. When loading into a struct pointer, an entity that cannot be completely represented (such as a missing field) will result in an ErrFieldMismatch error but it is up to the caller whether this error is fatal, recoverable or ignorable. By default, for struct pointers, all properties are potentially indexed, and the property name is the same as the field name (and hence must start with an upper case letter). Fields may have a `datastore:"name,options"` tag. The tag name is the property name, which must be one or more valid Go identifiers joined by ".", but may start with a lower case letter. An empty tag name means to just use the field name. A "-" tag name means that the datastore will ignore that field. The only valid options are "omitempty", "noindex" and "flatten". If the options include "omitempty" and the value of the field is a zero value, then the field will be omitted on Save. Zero values are best defined in the golang spec (https://golang.org/ref/spec#The_zero_value). Struct field values will never be empty, except for nil pointers. If options include "noindex" then the field will not be indexed. All fields are indexed by default. Strings or byte slices longer than 1500 bytes cannot be indexed; fields used to store long strings and byte slices must be tagged with "noindex" or they will cause Put operations to fail. For a nested struct field, the options may also include "flatten". This indicates that the immediate fields and any nested substruct fields of the nested struct should be flattened. See below for examples. To use multiple options together, separate them by a comma. The order does not matter. If the options is "" then the comma may be omitted. Example code: A field of slice type corresponds to a Datastore array property, except for []byte, which corresponds to a Datastore blob. Zero-length slice fields are not saved. Slice fields of length 1 or greater are saved as Datastore arrays. When a zero-length Datastore array is loaded into a slice field, the slice field remains unchanged. If a non-array value is loaded into a slice field, the result will be a slice with one element, containing the value. Loading a Datastore Null into a basic type (int, float, etc.) results in a zero value. Loading a Null into a slice of basic type results in a slice of size 1 containing the zero value. Loading a Null into a pointer field results in nil. Loading a Null into a field of struct type is an error. A struct field can be a pointer to a signed integer, floating-point number, string or bool. Putting a non-nil pointer will store its dereferenced value. Putting a nil pointer will store a Datastore Null property, unless the field is marked omitempty, in which case no property will be stored. Loading a Null into a pointer field sets the pointer to nil. Loading any other value allocates new storage with the value, and sets the field to point to it. If the struct contains a *datastore.Key field tagged with the name "__key__", its value will be ignored on Put. When reading the Entity back into the Go struct, the field will be populated with the *datastore.Key value used to query for the Entity. Example code: If the struct pointed to contains other structs, then the nested or embedded structs are themselves saved as Entity values. For example, given these definitions: then an Outer would have one property, Inner, encoded as an Entity value. If an outer struct is tagged "noindex" then all of its implicit flattened fields are effectively "noindex". If the Inner struct contains a *Key field with the name "__key__", like so: then the value of K will be used as the Key for Inner, represented as an Entity value in datastore. If any nested struct fields should be flattened, instead of encoded as Entity values, the nested struct field should be tagged with the "flatten" option. For example, given the following: an Outer's properties would be equivalent to those of: Note that the "flatten" option cannot be used for Entity value fields. The server will reject any dotted field names for an Entity value. An entity's contents can also be represented by any type that implements the PropertyLoadSaver interface. This type may be a struct pointer, but it does not have to be. The datastore package will call Load when getting the entity's contents, and Save when putting the entity's contents. Possible uses include deriving non-stored fields, verifying fields, or indexing a field only if its value is positive. Example code: The *PropertyList type implements PropertyLoadSaver, and can therefore hold an arbitrary entity's contents. If a type implements the PropertyLoadSaver interface, it may also want to implement the KeyLoader interface. The KeyLoader interface exists to allow implementations of PropertyLoadSaver to also load an Entity's Key into the Go type. This type may be a struct pointer, but it does not have to be. The datastore package will call LoadKey when getting the entity's contents, after calling Load. Example code: To load a Key into a struct which does not implement the PropertyLoadSaver interface, see the "Key Field" section above. Queries retrieve entities based on their properties or key's ancestry. Running a query yields an iterator of results: either keys or (key, entity) pairs. Queries are re-usable and it is safe to call Query.Run from concurrent goroutines. Iterators are not safe for concurrent use. Queries are immutable, and are either created by calling NewQuery, or derived from an existing query by calling a method like Filter or Order that returns a new query value. A query is typically constructed by calling NewQuery followed by a chain of zero or more such methods. These methods are: Example code: Client.RunInTransaction runs a function in a transaction. Example code: Pass the ReadOnly option to RunInTransaction if your transaction is used only for Get, GetMulti or queries. Read-only transactions are more efficient. This package supports the Cloud Datastore emulator, which is useful for testing and development. Environment variables are used to indicate that datastore traffic should be directed to the emulator instead of the production Datastore service. To install and set up the emulator and its environment variables, see the documentation at https://cloud.google.com/datastore/docs/tools/datastore-emulator.
Package reform is a better ORM for Go, based on non-empty interfaces and code generation. See README (https://github.com/go-reform/reform/blob/v1-stable/README.md) for quickstart information. reform allows one to add tags (comments) to generated queries with WithTag Querier method. They can be used to track queries from RDBMS logs and tools back to application code. For example, this code: will generate the following query: Please keep in mind that dynamic tags can affect RDBMS query cache. Consult your RDBMS documentation for details. Some known links: This example shows some reform features. It uses https://github.com/AlekSi/pointer to get pointers to values of build-in types.
Package main generates cobra.Command go variables containing documentation read from .md files. Usage: mdtogo SOURCE_MD_DIR/ DEST_GO_DIR/ [--full=true] [--license=license.txt|none] The command will create a docs.go file under DEST_GO_DIR/ containing string variables to be used by cobra commands for documentation.The variable names are generated from the SOURCE_MD_DIR/ file names, replacing '-' with ”, title casing the filename, and dropping the extension. All *.md will be read from DEST_GO_DIR/, and a single DEST_GO_DIR/docs.go file is generated. Each .md document will be parsed as follows if no flags are provided: If --full=true is provided, the document will be parsed as follows: Flags:
Package fault provides standard http middleware for fault injection in go. Use the fault package to inject faults into the http request path of your service. Faults work by modifying and/or delaying your service's http responses. Place the Fault middleware high enough in the chain that it can act quickly, but after any other middlewares that should complete before fault injection (auth, redirects, etc...). The type and severity of injected faults is controlled by options passed to NewFault(Injector, Options). NewFault must be passed an Injector, which is an interface that holds the actual fault injection code in Injector.Handler. The Fault wraps Injector.Handler in another Fault.Handler that applies generic Fault logic (such as what % of requests to run the Injector on) to the Injector. Make sure you use the NewFault() and NewTypeInjector() constructors to create valid Faults and Injectors. There are three main Injectors provided by the fault package: Use fault.RejectInjector to immediately return an empty response. For example, a curl for a rejected response will produce: Use fault.ErrorInjector to immediately return a valid http status code of your choosing along with the standard HTTP response body for that code. For example, you can return a 200, 301, 418, 500, or any other valid status code to test how your clients respond to different statuses. Pass the WithStatusText() option to customize the response text. Use fault.SlowInjector to wait a configured time.Duration before proceeding with the request. For example, you can use the SlowInjector to add a 10ms delay to your requests. Use fault.RandomInjector to randomly choose one of the above faults to inject. Pass a list of Injector to fault.NewRandomInjector and when RandomInjector is evaluated it will randomly run one of the injectors that you passed. It is easy to combine any of the Injectors into a chained action. There are two ways you might want to combine Injectors. First, you can create separate Faults for each Injector that are sequential but independent of each other. For example, you can chain Faults such that 1% of requests will return a 500 error and another 1% of requests will be rejected. Second, you might want to combine Faults such that 1% of requests will be slowed for 10ms and then rejected. You want these Faults to depend on each other. For this use the special ChainInjector, which consolidates any number of Injectors into a single Injector that runs each of the provided Injectors sequentially. When you add the ChainInjector to a Fault the entire chain will always execute together. The NewFault() constructor has WithPathBlocklist() and WithPathAllowlist() options. Any path you include in the PathBlocklist will never have faults run against it. With PathAllowlist, if you provide a non-empty list then faults will not be run against any paths except those specified in PathAllowlist. The PathBlocklist take priority over the PathAllowlist, a path in both lists will never have a fault run against it. The paths that you include must match exactly the path in req.URL.Path, including leading and trailing slashes. Simmilarly, you may also use WithHeaderBlocklist() and WithHeaderAllowlist() to block or allow faults based on a map of header keys to values. These lists behave in the same way as the path allowlists and blocklists except that they operate on headers. Header equality is determined using http.Header.Get(key) which automatically canonicalizes your keys and does not support multi-value headers. Keep these limitations in mind when working with header allowlists and blocklists. Specifying very large lists of paths or headers may cause memory or performance issues. If you're running into these problems you should instead consider using your http router to enable the middleware on only a subset of your routes. The fault package provides an Injector interface and you can satisfy that interface to provide your own Injector. Use custom injectors to add additional logic to the package-provided injectors or to create your own completely new Injector that can still be managed by a Fault. The package provides a Reporter interface that can be added to Faults and Injectors using the WithReporter option. A Reporter will receive events when the state of the Injector changes. For example, Reporter.Report(InjectorName, StateStarted) is run at the beginning of all Injectors. The Reporter is meant to be provided by the consumer of the package and integrate with services like stats and logging. The default Reporter throws away all events. By default all randomness is seeded with defaultRandSeed(1), the same default as math/rand. This helps you reproduce any errors you see when running an Injector. If you prefer, you can also customize the seed passing WithRandSeed() to NewFault and NewRandomInjector. Some Injectors support customizing the functions they use to run their injections. You can take advantage of these options to add your own logic to an existing Injector instead of creating your own. For example, modify the SlowInjector function to slow in a rancom distribution instead of for a fixed duration. Be careful when you use these options that your return values fall within the same range of values expected by the default functions to avoid panics or other undesirable begavior. Customize the function a Fault uses to determine participation (default: rand.Float32) by passing WithRandFloat32Func() to NewFault(). Customize the function a RandomInjector uses to choose which injector to run (default: rand.Intn) by passing WithRandIntFunc() to NewRandomInjector(). Customize the function a SlowInjector uses to wait (default: time.Sleep) by passing WithSlowFunc() to NewSlowInjector(). Configuration for the fault package is done through options passed to NewFault and NewInjector. Once a Fault is created its enabled state and participation percentage can be updated with SetEnabled() and SetParticipation(). There is no other way to manage configuration for the package. It is up to the user of the fault package to manage how the options are generated. Common options are feature flags, environment variables, or code changes in deploys. Example is a package-level documentation example.
Package captcha implements generation and verification of image and audio CAPTCHAs. A captcha solution is the sequence of digits 0-9 with the defined length. There are two captcha representations: image and audio. An image representation is a PNG-encoded image with the solution printed on it in such a way that makes it hard for computers to solve it using OCR. An audio representation is a WAVE-encoded (8 kHz unsigned 8-bit) sound with the spoken solution (currently in English, Russian, Chinese, and Japanese). To make it hard for computers to solve audio captcha, the voice that pronounces numbers has random speed and pitch, and there is a randomly generated background noise mixed into the sound. This package doesn't require external files or libraries to generate captcha representations; it is self-contained. To make captchas one-time, the package includes a memory storage that stores captcha ids, their solutions, and expiration time. Used captchas are removed from the store immediately after calling Verify or VerifyString, while unused captchas (user loaded a page with captcha, but didn't submit the form) are collected automatically after the predefined expiration time. Developers can also provide custom store (for example, which saves captcha ids and solutions in database) by implementing Store interface and registering the object with SetCustomStore. Captchas are created by calling New, which returns the captcha id. Their representations, though, are created on-the-fly by calling WriteImage or WriteAudio functions. Created representations are not stored anywhere, but subsequent calls to these functions with the same id will write the same captcha solution. Reload function will create a new different solution for the provided captcha, allowing users to "reload" captcha if they can't solve the displayed one without reloading the whole page. Verify and VerifyString are used to verify that the given solution is the right one for the given captcha id. Server provides an http.Handler which can serve image and audio representations of captchas automatically from the URL. It can also be used to reload captchas. Refer to Server function documentation for details, or take a look at the example in "capexample" subdirectory.
Package mimemagic implements MIME sniffing using pre-compiled glob patterns, magic number signatures, xml document namespaces, and tree magic for mounted volumes, generated from the XDG shared-mime-info database. To generate your own database simply remove the leading space, point to the directory with freedesktop.org package files (freedesktop.org.xml, if it exists, is always processed first and Override.xml is always processed last), and run go generate: To use the default freedesktop.org.xml file provided in this package: globs.go is generated unformatted so it's a good idea to run this for your OCD
Package loukoum provides a simple SQL Query Builder. At the moment, only PostgreSQL is supported. If you have to generate complex queries, which rely on various contexts, loukoum is the right tool for you. It helps you generate SQL queries from composable parts. However, keep in mind it's not an ORM or a Mapper so you have to use a SQL connector (like "database/sql" or "sqlx", for example) to execute queries. If you're afraid to slip a tiny SQL injection manipulating fmt (or a byte buffer...) when you append conditions, loukoum is here to protect you against yourself. For further informations, you can read this documentation: https://github.com/ulule/loukoum/blob/master/README.md Or you can discover loukoum with these examples. An "insert" can be generated like that: Also, if you need an upsert, you can define a "on conflict" clause: Updating a news is also simple: You can remove a specific user: Or select a list of users...
Package elmobd provides communication with cars OBD-II system using ELM327 based USB-devices. Using this library and a ELM327-based USB-device you can communicate with your cars on-board diagnostics system to read sensor data. Reading trouble codes and resetting them is not yet implemented. All assumptions this library makes are based on the official Elm Electronics datasheet of the ELM327 IC: https://www.elmelectronics.com/wp-content/uploads/2017/01/ELM327DS.pdf After that introduction - Welcome! I hope you'll find this library useful and its documentation easy to digest. If that's not the case, please create a GitHub-issue: https://github.com/rzetterberg/elmobd/issues You'll note that this package has the majority its types and functions exported. The reason for that is that there are many different commands you can send to a ELM327 device, and this library will never we able to define all commands, so most functionality is exported so that you can easily extend it. You'll also note that there are A LOT of types. The reason for this is each command that can be sent to the ELM327 device is defined as it's own type. The approach I wanted to take with this library was to get as much type safety as possible. With that said, as an end user of this library you'll only need to know about two kinds types: the Device type and types that implement the OBDCommand interface. The Device type represents an active connection with an ELM327 device. You plug in your device into your computer, get the path to the device and initialize a new device: This library is design to be as high level as possible, you shouldn't need to handle baud rates, setting protocols or anything like that. After the Device has been initialized you can just start sending commands. The function you will be using the most is the Device.RunOBDCommand, which accepts a command, sends the command to the device, waits for a response, parses the response and gives it back to you. Which means this command is blocking execution until it has been finished. The default timeout is currently set to 5 seconds. The RunOBDCommand accepts a single argument, a type that implements the OBDCommand interface. That interface has a couple of functions that needs to exist in order to be able to generate the low-level request for the device and parse the low-level response. Basically you send in an empty OBDCommand and get back a OBDCommand with the processed value retrieved from the device. Suppose that after checking the device connection (in our example above) we would like to retrieve the vehicles speed. There's a type called VehicleSpeed that implements the OBDCommand interface that we can use. We start by creating a new VehicleSpeed using its constructor NewVehicleSpeed that we then give to RunOBDCommand: At the moment there are around 15 sensor commands defined in this library. They are all defined in the file commands.go of the library (https://github.com/rzetterberg/elmobd/blob/master/commands.go). If you look in the end of that file you'll find an internal static variable with all the sensor commands called sensorCommands. That's the basics of this library - you create a device connection and then run commands. Documentation of more advanced use-cases is in the works, so don't worry! If there's something that you wish would be documented, or something that is not clear in the current documentation, please create a GitHub-issue.
Command gopages generates static files for Go documentation, formatted with godoc. To install gopages, run the following command: Generate documentation for your module by running gopages without any flags. A 'go.mod' file must be present in the current directory. NOTE: Install gopages with Go v1.19 or higher to generate documentation with improved formatting. Usage of gopages:
Package bind generates Ethereum contract Go bindings. Detailed usage document and tutorial available on the go-ethereum Wiki page: https://github.com/ethereum/go-ethereum/wiki/Native-DApps:-Go-bindings-to-Ethereum-contracts
Package godoc-static generates static Go documentation
Package dbsql implements the go driver to Databricks SQL Clients should use the database/sql package in conjunction with the driver: Use sql.Open() to create a database handle via a data source name string: The DSN format is: Supported optional connection parameters can be specified in param=value and include: Supported optional session parameters can be specified in param=value and include: Use sql.OpenDB() to create a database handle via a new connector object created with dbsql.NewConnector(): Supported functional options include: Cancelling a query via context cancellation or timeout is supported. Use the driverctx package under driverctx/ctx.go to add CorrelationId and ConnId to the context. CorrelationId and ConnId makes it convenient to parse and create metrics in logging. **Connection Id** Internal id to track what happens under a connection. Connections can be reused so this would track across queries. **Query Id** Internal id to track what happens under a query. Useful because the same query can be used with multiple connections. **Correlation Id** External id, such as request ID, to track what happens under a request. Useful to track multiple connections in the same request. Use the logger package under logger.go to set up logging (from zerolog). By default, logging level is `warn`. If you want to disable logging, use `disabled`. The user can also utilize Track() and Duration() to custom log the elapsed time of anything tracked. The result log may look like this: Use the driverctx package under driverctx/ctx.go to add callbacks to the query context to receive the connection id and query id. Passing parameters to a query is supported when run against servers with version DBR 14.1. For complex types, you can specify the SQL type using the dbsql.Parameter type field. If this field is set, the value field MUST be set to a string. The Go driver now supports staging operations. In order to use a staging operation, you first must update the context with a list of folders that you are allowing the driver to access. After doing so, you can execute staging operations using this context using the exec context. There are three error types exposed via dbsql/errors Each type has a corresponding sentinel value which can be used with errors.Is() to determine if one of the types is present in an error chain. Example usage: See the documentation for dbsql/errors for more information. The driver supports the ability to retrieve Apache Arrow record batches. To work with record batches it is necessary to use sql.Conn.Raw() to access the underlying driver connection to retrieve a driver.Rows instance. The driver exposes two public interfaces for working with record batches from the rows sub-package: The driver.Rows instance retrieved using Conn.Raw() can be converted to a Databricks Rows instance via a type assertion, then use GetArrowBatches() to retrieve a batch iterator. If the ArrowBatchIterator is not closed it will leak resources, such as the underlying connection. Calling code must call Release() on records returned by DBSQLArrowBatchIterator.Next(). Example usage: ================================== Databricks Type --> Golang Type ================================== BOOLEAN --> bool TINYINT --> int8 SMALLINT --> int16 INT --> int32 BIGINT --> int64 FLOAT --> float32 DOUBLE --> float64 VOID --> nil STRING --> string DATE --> time.Time TIMESTAMP --> time.Time DECIMAL(p,s) --> sql.RawBytes BINARY --> sql.RawBytes ARRAY<elementType> --> sql.RawBytes STRUCT --> sql.RawBytes MAP<keyType, valueType> --> sql.RawBytes INTERVAL (year-month) --> string INTERVAL (day-time) --> string For ARRAY, STRUCT, and MAP types, sql.Scan can cast sql.RawBytes to JSON string, which can be unmarshalled to Golang arrays, maps, and structs. For example: May generate the following row:
## htmlgo Type safe and modularize way to generate html on server side. Download the package with `go get -v github.com/theplant/htmlgo` and import the package with `.` gives you simpler code: also checkout full API documentation at: https://godoc.org/github.com/theplant/htmlgo
lmdrouter is a simple-to-use library for writing AWS Lambda functions in Go that listen to events of type API Gateway Proxy Request (represented by the `events.APIGatewayProxyRequest` type of the github.com/aws-lambda-go/events package). The library allows creating functions that can match requests based on their URI, just like an HTTP server that uses the standard https://golang.org/pkg/net/http/#ServeMux (or any other community-built routing library such as https://github.com/julienschmidt/httprouter or https://github.com/go-chi/chi) would. The interface provided by the library is very similar to these libraries and should be familiar to anyone who has written HTTP applications in Go. When building large cloud-native applications, there's a certain balance to strike when it comes to deployment of APIs. On one side of the scale, each API endpoint has its own lambda function. This provides the greatest flexibility, but is extremely difficult to maintain. On the other side of the scale, there can be one lambda function for the entire API. This provides the least flexibility, but is the easiest to maintain. Both are probably not a good idea. With `lmdrouter`, one can create small lambda functions for different aspects of the API. For example, if your application model contains multiple domains (e.g. articles, authors, topics, etc...), you can create one lambda function for each domain, and deploy these independently (e.g. everything below "/api/articles" is one lambda function, everything below "/api/authors" is another function). This is also useful for applications where different teams are in charge of different parts of the API. * Supports all HTTP methods. * Supports middleware functions at a global and per-resource level. * Supports path parameters with a simple ":<name>" format (e.g. "/posts/:id"). * Provides ability to automatically "unmarshal" an API Gateway request to an arbitrary Go struct, with data coming either from path and query string parameters, or from the request body (only JSON requests are currently supported). See the documentation for the `UnmarshalRequest` function for more information. * Provides the ability to automatically "marshal" responses of any type to an API Gateway response (only JSON responses are currently generated). See the MarshalResponse function for more information. * Implements net/http.Handler for local development and general usage outside of an AWS Lambda environment.
Package xmlwriter provides a fast, non-cached, forward-only way to generate XML data. The API is based heavily on libxml's xmlwriter API [1], which is itself based on C#'s XmlWriter [2]. It offers some advantages over Go's default encoding/xml package and some tradeoffs. You can have complete control of the generated documents and it uses very little memory. There are two styles for interacting with the writer: structured and heap-friendly. If you want a visual representation of the hierarchy of some of your writes in your code and you don't care about a few instances of memory escaping to the heap (and most of the time you won't), you can use the structured API. If you are writing a code generator or your interactions with the API are minimal, you should use the direct API. xmlwriter.Writer{} takes any io.Writer, along with a variable list of options. xmlwriter options are based on Dave Cheney's functional options pattern (https://dave.cheney.net/2014/10/17/functional-options-for-friendly-apis): Provided options are: Using the structured API, you might express a small tree of elements like this. These nodes will escape to the heap, but judicious use of this nesting can make certain structures a lot more readable by representing the desired XML hierarchy in the code that produces it: The code can be made even less dense by importing xmlwriter with a prefix: `import xw "github.com/shabbyrobe/xmlwriter"` The same output is possible with the heap-friendy API. This has a lot more stutter and it's harder to tell the hierarchical relationship just by looking at the code, but there are no heap escapes this way: Use whichever API reads best in your code, but favour the latter style in all code generators and performance hotspots. xmlwriter.Writer extends bufio.Writer! Don't forget to flush otherwise you'll lose data. There are two ways to flush: The EndAllFlush form is just a convenience, it calls EndAll() and Flush() for you. Nodes which can have children can be passed to `Writer.Start()`. This adds them to the stack and opens them, allowing children to be added. Becomes: <foo><bar><baz/></bar></foo> Nodes which have no children, or nodes which can be opened and fully closed with only a trivial amount of information, can be passed to `Writer.Write()`. If written nodes are put on to the stack, they will be popped before Write returns. Becomes: <foo/><bar/><baz/> Block takes a Startable and a variable number of Writable nodes. The Startable will be opened, the Writables will be written, then the Startable will be closed: Becomes: There are several ways to end an element. Choose the End that's right for you! Nodes as they are written can be in three states: StateOpen, StateOpened or StateEnd. StateOpen == "<elem". StateOpened == "<elem>". StateEnd == "<elem></elem>". Node structs are available for writing in the following hierarchy. Nodes which are "Startable" (passed to `writer.Start(n)`) are marked with an S. Nodes which are "Writable" (passed to `writer.Write(n)`) are marked with a W. - xmlwriter.Raw* (W) - xmlwriter.Doc (S) * `xmlwriter.Raw` can be written anywhere, at any time. If a node is in the "open" state but not in the "opened" state, for example you have started an element and written an attribute, writing "raw" will add the content to the inside of the element opening tag unless you call `w.Next()`. Every node has a corresponding NodeKind constant, which can be found by affixing "Node" to the struct name, i.e. "xmlwriter.Elem" becomes "xmlwriter.ElemNode". These are used for calls to Writer.End(). xmlwriter.Attr{} values can be assigned from any golang primitive like so: xmlwriter supports encoders from the golang.org/x/text/encoding package. UTF-8 strings written in from golang will be converted on the fly and the document declaration will be written correctly. To write your XML using the windows-1252 encoder: The document line will look like this:
protoc-gen-micro is a plugin for the Google protocol buffer compiler to generate Go code. Run it by building this program and putting it in your path with the name That word 'micro' at the end becomes part of the option string set for the protocol compiler, so once the protocol compiler (protoc) is installed you can run to generate go-micro code for the protocol defined by file.proto. With that input, the output will be written to The generated code is documented in the package comment for the library. See the README and documentation for protocol buffers to learn more:
Automatically generate a github README.md for each package in your Go module. Create a README.md for each package in the current module (Warning: this will overwrite any existing README.md files!) Get a copy of the default template for customization Templates are executed by Go's text/template. The dot is set to a struct containing (each explained below) ProjectRoot is a boolean which is true if the current package is in the same directory as go.mod. The Repository entry consists solely of .Data, which may contain optional arbitrary data set by JSON in .github/autoreadme/README.md.data. The Module entry contains: The Package entry contains: Name is the package name for libraries. However, for commands that is always "main" so for commands it uses the name of the directory. Documentation entries contain additionally Documentation has a method that renders .Doc as markdown. Each heading in Doc is set to headingLevel, allowing them to be properly nested in context. For packages, the documentation is computed in the standard way by comments attached to the package token. For modules, similar logic is used for the comments attached to the module token (note: any Deprecated: comment is not included, but can be accessed from .Module.Deprecated). Example entries contain and the lists of examples have a few methods Note entries collect the "KIND(uid): body" notes from the package (per go/doc) The list of notes has two methods, Kind and UID, which take a string and return a list of notes matching the respective Kind/UID. A number of files can be added to a .github/autoreadme directory at the root of your repository. Two files can be added to the directory of each package for one-off customizations
protodoc generates Protocol Buffer documentation.
Transformation function generator for gRPC. Protocol buffers complier (protoc) https://github.com/protocolbuffers/protobuf generates structures based on message definition in *.proto file. It's possible to use these generated structures directly, but it's better to have clear separation between transport level (gRPC) and business logic with its own structures. In this case you have to convert generated structures into structures use in business logic and vice versa. See documentation and usage examples on https://github.com/bold-commerce/protoc-gen-struct-transformer/blob/master/README.md
Package cgi implements the common gateway interface (CGI) for Caddy, a modern, full-featured, easy-to-use web server. This plugin lets you generate dynamic content on your website by means of command line scripts. To collect information about the inbound HTTP request, your script examines certain environment variables such as PATH_INFO and QUERY_STRING. Then, to return a dynamically generated web page to the client, your script simply writes content to standard output. In the case of POST requests, your script reads additional inbound content from standard input. The advantage of CGI is that you do not need to fuss with server startup and persistence, long term memory management, sockets, and crash recovery. Your script is called when a request matches one of the patterns that you specify in your Caddyfile. As soon as your script completes its response, it terminates. This simplicity makes CGI a perfect complement to the straightforward operation and configuration of Caddy. The benefits of Caddy, including HTTPS by default, basic access authentication, and lots of middleware options extend easily to your CGI scripts. CGI has some disadvantages. For one, Caddy needs to start a new process for each request. This can adversely impact performance and, if resources are shared between CGI applications, may require the use of some interprocess synchronization mechanism such as a file lock. Your server’s responsiveness could in some circumstances be affected, such as when your web server is hit with very high demand, when your script’s dependencies require a long startup, or when concurrently running scripts take a long time to respond. However, in many cases, such as using a pre-compiled CGI application like fossil or a Lua script, the impact will generally be insignificant. Another restriction of CGI is that scripts will be run with the same permissions as Caddy itself. This can sometimes be less than ideal, for example when your script needs to read or write files associated with a different owner. Serving dynamic content exposes your server to more potential threats than serving static pages. There are a number of considerations of which you should be aware when using CGI applications. CGI SCRIPTS SHOULD BE LOCATED OUTSIDE OF CADDY’S DOCUMENT ROOT. Otherwise, an inadvertent misconfiguration could result in Caddy delivering the script as an ordinary static resource. At best, this could merely confuse the site visitor. At worst, it could expose sensitive internal information that should not leave the server. MISTRUST THE CONTENTS OF PATH_INFO, QUERY_STRING AND STANDARD INPUT. Most of the environment variables available to your CGI program are inherently safe because they originate with Caddy and cannot be modified by external users. This is not the case with PATH_INFO, QUERY_STRING and, in the case of POST actions, the contents of standard input. Be sure to validate and sanitize all inbound content. If you use a CGI library or framework to process your scripts, make sure you understand its limitations. An error in a CGI application is generally handled within the application itself and reported in the headers it returns. Additionally, if the Caddy errors directive is enabled, any content the application writes to its standard error stream will be written to the error log. This can be useful to diagnose problems with the execution of the CGI application. Your CGI application can be executed directly or indirectly. In the direct case, the application can be a compiled native executable or it can be a shell script that contains as its first line a shebang that identifies the interpreter to which the file’s name should be passed. Caddy must have permission to execute the application. On Posix systems this will mean making sure the application’s ownership and permission bits are set appropriately; on Windows, this may involve properly setting up the filename extension association. In the indirect case, the name of the CGI script is passed to an interpreter such as lua, perl or python. The basic cgi directive lets you associate a single pattern with a particular script. The directive can be repeated any reasonable number of times. Here is the basic syntax: For example: When a request such as https://example.com/report or https://example.com/report/weekly arrives, the cgi middleware will detect the match and invoke the script named /usr/local/cgi-bin/report. The current working directory will be the same as Caddy itself. Here, it is assumed that the script is self-contained, for example a pre-compiled CGI application or a shell script. Here is an example of a standalone script, similar to one used in the cgi plugin’s test suite: The environment variables PATH_INFO and QUERY_STRING are populated and passed to the script automatically. There are a number of other standard CGI variables included that are described below. If you need to pass any special environment variables or allow any environment variables that are part of Caddy’s process to pass to your script, you will need to use the advanced directive syntax described below. The values used for the script name and its arguments are subject to placeholder replacement. In addition to the standard Caddy placeholders such as {method} and {host}, the following placeholder substitutions are made: - {.} is replaced with Caddy’s current working directory - {match} is replaced with the portion of the request that satisfies the match directive - {root} is replaced with Caddy’s specified root directory You can include glob wildcards in your matches. Basically, an asterisk represents a sequence of zero or more non-slash characters and a question mark represents a single non-slash character. These wildcards can be used multiple times in a match expression. See the documentation for path/Match in the Go standard library for more details about glob matching. Here is an example directive: In this case, the cgi middleware will match requests such as https://example.com/report/weekly.lua and https://example.com/report/report.lua/weekly but not https://example.com/report.lua. The use of the asterisk expands to any character sequence within a directory. For example, if the request is made, the following command is executed: Note that the portion of the request that follows the match is not included. That information is conveyed to the script by means of environment variables. In this example, the Lua interpreter is invoked directly from Caddy, so the Lua script does not need the shebang that would be needed in a standalone script. This method facilitates the use of CGI on the Windows platform. In order to specify custom environment variables, pass along one or more environment variables known to Caddy, or specify more than one match pattern for a given rule, you will need to use the advanced directive syntax. That looks like this: For example, With the advanced syntax, the exec subdirective must appear exactly once. The match subdirective must appear at least once. The env, pass_env, empty_env, and except subdirectives can appear any reasonable number of times. pass_all_env, dir may appear once. The dir subdirective specifies the CGI executable’s working directory. If it is not specified, Caddy’s current working directory is used. The except subdirective uses the same pattern matching logic that is used with the match subdirective except that the request must match a rule fully; no request path prefix matching is performed. Any request that matches a match pattern is then checked with the patterns in except, if any. If any matches are made with the except pattern, the request is rejected and passed along to subsequent handlers. This is a convenient way to have static file resources served properly rather than being confused as CGI applications. The empty_env subdirective is used to pass one or more empty environment variables. Some CGI scripts may expect the server to pass certain empty variables rather than leaving them unset. This subdirective allows you to deal with those situations. The values associated with environment variable keys are all subject to placeholder substitution, just as with the script name and arguments. If your CGI application runs properly at the command line but fails to run from Caddy it is possible that certain environment variables may be missing. For example, the ruby gem loader evidently requires the HOME environment variable to be set; you can do this with the subdirective pass_env HOME. Another class of problematic applications require the COMPUTERNAME variable. The pass_all_env subdirective instructs Caddy to pass each environment variable it knows about to the CGI excutable. This addresses a common frustration that is caused when an executable requires an environment variable and fails without a descriptive error message when the variable cannot be found. These applications often run fine from the command prompt but fail when invoked with CGI. The risk with this subdirective is that a lot of server information is shared with the CGI executable. Use this subdirective only with CGI applications that you trust not to leak this information. If you protect your CGI application with the Caddy JWT middleware, your program will have access to the token’s payload claims by means of environment variables. For example, the following token claims will be available with the following environment variables All values are conveyed as strings, so some conversion may be necessary in your program. No placeholder substitutions are made on these values. If you run into unexpected results with the CGI plugin, you are able to examine the environment in which your CGI application runs. To enter inspection mode, add the subdirective inspect to your CGI configuration block. This is a development option that should not be used in production. When in inspection mode, the plugin will respond to matching requests with a page that displays variables of interest. In particular, it will show the replacement value of {match} and the environment variables to which your CGI application has access. For example, consider this example CGI block: When you request a matching URL, for example, the Caddy server will deliver a text page similar to the following. The CGI application (in this case, wapptclsh) will not be called. This information can be used to diagnose problems with how a CGI application is called. To return to operation mode, remove or comment out the inspect subdirective. In this example, the Caddyfile looks like this: Note that a request for /show gets mapped to a script named /usr/local/cgi-bin/report/gen. There is no need for any element of the script name to match any element of the match pattern. The contents of /usr/local/cgi-bin/report/gen are: The purpose of this script is to show how request information gets communicated to a CGI script. Note that POST data must be read from standard input. In this particular case, posted data gets stored in the variable POST_DATA. Your script may use a different method to read POST content. Secondly, the SCRIPT_EXEC variable is not a CGI standard. It is provided by this middleware and contains the entire command line, including all arguments, with which the CGI script was executed. When a browser requests the response looks like When a client makes a POST request, such as with the following command the response looks the same except for the following lines: The fossil distributed software management tool is a native executable that supports interaction as a CGI application. In this example, /usr/bin/fossil is the executable and /home/quixote/projects.fossil is the fossil repository. To configure Caddy to serve it, use a cgi directive something like this in your Caddyfile: In your /usr/local/cgi-bin directory, make a file named projects with the following single line: The fossil documentation calls this a command file. When fossil is invoked after a request to /projects, it examines the relevant environment variables and responds as a CGI application. If you protect /projects with basic HTTP authentication, you may wish to enable the ALLOW REMOTE_USER AUTHENTICATION option when setting up fossil. This lets fossil dispense with its own authentication, assuming it has an account for the user. The agedu utility can be used to identify unused files that are taking up space on your storage media. Like fossil, it can be used in different modes including CGI. First, use it from the command line to generate an index of a directory, for example In your Caddyfile, include a directive that references the generated index: You will want to protect the /agedu resource with some sort of access control, for example HTTP Basic Authentication. This small example demonstrates how to write a CGI program in Go. The use of a bytes.Buffer makes it easy to report the content length in the CGI header. When this program is compiled and installed as /usr/local/bin/servertime, the following directive in your Caddy file will make it available: The cgit application provides an attractive and useful web interface to git repositories. Here is how to run it with Caddy. After compiling cgit, you can place the executable somewhere out of Caddy’s document root. In this example, it is located in /usr/local/cgi-bin. A sample configuration file is included in the project’s cgitrc.5.txt file. You can use it as a starting point for your configuration. The default location for this file is /etc/cgitrc but in this example the location /home/quixote/caddy/cgitrc. Note that changing the location of this file from its default will necessitate the inclusion of the environment variable CGIT_CONFIG in the Caddyfile cgi directive. When you edit the repository stanzas in this file, be sure each repo.path item refers to the .git directory within a working checkout. Here is an example stanza: Also, you will likely want to change cgit’s cache directory from its default in /var/cache (generally accessible only to root) to a location writeable by Caddy. In this example, cgitrc contains the line You may need to create the cgit subdirectory. There are some static cgit resources (namely, cgit.css, favicon.ico, and cgit.png) that will be accessed from Caddy’s document tree. For this example, these files are placed in a directory named cgit-resource. The following lines are part of the cgitrc file: Additionally, you will likely need to tweak the various file viewer filters such source-filter and about-filter based on your system. The following Caddyfile directive will allow you to access the cgit application at /cgit: Feeling reckless? You can run PHP in CGI mode. In general, FastCGI is the preferred method to run PHP if your application has many pages or a fair amount of database activity. But for small PHP programs that are seldom used, CGI can work fine. You’ll need the php-cgi interpreter for your platform. This may involve downloading the executable or downloading and then compiling the source code. For this example, assume the interpreter is installed as /usr/local/bin/php-cgi. Additionally, because of the way PHP operates in CGI mode, you will need an intermediate script. This one works in Posix environments: This script can be reused for multiple cgi directives. In this example, it is installed as /usr/local/cgi-bin/phpwrap. The argument following -c is your initialization file for PHP. In this example, it is named /home/quixote/.config/php/php-cgi.ini. Two PHP files will be used for this example. The first, /usr/local/cgi-bin/sample/min.php, looks like this: The second, /usr/local/cgi-bin/sample/action.php, follows: The following directive in your Caddyfile will make the application available at sample/min.php: This examples demonstrates printing a CGI rule
Package anser provides a document transformation and processing tool to support data migrations. The anser.Application is the primary interface in which migrations are defined and executed. Applications are constructed with a list of MigrationGenerators, and relevant operations. Then the Setup method configures the application, with an anser.Environment, which sets up and collects dependency information. Finally, the Run method executes the migrations in two phases: first by generating migration jobs, and finally by running all migration jobs. The ordering of migrations is derived from the dependency information between generators and the jobs that they generate. When possible jobs are executed in parallel, but the execution of migration operations is a property of the queue object configured in the anser.Environment. The anser package provides a custom amboy/dependency.Manager object, which allows migrations to express dependencies to other migrations. The State() method ensures that all migration IDs specified as edges are satisfied before reporting as "ready" for work. Anser provides the Environment interface, with a global instance accessible via the exported GetEnvironment() function to provide access to runtime configuration state: database connections; amboy.Queue objects, and registries for task implementations. The Environment is an interface: you can build a mock, or use one provided for testing purposes by anser (coming soon). Generators create migration operations and are the first step in an anser Migration. They are supersets of amboy.Job interfaces. The current limitation is that the generated jobs must be stored within the implementation of the generator job, which means they must either all fit in memory *or* be serializable independently (e.g. fit in the 16mb document limit if using a MongoDB backed queue.)
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package srp Secure Remote Password protocol The principal interface provided by this package is the SRP type. The end aim of the caller is to to have an SRP server and SRP client arrive at the same key. See the documentation for the SRP structure and its methods for the nitty gritty of use. BUG(jpg): This does not use the same padding and hashing scheme as in RFC 5054, and therefore is not interoperable with those clients and servers. Perhaps someday we'll add an RFC 5054 mode that does that, but today is not that day. It would be nice if this package could be used without having some understanding of the SRP protocol, but too much of the language and naming depends on at least some familiarity. Here is a summary. The Secure Remote Password protocol involves a server and a client proving to each other that they know (or can derive) their long term secrets. The client's long term secret is known as "x" and the corresponding server secret, the verifier, is known as "v". The verifier is mathematically related to x and is computed by the client on first enrollment and transmitted to the server. Typically the server will store the verifier and the client will derive x from a user secret such as a password. Because the verifier can used like a password hash with respect to cracking, the derivation of x should be designed to resist password cracking if the verifier is compromised. The client and the server must both use the same Diffie-Hellman group to perform their computations. The server and the client each send an ephemeral public key to each other. (The client sends A; the server sends B.) With their private knowledge of their own ephemeral secrets (a or b) and their private knowledge of x (for the client) and v (for the server) along with public knowledge they are able to prove to each other that they know their respective secrets and can generate a session key, K, which may be used for further encryption during the session. Quoting from http://srp.stanford.edu/design.html (with some modification for KDF and and checks) This package does not address the actual communication between client and server. But through the SRP type it not only performs the calculations needed, it also performs safety and sanity checks on its input, and it hides everything from the caller except what the caller absolutely needs to provide. The key derivation function, KDF() 1. Both client and server: Checking whether methods have returned without error. This is particularly true of SRP.Key() and SetOthersPublic() 2. Client: Using an appropriate key derivation function for deriving x from the user's password (and nudging user toward a good password) 3. Server: Storing the v securely (sent by the client on first enrollment). A captured v can be used to impersonate the server. The verifier, v, can also be used like a password hash in a password cracking attempt 4. Both: Proving to each other that both have the same key. The package includes methods that can assist with that. ExampleServerClientKey is an example.
Package pq is a pure Go Postgres driver for the database/sql package. In most cases clients will use the database/sql package instead of using this package directly. For example: You can also connect to a database using a URL. For example: Similarly to libpq, when establishing a connection using pq you are expected to supply a connection string containing zero or more parameters. A subset of the connection parameters supported by libpq are also supported by pq. Additionally, pq also lets you specify run-time parameters (such as search_path or work_mem) directly in the connection string. This is different from libpq, which does not allow run-time parameters in the connection string, instead requiring you to supply them in the options parameter. For compatibility with libpq, the following special connection parameters are supported: Valid values for sslmode are: See http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING for more information about connection string parameters. Use single quotes for values that contain whitespace: A backslash will escape the next character in values: Note that the connection parameter client_encoding (which sets the text encoding for the connection) may be set but must be "UTF8", matching with the same rules as Postgres. It is an error to provide any other value. In addition to the parameters listed above, any run-time parameter that can be set at backend start time can be set in the connection string. For more information, see http://www.postgresql.org/docs/current/static/runtime-config.html. Most environment variables as specified at http://www.postgresql.org/docs/current/static/libpq-envars.html supported by libpq are also supported by pq. If any of the environment variables not supported by pq are set, pq will panic during connection establishment. Environment variables have a lower precedence than explicitly provided connection parameters. The pgpass mechanism as described in http://www.postgresql.org/docs/current/static/libpq-pgpass.html is supported, but on Windows PGPASSFILE must be specified explicitly. database/sql does not dictate any specific format for parameter markers in query strings, and pq uses the Postgres-native ordinal markers, as shown above. The same marker can be reused for the same parameter: pq does not support the LastInsertId() method of the Result type in database/sql. To return the identifier of an INSERT (or UPDATE or DELETE), use the Postgres RETURNING clause with a standard Query or QueryRow call: For more details on RETURNING, see the Postgres documentation: For additional instructions on querying see the documentation for the database/sql package. Parameters pass through driver.DefaultParameterConverter before they are handled by this package. When the binary_parameters connection option is enabled, []byte values are sent directly to the backend as data in binary format. This package returns the following types for values from the PostgreSQL backend: All other types are returned directly from the backend as []byte values in text format. pq may return errors of type *pq.Error which can be interrogated for error details: See the pq.Error type for details. You can perform bulk imports by preparing a statement returned by pq.CopyIn (or pq.CopyInSchema) in an explicit transaction (sql.Tx). The returned statement handle can then be repeatedly "executed" to copy data into the target table. After all data has been processed you should call Exec() once with no arguments to flush all buffered data. Any call to Exec() might return an error which should be handled appropriately, but because of the internal buffering an error returned by Exec() might not be related to the data passed in the call that failed. CopyIn uses COPY FROM internally. It is not possible to COPY outside of an explicit transaction in pq. Usage example: PostgreSQL supports a simple publish/subscribe model over database connections. See http://www.postgresql.org/docs/current/static/sql-notify.html for more information about the general mechanism. To start listening for notifications, you first have to open a new connection to the database by calling NewListener. This connection can not be used for anything other than LISTEN / NOTIFY. Calling Listen will open a "notification channel"; once a notification channel is open, a notification generated on that channel will effect a send on the Listener.Notify channel. A notification channel will remain open until Unlisten is called, though connection loss might result in some notifications being lost. To solve this problem, Listener sends a nil pointer over the Notify channel any time the connection is re-established following a connection loss. The application can get information about the state of the underlying connection by setting an event callback in the call to NewListener. A single Listener can safely be used from concurrent goroutines, which means that there is often no need to create more than one Listener in your application. However, a Listener is always connected to a single database, so you will need to create a new Listener instance for every database you want to receive notifications in. The channel name in both Listen and Unlisten is case sensitive, and can contain any characters legal in an identifier (see http://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS for more information). Note that the channel name will be truncated to 63 bytes by the PostgreSQL server. You can find a complete, working example of Listener usage at https://godoc.org/github.com/lib/pq/example/listen. If you need support for Kerberos authentication, add the following to your main package: This package is in a separate module so that users who don't need Kerberos don't have to download unnecessary dependencies. When imported, additional connection string parameters are supported:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package gopacket provides packet decoding for the Go language. gopacket contains many sub-packages with additional functionality you may find useful, including: Also, if you're looking to dive right into code, see the examples subdirectory for numerous simple binaries built using gopacket libraries. Minimum go version required is 1.5. gopacket takes in packet data as a []byte and decodes it into a packet with a non-zero number of "layers". Each layer corresponds to a protocol within the bytes. Once a packet has been decoded, the layers of the packet can be requested from the packet. Packets can be decoded from a number of starting points. Many of our base types implement Decoder, which allow us to decode packets for which we don't have full data. Most of the time, you won't just have a []byte of packet data lying around. Instead, you'll want to read packets in from somewhere (file, interface, etc) and process them. To do that, you'll want to build a PacketSource. First, you'll need to construct an object that implements the PacketDataSource interface. There are implementations of this interface bundled with gopacket in the gopacket/pcap and gopacket/pfring subpackages... see their documentation for more information on their usage. Once you have a PacketDataSource, you can pass it into NewPacketSource, along with a Decoder of your choice, to create a PacketSource. Once you have a PacketSource, you can read packets from it in multiple ways. See the docs for PacketSource for more details. The easiest method is the Packets function, which returns a channel, then asynchronously writes new packets into that channel, closing the channel if the packetSource hits an end-of-file. You can change the decoding options of the packetSource by setting fields in packetSource.DecodeOptions... see the following sections for more details. gopacket optionally decodes packet data lazily, meaning it only decodes a packet layer when it needs to handle a function call. Lazily-decoded packets are not concurrency-safe. Since layers have not all been decoded, each call to Layer() or Layers() has the potential to mutate the packet in order to decode the next layer. If a packet is used in multiple goroutines concurrently, don't use gopacket.Lazy. Then gopacket will decode the packet fully, and all future function calls won't mutate the object. By default, gopacket will copy the slice passed to NewPacket and store the copy within the packet, so future mutations to the bytes underlying the slice don't affect the packet and its layers. If you can guarantee that the underlying slice bytes won't be changed, you can use NoCopy to tell gopacket.NewPacket, and it'll use the passed-in slice itself. The fastest method of decoding is to use both Lazy and NoCopy, but note from the many caveats above that for some implementations either or both may be dangerous. During decoding, certain layers are stored in the packet as well-known layer types. For example, IPv4 and IPv6 are both considered NetworkLayer layers, while TCP and UDP are both TransportLayer layers. We support 4 layers, corresponding to the 4 layers of the TCP/IP layering scheme (roughly anagalous to layers 2, 3, 4, and 7 of the OSI model). To access these, you can use the packet.LinkLayer, packet.NetworkLayer, packet.TransportLayer, and packet.ApplicationLayer functions. Each of these functions returns a corresponding interface (gopacket.{Link,Network,Transport,Application}Layer). The first three provide methods for getting src/dst addresses for that particular layer, while the final layer provides a Payload function to get payload data. This is helpful, for example, to get payloads for all packets regardless of their underlying data type: A particularly useful layer is ErrorLayer, which is set whenever there's an error parsing part of the packet. Note that we don't return an error from NewPacket because we may have decoded a number of layers successfully before running into our erroneous layer. You may still be able to get your Ethernet and IPv4 layers correctly, even if your TCP layer is malformed. gopacket has two useful objects, Flow and Endpoint, for communicating in a protocol independent manner the fact that a packet is coming from A and going to B. The general layer types LinkLayer, NetworkLayer, and TransportLayer all provide methods for extracting their flow information, without worrying about the type of the underlying Layer. A Flow is a simple object made up of a set of two Endpoints, one source and one destination. It details the sender and receiver of the Layer of the Packet. An Endpoint is a hashable representation of a source or destination. For example, for LayerTypeIPv4, an Endpoint contains the IP address bytes for a v4 IP packet. A Flow can be broken into Endpoints, and Endpoints can be combined into Flows: Both Endpoint and Flow objects can be used as map keys, and the equality operator can compare them, so you can easily group together all packets based on endpoint criteria: For load-balancing purposes, both Flow and Endpoint have FastHash() functions, which provide quick, non-cryptographic hashes of their contents. Of particular importance is the fact that Flow FastHash() is symmetric: A->B will have the same hash as B->A. An example usage could be: This allows us to split up a packet stream while still making sure that each stream sees all packets for a flow (and its bidirectional opposite). If your network has some strange encapsulation, you can implement your own decoder. In this example, we handle Ethernet packets which are encapsulated in a 4-byte header. See the docs for Decoder and PacketBuilder for more details on how coding decoders works, or look at RegisterLayerType and RegisterEndpointType to see how to add layer/endpoint types to gopacket. TLDR: DecodingLayerParser takes about 10% of the time as NewPacket to decode packet data, but only for known packet stacks. Basic decoding using gopacket.NewPacket or PacketSource.Packets is somewhat slow due to its need to allocate a new packet and every respective layer. It's very versatile and can handle all known layer types, but sometimes you really only care about a specific set of layers regardless, so that versatility is wasted. DecodingLayerParser avoids memory allocation altogether by decoding packet layers directly into preallocated objects, which you can then reference to get the packet's information. A quick example: The important thing to note here is that the parser is modifying the passed in layers (eth, ip4, ip6, tcp) instead of allocating new ones, thus greatly speeding up the decoding process. It's even branching based on layer type... it'll handle an (eth, ip4, tcp) or (eth, ip6, tcp) stack. However, it won't handle any other type... since no other decoders were passed in, an (eth, ip4, udp) stack will stop decoding after ip4, and only pass back [LayerTypeEthernet, LayerTypeIPv4] through the 'decoded' slice (along with an error saying it can't decode a UDP packet). Unfortunately, not all layers can be used by DecodingLayerParser... only those implementing the DecodingLayer interface are usable. Also, it's possible to create DecodingLayers that are not themselves Layers... see layers.IPv6ExtensionSkipper for an example of this. As well as offering the ability to decode packet data, gopacket will allow you to create packets from scratch, as well. A number of gopacket layers implement the SerializableLayer interface; these layers can be serialized to a []byte in the following manner: SerializeTo PREPENDS the given layer onto the SerializeBuffer, and they treat the current buffer's Bytes() slice as the payload of the serializing layer. Therefore, you can serialize an entire packet by serializing a set of layers in reverse order (Payload, then TCP, then IP, then Ethernet, for example). The SerializeBuffer's SerializeLayers function is a helper that does exactly that. To generate a (empty and useless, because no fields are set) Ethernet(IPv4(TCP(Payload))) packet, for example, you can run: If you use gopacket, you'll almost definitely want to make sure gopacket/layers is imported, since when imported it sets all the LayerType variables and fills in a lot of interesting variables/maps (DecodersByLayerName, etc). Therefore, it's recommended that even if you don't use any layers functions directly, you still import with:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. If you currently use the $GOPATH scheme, install the package with the following command. To test the installation, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gopacket provides packet decoding for the Go language. gopacket contains many sub-packages with additional functionality you may find useful, including: Also, if you're looking to dive right into code, see the examples subdirectory for numerous simple binaries built using gopacket libraries. Minimum go version required is 1.5. gopacket takes in packet data as a []byte and decodes it into a packet with a non-zero number of "layers". Each layer corresponds to a protocol within the bytes. Once a packet has been decoded, the layers of the packet can be requested from the packet. Packets can be decoded from a number of starting points. Many of our base types implement Decoder, which allow us to decode packets for which we don't have full data. Most of the time, you won't just have a []byte of packet data lying around. Instead, you'll want to read packets in from somewhere (file, interface, etc) and process them. To do that, you'll want to build a PacketSource. First, you'll need to construct an object that implements the PacketDataSource interface. There are implementations of this interface bundled with gopacket in the gopacket/pcap and gopacket/pfring subpackages... see their documentation for more information on their usage. Once you have a PacketDataSource, you can pass it into NewPacketSource, along with a Decoder of your choice, to create a PacketSource. Once you have a PacketSource, you can read packets from it in multiple ways. See the docs for PacketSource for more details. The easiest method is the Packets function, which returns a channel, then asynchronously writes new packets into that channel, closing the channel if the packetSource hits an end-of-file. You can change the decoding options of the packetSource by setting fields in packetSource.DecodeOptions... see the following sections for more details. gopacket optionally decodes packet data lazily, meaning it only decodes a packet layer when it needs to handle a function call. Lazily-decoded packets are not concurrency-safe. Since layers have not all been decoded, each call to Layer() or Layers() has the potential to mutate the packet in order to decode the next layer. If a packet is used in multiple goroutines concurrently, don't use gopacket.Lazy. Then gopacket will decode the packet fully, and all future function calls won't mutate the object. By default, gopacket will copy the slice passed to NewPacket and store the copy within the packet, so future mutations to the bytes underlying the slice don't affect the packet and its layers. If you can guarantee that the underlying slice bytes won't be changed, you can use NoCopy to tell gopacket.NewPacket, and it'll use the passed-in slice itself. The fastest method of decoding is to use both Lazy and NoCopy, but note from the many caveats above that for some implementations either or both may be dangerous. During decoding, certain layers are stored in the packet as well-known layer types. For example, IPv4 and IPv6 are both considered NetworkLayer layers, while TCP and UDP are both TransportLayer layers. We support 4 layers, corresponding to the 4 layers of the TCP/IP layering scheme (roughly anagalous to layers 2, 3, 4, and 7 of the OSI model). To access these, you can use the packet.LinkLayer, packet.NetworkLayer, packet.TransportLayer, and packet.ApplicationLayer functions. Each of these functions returns a corresponding interface (gopacket.{Link,Network,Transport,Application}Layer). The first three provide methods for getting src/dst addresses for that particular layer, while the final layer provides a Payload function to get payload data. This is helpful, for example, to get payloads for all packets regardless of their underlying data type: A particularly useful layer is ErrorLayer, which is set whenever there's an error parsing part of the packet. Note that we don't return an error from NewPacket because we may have decoded a number of layers successfully before running into our erroneous layer. You may still be able to get your Ethernet and IPv4 layers correctly, even if your TCP layer is malformed. gopacket has two useful objects, Flow and Endpoint, for communicating in a protocol independent manner the fact that a packet is coming from A and going to B. The general layer types LinkLayer, NetworkLayer, and TransportLayer all provide methods for extracting their flow information, without worrying about the type of the underlying Layer. A Flow is a simple object made up of a set of two Endpoints, one source and one destination. It details the sender and receiver of the Layer of the Packet. An Endpoint is a hashable representation of a source or destination. For example, for LayerTypeIPv4, an Endpoint contains the IP address bytes for a v4 IP packet. A Flow can be broken into Endpoints, and Endpoints can be combined into Flows: Both Endpoint and Flow objects can be used as map keys, and the equality operator can compare them, so you can easily group together all packets based on endpoint criteria: For load-balancing purposes, both Flow and Endpoint have FastHash() functions, which provide quick, non-cryptographic hashes of their contents. Of particular importance is the fact that Flow FastHash() is symmetric: A->B will have the same hash as B->A. An example usage could be: This allows us to split up a packet stream while still making sure that each stream sees all packets for a flow (and its bidirectional opposite). If your network has some strange encapsulation, you can implement your own decoder. In this example, we handle Ethernet packets which are encapsulated in a 4-byte header. See the docs for Decoder and PacketBuilder for more details on how coding decoders works, or look at RegisterLayerType and RegisterEndpointType to see how to add layer/endpoint types to gopacket. TLDR: DecodingLayerParser takes about 10% of the time as NewPacket to decode packet data, but only for known packet stacks. Basic decoding using gopacket.NewPacket or PacketSource.Packets is somewhat slow due to its need to allocate a new packet and every respective layer. It's very versatile and can handle all known layer types, but sometimes you really only care about a specific set of layers regardless, so that versatility is wasted. DecodingLayerParser avoids memory allocation altogether by decoding packet layers directly into preallocated objects, which you can then reference to get the packet's information. A quick example: The important thing to note here is that the parser is modifying the passed in layers (eth, ip4, ip6, tcp) instead of allocating new ones, thus greatly speeding up the decoding process. It's even branching based on layer type... it'll handle an (eth, ip4, tcp) or (eth, ip6, tcp) stack. However, it won't handle any other type... since no other decoders were passed in, an (eth, ip4, udp) stack will stop decoding after ip4, and only pass back [LayerTypeEthernet, LayerTypeIPv4] through the 'decoded' slice (along with an error saying it can't decode a UDP packet). Unfortunately, not all layers can be used by DecodingLayerParser... only those implementing the DecodingLayer interface are usable. Also, it's possible to create DecodingLayers that are not themselves Layers... see layers.IPv6ExtensionSkipper for an example of this. As well as offering the ability to decode packet data, gopacket will allow you to create packets from scratch, as well. A number of gopacket layers implement the SerializableLayer interface; these layers can be serialized to a []byte in the following manner: SerializeTo PREPENDS the given layer onto the SerializeBuffer, and they treat the current buffer's Bytes() slice as the payload of the serializing layer. Therefore, you can serialize an entire packet by serializing a set of layers in reverse order (Payload, then TCP, then IP, then Ethernet, for example). The SerializeBuffer's SerializeLayers function is a helper that does exactly that. To generate a (empty and useless, because no fields are set) Ethernet(IPv4(TCP(Payload))) packet, for example, you can run: If you use gopacket, you'll almost definitely want to make sure gopacket/layers is imported, since when imported it sets all the LayerType variables and fills in a lot of interesting variables/maps (DecodersByLayerName, etc). Therefore, it's recommended that even if you don't use any layers functions directly, you still import with:
Package writ implements a flexible option parser with thorough test coverage. It's meant to be simple and "just work". Applications using writ look and behave similar to common GNU command-line applications, making them comfortable for end-users. Writ implements option decoding with GNU getopt_long conventions. All long and short-form option variations are supported: --with-x, --name Sam, --day=Friday, -i FILE, -vvv, etc. Help output generation is supported using text/template. The default template can be overriden with a custom template. Writ uses the Command and Option types to represent available options and subcommands. Input arguments are decoded with Command.Decode(). For convenience, the New() function can parse an input struct into a Command with Options that represent the input struct's fields. It uses struct field tags to control the behavior. The resulting Command's Decode() method updates the struct's fields in-place when option arguments are decoded. Alternatively, Commands and Options may be created directly. All fields on these types are exported. Options are specified via the "option" and "flag" struct tags. Both represent options, but fields marked "option" take arguments, whereas fields marked "flag" do not. Every Option must have an OptionDecoder. Writ provides decoders for most basic types, as well as some convenience types. See the NewOptionDecoder() function docs for details. New() parses an input struct to build a top-level Command. Subcommands are supported by using the "command" field tag. Fields marked with "command" must be of struct type, and are parsed the same way as top-level commands. Writ provides methods for generating help output. Command.WriteHelp() generates help content and writes to a given io.Writer. Command.ExitHelp() writes help content to stdout or stderr and terminates the program. Writ uses a template to generate the help content. The default template mimics --help output for common GNU programs. See the documentation of the Help type for more details. The New() function recognizes the following combinations of field tags: If both "default" and "env" are specified for an option field, the environment variable is consulted first. If the environment variable is present and decodes without error, that value is used. Otherwise, the value for the "default" tag is used. Values specified via parsed arguments take precedence over both types of defaults. This example uses writ.New() to build a command from the Greeter's struct fields. The resulting *writ.Command decodes and updates the Greeter's fields in-place. The Command.ExitHelp() method is used to display help content if --help is specified, or if invalid input arguments are received. This example demonstrates some of the convenience features offered by writ. It uses writ's support for io types and default values to ensure the Input and Output fields are initialized. These default to stdin and stdout due to the default:"-" field tags. The user may specify -i or -o to read from or write to a file. Similarly, the Replacements map is initialized with key=value pairs for every -r/--replace option the user specifies. This example demonstrates explicit Command and Option creation, along with explicit option grouping. It checks the host platform and dynamically adds a --bootloader option if the example is run on Linux. The same result could be achieved by using writ.New() to construct a Command, and then adding the platform-specific option to the resulting Command directly. This example demonstrates subcommands in a busybox style. There's no requirement that subcommands implement the Run() method shown here. It's just an example of how subcommands might be implemented.
Package goa provides the runtime support for goa microservices. goa service development begins with writing the *design* of a service. The design is described using the goa language implemented by the github.com/goadesign/goa/design/apidsl package. The `goagen` tool consumes the metadata produced from executing the design language to generate service specific code that glues the underlying HTTP server with action specific code and data structures. The goa package contains supporting functionality for the generated code including basic request and response state management through the RequestData and ResponseData structs, error handling via error classes, middleware support via the Middleware data structure as well as decoding and encoding algorithms. The RequestData and ResponseData structs provides access to the request and response state. goa request handlers also accept a context.Context interface as first parameter so that deadlines and cancelation signals may easily be implemented. The request state exposes the underlying http.Request object as well as the deserialized payload (request body) and parameters (both path and querystring parameters). Generated action specific contexts wrap the context.Context, ResponseData and RequestData data structures. They expose properly typed fields that correspond to the request parameters and body data structure descriptions appearing in the design. The response state exposes the response status and body length as well as the underlying ResponseWriter. Action contexts provide action specific helper methods that write the responses as described in the design optionally taking an instance of the media type for responses that contain a body. Here is an example showing an "update" action corresponding to following design (extract): The action signature generated by goagen is: where UpdateBottleContext is: and implements: The definitions of the Bottle and UpdateBottlePayload data structures are ommitted for brievity. There is one controller interface generated per resource defined via the design language. The interface exposes the controller actions. User code must provide data structures that implement these interfaces when mounting a controller onto a service. The controller data structure should include an anonymous field of type *goa.Controller which takes care of implementing the middleware handling. A goa middleware is a function that takes and returns a Handler. A Handler is a the low level function which handles incoming HTTP requests. goagen generates the handlers code so each handler creates the action specific context and calls the controller action with it. Middleware can be added to a goa service or a specific controller using the corresponding Use methods. goa comes with a few stock middleware that handle common needs such as logging, panic recovery or using the RequestID header to trace requests across multiple services. The controller action methods generated by goagen such as the Update method of the BottleController interface shown above all return an error value. goa defines an Error struct that action implementations can use to describe the content of the corresponding HTTP response. Errors can be created using error classes which are functions created via NewErrorClass. The ErrorHandler middleware maps errors to HTTP responses. Errors that are instances of the Error struct are mapped using the struct fields while other types of errors return responses with status code 500 and the error message in the body. The goa design language documented in the dsl package makes it possible to attach validations to data structure definitions. One specific type of validation consists of defining the format that a data structure string field must follow. Example of formats include email, data time, hostnames etc. The ValidateFormat function provides the implementation for the format validation invoked from the code generated by goagen. The goa design language makes it possible to specify the encodings supported by the API both as input (Consumes) and output (Produces). goagen uses that information to registed the corresponding packages with the service encoders and decoders via their Register methods. The service exposes the DecodeRequest and EncodeResponse that implement a simple content type negotiation algorithm for picking the right encoder for the "Content-Type" (decoder) or "Accept" (encoder) request header. Package goa standardizes on structured error responses: a request that fails because of an invalid input or an unexpected condition produces a response that contains a structured error. The error data structures returned to clients contains five fields: an ID, a code, a status, a detail and metadata. The ID is unique for the occurrence of the error, it helps correlate the content of the response with the content of the service logs. The code defines the class of error (e.g. "invalid_parameter_type") and the status the corresponding HTTP status (e.g. 400). The detail contains a message specific to the error occurrence. The metadata contains key/value pairs that provide contextual information (name of parameters, value of invalid parameter etc.). Instances of Error can be created via Error Class functions. See http://goa.design/implement/error_handling.html All instance of errors created via a error class implement the ServiceError interface. This interface is leveraged by the error handler middleware to produce the error responses. The code generated by goagen calls the helper functions exposed in this file when it encounters invalid data (wrong type, validation errors etc.) such as InvalidParamTypeError, InvalidAttributeTypeError etc. These methods return errors that get merged with any previously encountered error via the Error Merge method. The helper functions are error classes stored in global variable. This means your code can override their values to produce arbitrary error responses. goa includes an error handler middleware that takes care of mapping back any error returned by previously called middleware or action handler into HTTP responses. If the error was created via an error class then the corresponding content including the HTTP status is used otherwise an internal error is returned. Errors that bubble up all the way to the top (i.e. not handled by the error middleware) also generate an internal error response.
Package goa implements a Go framework for writing microservices that promotes best practice by providing a single source of truth from which server code, client code, and documentation is derived. The code generated by goa follows the clean architecture pattern where composable modules are generated for the transport, endpoint, and business logic layers. The goa package contains middleware, plugins, and other complementary functionality that can be leveraged in tandem with the generated code to implement complete microservices in an efficient manner. By using goa for developing microservices, implementers don’t have to worry with the documentation getting out of sync from the implementation as goa takes care of generating OpenAPI specifications for HTTP based services and gRPC protocol buffer files for gRPC based services (or both if the service supports both transports). Reviewers can also be assured that the implementation follows the documentation as the code is generated from the same source. Visit https://goa.design for more information.
Package app provides experimental utilities to make Compose files more reusable and sharable. The `cmd/docker-app` package generates the `docker-app` binary, see https://github.com/docker/app for more information about it. It can also be used as a library to be integrated in your tools. Usage examples are provided inline with their full documentation.
Package blackfriday is a markdown processor. It translates plain text with simple formatting rules into an AST, which can then be further processed to HTML (provided by Blackfriday itself) or other formats (provided by the community). The simplest way to invoke Blackfriday is to call the Run function. It will take a text input and produce a text output in HTML (or other format). A slightly more sophisticated way to use Blackfriday is to create a Markdown processor and to call Parse, which returns a syntax tree for the input document. You can leverage Blackfriday's parsing for content extraction from markdown documents. You can assign a custom renderer and set various options to the Markdown processor. If you're interested in calling Blackfriday from command line, see https://github.com/russross/blackfriday-tool. Blackfriday includes an algorithm for creating sanitized anchor names corresponding to a given input text. This algorithm is used to create anchors for headings when AutoHeadingIDs extension is enabled. The algorithm is specified below, so that other packages can create compatible anchor names and links to those anchors. The algorithm iterates over the input text, interpreted as UTF-8, one Unicode code point (rune) at a time. All runes that are letters (category L) or numbers (category N) are considered valid characters. They are mapped to lower case, and included in the output. All other runes are considered invalid characters. Invalid characters that precede the first valid character, as well as invalid character that follow the last valid character are dropped completely. All other sequences of invalid characters between two valid characters are replaced with a single dash character '-'. SanitizedAnchorName exposes this functionality, and can be used to create compatible links to the anchor names generated by blackfriday. This algorithm is also implemented in a small standalone package at github.com/shurcooL/sanitized_anchor_name. It can be useful for clients that want a small package and don't need full functionality of blackfriday.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package jsonschema parses JSON Schema documents. The resulting schema can be used to generate source code in any supported language. The JSON Schema implementation is based on https://tools.ietf.org/html/draft-handrews-json-schema-00. The validation implementation is based on http://json-schema.org/latest/json-schema-validation.html. required: http://json-schema.org/latest/json-schema-validation.html#rfc.section.6.5.3 go: https://godoc.org/github.com/tfkhsr/jsonschema/golang Parse a schema into a map of JSON pointers to Schemas (Index):
Package bind generates Ethereum contract Go bindings. Detailed usage document and tutorial available on the go-ethereum Wiki page: https://github.com/ethereum/go-ethereum/wiki/Native-DApps:-Go-bindings-to-Ethereum-contracts
simhash package implements Charikar's simhash algorithm to generate a 64-bit fingerprint of a given document. simhash fingerprints have the property that similar documents will have a similar fingerprint. Therefore, the hamming distance between two fingerprints will be small if the documents are similar for standalone test, change package to `main` and the next func def to, func main() {
Package gendoc is a protoc plugin for generating documentation from your proto files. Typically this will not be used as a library, though nothing prevents that. Normally it'll be invoked by passing `--doc_out` and `--doc_opt` values to protoc. Example: generate HTML documentation Example: exclude patterns Example: use a custom template For more details, check out the README at https://github.com/pseudomuto/protoc-gen-doc
Package kms provides the client and types for making API requests to AWS Key Management Service. AWS Key Management Service (AWS KMS) is an encryption and key management web service. This guide describes the AWS KMS operations that you can call programmatically. For general information about AWS KMS, see the AWS Key Management Service Developer Guide (http://docs.aws.amazon.com/kms/latest/developerguide/). AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, iOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to AWS KMS and other AWS services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services (http://aws.amazon.com/tools/). We recommend that you use the AWS SDKs to make programmatic API calls to AWS KMS. Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your AWS account (root) access key ID and secret key for everyday work with AWS KMS. Instead, use the access key ID and secret access key for an IAM user, or you can use the AWS Security Token Service to generate temporary security credentials that you can use to sign requests. All AWS KMS operations require Signature Version 4 (http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html). AWS KMS supports AWS CloudTrail, a service that logs AWS API calls and related events for your AWS account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to AWS KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the AWS CloudTrail User Guide (http://docs.aws.amazon.com/awscloudtrail/latest/userguide/). For more information about credentials and request signing, see the following: AWS Security Credentials (http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html) This topic provides general information about the types of credentials used for accessing AWS. Temporary Security Credentials (http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html) This section of the IAM User Guide describes how to create and use temporary security credentials. Signature Version 4 Signing Process (http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html) This set of topics walks you through the process of signing a request using an access key ID and a secret access key. Of the APIs discussed in this guide, the following will prove the most useful for most applications. You will likely perform actions other than these, such as creating keys and assigning policies, by using the console. Encrypt Decrypt GenerateDataKey GenerateDataKeyWithoutPlaintext See https://docs.aws.amazon.com/goto/WebAPI/kms-2014-11-01 for more information on this service. See kms package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/kms/ To AWS Key Management Service with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the AWS Key Management Service client KMS for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/kms/#New
Package billingconductor provides the API client, operations, and parameter types for AWSBillingConductor. Amazon Web Services Billing Conductor is a fully managed service that you can use to customize a proformaversion of your billing data each month, to accurately show or chargeback your end customers. Amazon Web Services Billing Conductor doesn't change the way you're billed by Amazon Web Services each month by design. Instead, it provides you with a mechanism to configure, generate, and display rates to certain customers over a given billing period. You can also analyze the difference between the rates you apply to your accounting groupings relative to your actual rates from Amazon Web Services. As a result of your Amazon Web Services Billing Conductor configuration, the payer account can also see the custom rate applied on the billing details page of the Amazon Web Services Billing console, or configure a cost and usage report per billing group. This documentation shows how you can configure Amazon Web Services Billing Conductor using its API. For more information about using the Amazon Web Services Billing Conductoruser interface, see the Amazon Web Services Billing Conductor User Guide.
gojson generates go struct defintions from JSON documents Example: Output:
gojson generates go struct defintions from JSON documents Example: Output:
Package kyber provides a toolbox of advanced cryptographic primitives, for applications that need more than straightforward signing and encryption. This top level package defines the interfaces to cryptographic primitives designed to be independent of specific cryptographic algorithms, to facilitate upgrading applications to new cryptographic algorithms or switching to alternative algorithms for experimentation purposes. This toolkits public-key crypto API includes a kyber.Group interface supporting a broad class of group-based public-key primitives including DSA-style integer residue groups and elliptic curve groups. Users of this API can write higher-level crypto algorithms such as zero-knowledge proofs without knowing or caring exactly what kind of group, let alone which precise security parameters or elliptic curves, are being used. The kyber.Group interface supports the standard algebraic operations on group elements and scalars that nontrivial public-key algorithms tend to rely on. The interface uses additive group terminology typical for elliptic curves, such that point addition is homomorphically equivalent to adding their (potentially secret) scalar multipliers. But the API and its operations apply equally well to DSA-style integer groups. As a trivial example, generating a public/private keypair is as simple as: The first statement picks a private key (Scalar) from a the suites's source of cryptographic random or pseudo-random bits, while the second performs elliptic curve scalar multiplication of the curve's standard base point (indicated by the 'nil' argument to Mul) by the scalar private key 'a'. Similarly, computing a Diffie-Hellman shared secret using Alice's private key 'a' and Bob's public key 'B' can be done via: Note that we use 'Mul' rather than 'Exp' here because the library uses the additive-group terminology common for elliptic curve crypto, rather than the multiplicative-group terminology of traditional integer groups - but the two are semantically equivalent and the interface itself works for both elliptic curve and integer groups. Various sub-packages provide several specific implementations of these cryptographic interfaces. In particular, the 'group/mod' sub-package provides implementations of modular integer groups underlying conventional DSA-style algorithms. The `group/nist` package provides NIST-standardized elliptic curves built on the Go crypto library. The 'group/edwards25519' sub-package provides the kyber.Group interface using the popular Ed25519 curve. Other sub-packages build more interesting high-level cryptographic tools atop these primitive interfaces, including: - share: Polynomial commitment and verifiable Shamir secret splitting for implementing verifiable 't-of-n' threshold cryptographic schemes. This can be used to encrypt a message so that any 2 out of 3 receivers must work together to decrypt it, for example. - proof: An implementation of the general Camenisch/Stadler framework for discrete logarithm knowledge proofs. This system supports both interactive and non-interactive proofs of a wide variety of statements such as, "I know the secret x associated with public key X or I know the secret y associated with public key Y", without revealing anything about either secret or even which branch of the "or" clause is true. - sign: The sign directory contains different signature schemes. - sign/anon provides anonymous and pseudonymous public-key encryption and signing, where the sender of a signed message or the receiver of an encrypted message is defined as an explicit anonymity set containing several public keys rather than just one. For example, a member of an organization's board of trustees might prove to be a member of the board without revealing which member she is. - sign/cosi provides collective signature algorithm, where a bunch of signers create a unique, compact and efficiently verifiable signature using the Schnorr signature as a basis. - sign/eddsa provides a kyber-native implementation of the EdDSA signature scheme. - sign/schnorr provides a basic vanilla Schnorr signature scheme implementation. - shuffle: Verifiable cryptographic shuffles of ElGamal ciphertexts, which can be used to implement (for example) voting or auction schemes that keep the sources of individual votes or bids private without anyone having to trust more than one of the shuffler(s) to shuffle votes/bids honestly. As should be obvious, this library is intended to be used by developers who are at least moderately knowledgeable about cryptography. If you want a crypto library that makes it easy to implement "basic crypto" functionality correctly - i.e., plain public-key encryption and signing - then [NaCl secretbox](https://godoc.org/golang.org/x/crypto/nacl/secretbox) may be a better choice. This toolkit's purpose is to make it possible - and preferably easy - to do slightly more interesting things that most current crypto libraries don't support effectively. The one existing crypto library that this toolkit is probably most comparable to is the Charm rapid prototyping library for Python (https://charm-crypto.com/category/charm). This library incorporates and/or builds on existing code from a variety of sources, as documented in the relevant sub-packages. This library is offered as-is, and without a guarantee. It will need an independent security review before it should be considered ready for use in security-critical applications. If you integrate Kyber into your application it is YOUR RESPONSIBILITY to arrange for that audit. If you notice a possible security problem, please report it to dedis-security@epfl.ch.