Package btcec implements support for the elliptic curves needed for bitcoin. Bitcoin uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See http://www.secg.org/collateral/sec2_final.pdf for details on the standard. This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with btcd, but should be general enough for other uses of elliptic curve crypto. It was originally based on some initial work by ThePiachu, but has significantly diverged since then.
Package btree implements in-memory B-Trees of arbitrary degree. btree implements an in-memory B-Tree for use as an ordered data structure. It is not meant for persistent storage solutions. It has a flatter structure than an equivalent red-black or other binary tree, which in some cases yields better memory usage and/or performance. See some discussion on the matter here: Note, though, that this project is in no way related to the C++ B-Tree implementation written about there. Within this tree, each node contains a slice of items and a (possibly nil) slice of children. For basic numeric values or raw structs, this can cause efficiency differences when compared to equivalent C++ template code that stores values in arrays within the node: These issues don't tend to matter, though, when working with strings or other heap-allocated structures, since C++-equivalent structures also must store pointers and also distribute their values across the heap. This implementation is designed to be a drop-in replacement to gollrb.LLRB trees, (http://github.com/petar/gollrb), an excellent and probably the most widely used ordered tree implementation in the Go ecosystem currently. Its functions, therefore, exactly mirror those of llrb.LLRB where possible. Unlike gollrb, though, we currently don't support storing multiple equivalent values. There are two implementations; those suffixed with 'G' are generics, usable for any type, and require a passed-in "less" function to define their ordering. Those without this prefix are specific to the 'Item' interface, and use its 'Less' function for ordering.
Ristretto is a fast, fixed size, in-memory cache with a dual focus on throughput and hit ratio performance. You can easily add Ristretto to an existing system and keep the most valuable data where you need it. This package includes multiple probabalistic data structures needed for admission/eviction metadata. Most are Counting Bloom Filter variations, but a caching-specific feature that is also required is a "freshness" mechanism, which basically serves as a "lifetime" process. This freshness mechanism was described in the original TinyLFU paper 1, but other mechanisms may be better suited for certain data distributions.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
Package sops manages JSON, YAML and BINARY documents to be encrypted or decrypted. This package should not be used directly. Instead, Sops users should install the command line client via `go get -u go.mozilla.org/sops/v3/cmd/sops`, or use the decryption helper provided at `go.mozilla.org/sops/v3/decrypt`. We do not guarantee API stability for any package other than `go.mozilla.org/sops/v3/decrypt`. A Sops document is a Tree composed of a data branch with arbitrary key/value pairs and a metadata branch with encryption and integrity information. In JSON and YAML formats, the structure of the cleartext tree is preserved, keys are stored in cleartext and only values are encrypted. Keeping the values in cleartext provides better readability when storing Sops documents in version controls, and allows for merging competing changes on documents. This is a major difference between Sops and other encryption tools that store documents as encrypted blobs. In BINARY format, the cleartext data is treated as a single blob and the encrypted document is in JSON format with a single `data` key and a single encrypted value. Sops allows operators to encrypt their documents with multiple master keys. Each of the master key defined in the document is able to decrypt it, allowing users to share documents amongst themselves without sharing keys, or using a PGP key as a backup for KMS. In practice, this is achieved by generating a data key for each document that is used to encrypt all values, and encrypting the data with each master key defined. Being able to decrypt the data key gives access to the document. The integrity of each document is guaranteed by calculating a Message Authentication Code (MAC) that is stored encrypted by the data key. When decrypting a document, the MAC should be recalculated and compared with the MAC stored in the document to verify that no fraudulent changes have been applied. The MAC covers keys and values as well as their ordering.
Package roaring is an implementation of Roaring Bitmaps in Go. They provide fast compressed bitmap data structures (also called bitset). They are ideally suited to represent sets of integers over relatively small ranges. See http://roaringbitmap.org for details.
Package toml is a TOML parser and manipulation library. This version supports the specification as described in https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.5.0.md Go-toml can marshal and unmarshal TOML documents from and to data structures. Go-toml can operate on a TOML document as a tree. Use one of the Load* functions to parse TOML data and obtain a Tree instance, then one of its methods to manipulate the tree. The package github.com/pelletier/go-toml/query implements a system similar to JSONPath to quickly retrieve elements of a TOML document using a single expression. See the package documentation for more information. Package civil implements types for civil time, a time-zone-independent representation of time that follows the rules of the proleptic Gregorian calendar with exactly 24-hour days, 60-minute hours, and 60-second minutes. Because they lack location information, these types do not represent unique moments or intervals of time. Use time.Time for that purpose.
Package rds provides the API client, operations, and parameter types for Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, Db2, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.
msgp is a code generation tool for creating methods to serialize and de-serialize Go data structures to and from MessagePack. This package is targeted at the `go generate` tool. To use it, include the following directive in a go source file with types requiring source generation: The go generate tool should set the proper environment variables for the generator to execute without any command-line flags. However, the following options are supported, if you need them: For more information, please read README.md, and the wiki at github.com/tinylib/msgp
Package bloom provides data structures and methods for creating Bloom filters. A Bloom filter is a representation of a set of _n_ items, where the main requirement is to make membership queries; _i.e._, whether an item is a member of a set. A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large multiple of the cardinality of the set to represent) and _k_, the number of hashing functions on elements of the set. (The actual hashing functions are important, too, but this is not a parameter for this implementation). A Bloom filter is backed by a BitSet; a key is represented in the filter by setting the bits at each value of the hashing functions (modulo _m_). Set membership is done by _testing_ whether the bits at each value of the hashing functions (again, modulo _m_) are set. If so, the item is in the set. If the item is actually in the set, a Bloom filter will never fail (the true positive rate is 1.0); but it is susceptible to false positives. The art is to choose _k_ and _m_ correctly. In this implementation, the hashing functions used is murmurhash, a non-cryptographic hashing function. This implementation accepts keys for setting as testing as []byte. Thus, to add a string item, "Love": Similarly, to test if "Love" is in bloom: For numeric data, I recommend that you look into the binary/encoding library. But, for example, to add a uint32 to the filter: Finally, there is a method to estimate the false positive rate of a particular Bloom filter for a set of size _n_: Given the particular hashing scheme, it's best to be empirical about this. Note that estimating the FP rate will clear the Bloom filter.
Package bloom provides data structures and methods for creating Bloom filters. A Bloom filter is a representation of a set of _n_ items, where the main requirement is to make membership queries; _i.e._, whether an item is a member of a set. A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large multiple of the cardinality of the set to represent) and _k_, the number of hashing functions on elements of the set. (The actual hashing functions are important, too, but this is not a parameter for this implementation). A Bloom filter is backed by a BitSet; a key is represented in the filter by setting the bits at each value of the hashing functions (modulo _m_). Set membership is done by _testing_ whether the bits at each value of the hashing functions (again, modulo _m_) are set. If so, the item is in the set. If the item is actually in the set, a Bloom filter will never fail (the true positive rate is 1.0); but it is susceptible to false positives. The art is to choose _k_ and _m_ correctly. In this implementation, the hashing functions used is murmurhash, a non-cryptographic hashing function. This implementation accepts keys for setting as testing as []byte. Thus, to add a string item, "Love": Similarly, to test if "Love" is in bloom: For numeric data, I recommend that you look into the binary/encoding library. But, for example, to add a uint32 to the filter: Finally, there is a method to estimate the false positive rate of a Bloom filter with _m_ bits and _k_ hashing functions for a set of size _n_: You can use it to validate the computed m, k parameters: or You would expect ActualfpRate to be close to the desired fp in these cases. The EstimateFalsePositiveRate function creates a temporary Bloom filter. It is also relatively expensive and only meant for validation.
Package geoip2 provides an easy-to-use API for the MaxMind GeoIP2 and GeoLite2 databases; this package does not support GeoIP Legacy databases. The structs provided by this package match the internal structure of the data in the MaxMind databases. See github.com/oschwald/maxminddb-golang for more advanced used cases. Example provides a basic example of using the API. Use of the Country method is analogous to that of the City method.
Package jsonnet implements a parser and evaluator for jsonnet. Jsonnet is a domain specific configuration language that helps you define JSON data. Jsonnet lets you compute fragments of JSON within the structure, bringing the same benefit to structured data that templating languages bring to plain text. See http://jsonnet.org/ for a full language description and tutorial.
Package aztables can access an Azure Storage or CosmosDB account. The aztables package is capable of: The Azure Data Tables library allows you to interact with two types of resources: * the tables in your account * the entities within those tables. Interaction with these resources starts with an instance of a client. To create a client object, you will need the account's table service endpoint URL and a credential that allows you to access the account. The clients support different forms of authentication. The aztables library supports any of the `azcore.TokenCredential` interfaces, authorization via a Connection String, or authorization with a Shared Access Signature token. To use an account shared key (aka account key or access key), provide the key as a string. This can be found in your storage account in the Azure Portal under the "Access Keys" section. Use the key as the credential parameter to authenticate the client: Using a Connection String Depending on your use case and authorization method, you may prefer to initialize a client instance with a connection string instead of providing the account URL and credential separately. To do this, pass the connection string to the client's `from_connection_string` class method. The connection string can be found in your storage account in the [Azure Portal][azure_portal_account_url] under the "Access Keys" section or with the following Azure CLI command: Using a Shared Access Signature To use a shared access signature (SAS) token, provide the token at the end of your service URL. You can generate a SAS token from the Azure Portal under Shared Access Signature or use the ServiceClient.GetAccountSASToken or Client.GetTableSASToken() functions. Common uses of the Table service included: * Storing TBs of structured data capable of serving web scale applications * Storing datasets that do not require complex joins, foreign keys, or stored procedures and can be de-normalized for fast access * Quickly querying data using a clustered index * Accessing data using the OData protocol and LINQ filter expressions The following components make up the Azure Data Tables Service: * The account * A table within the account, which contains a set of entities * An entity within a table, as a dictionary The Azure Data Tables client library for Go allows you to interact with each of these components through the use of a dedicated client object. Two different clients are provided to interact with the various components of the Table Service: 1. **`ServiceClient`** - 2. **`Client`** - Entities are similar to rows. An entity has a PartitionKey, a RowKey, and a set of properties. A property is a name value pair, similar to a column. Every entity in a table does not need to have the same properties. Entities are returned as JSON, allowing developers to use JSON marshalling and unmarshalling techniques. Additionally, you can use the aztables.EDMEntity to ensure proper round-trip serialization of all properties. The following sections provide several code snippets covering some of the most common Table tasks, including: * Creating a table * Creating entities * Querying entities Create a table in your account and get a `Client` to perform operations on the newly created table: Creating Entities Querying entities
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package secp256k1 implements optimized secp256k1 elliptic curve operations in pure Go. This package provides an optimized pure Go implementation of elliptic curve cryptography operations over the secp256k1 curve as well as data structures and functions for working with public and private secp256k1 keys. See https://www.secg.org/sec2-v2.pdf for details on the standard. In addition, sub packages are provided to produce, verify, parse, and serialize ECDSA signatures and EC-Schnorr-DCRv0 (a custom Schnorr-based signature scheme specific to Decred) signatures. See the README.md files in the relevant sub packages for more details about those aspects. An overview of the features provided by this package are as follows: It also provides an implementation of the Go standard library crypto/elliptic Curve interface via the S256 function so that it may be used with other packages in the standard library such as crypto/tls, crypto/x509, and crypto/ecdsa. However, in the case of ECDSA, it is highly recommended to use the ecdsa sub package of this package instead since it is optimized specifically for secp256k1 and is significantly faster as a result. Although this package was primarily written for dcrd, it has intentionally been designed so it can be used as a standalone package for any projects needing to use optimized secp256k1 elliptic curve cryptography. Finally, a comprehensive suite of tests is provided to provide a high level of quality assurance. At the time of this writing, the primary public key cryptography in widespread use on the Decred network used to secure coins is based on elliptic curves defined by the secp256k1 domain parameters. This example demonstrates use of GenerateSharedSecret to encrypt a message for a recipient's public key, and subsequently decrypt the message using the recipient's private key.
Package jsonapi provides a serializer and deserializer for jsonapi.org spec payloads. You can keep your model structs as is and use struct field tags to indicate to jsonapi how you want your response built or your request deserialized. What about my relationships? jsonapi supports relationships out of the box and will even side load them in your response into an "included" array--that contains associated objects. jsonapi uses StructField tags to annotate the structs fields that you already have and use in your app and then reads and writes jsonapi.org output based on the instructions you give the library in your jsonapi tags. Example structs using a Blog > Post > Comment structure, jsonapi Tag Reference Value, primary: "primary,<type field output>" This indicates that this is the primary key field for this struct type. Tag value arguments are comma separated. The first argument must be, "primary", and the second must be the name that should appear in the "type" field for all data objects that represent this type of model. Value, attr: "attr,<key name in attributes hash>[,<extra arguments>]" These fields' values should end up in the "attribute" hash for a record. The first argument must be, "attr', and the second should be the name for the key to display in the "attributes" hash for that record. The following extra arguments are also supported: "omitempty": excludes the fields value from the "attribute" hash. "iso8601": uses the ISO8601 timestamp format when serialising or deserialising the time.Time value. Value, relation: "relation,<key name in relationships hash>" Relations are struct fields that represent a one-to-one or one-to-many to other structs. jsonapi will traverse the graph of relationships and marshal or unmarshal records. The first argument must be, "relation", and the second should be the name of the relationship, used as the key in the "relationships" hash for the record. Use the methods below to Marshal and Unmarshal jsonapi.org json payloads. Visit the readme at https://github.com/google/jsonapi
Package logr defines a general-purpose logging API and abstract interfaces to back that API. Packages in the Go ecosystem can depend on this package, while callers can implement logging with whatever backend is appropriate. Logging is done using a Logger instance. Logger is a concrete type with methods, which defers the actual logging to a LogSink interface. The main methods of Logger are Info() and Error(). Arguments to Info() and Error() are key/value pairs rather than printf-style formatted strings, emphasizing "structured logging". With Go's standard log package, we might write: With logr's structured logging, we'd write: Errors are much the same. Instead of: We'd write: Info() and Error() are very similar, but they are separate methods so that LogSink implementations can choose to do things like attach additional information (such as stack traces) on calls to Error(). Error() messages are always logged, regardless of the current verbosity. If there is no error instance available, passing nil is valid. Often we want to log information only when the application in "verbose mode". To write log lines that are more verbose, Logger has a V() method. The higher the V-level of a log line, the less critical it is considered. Log-lines with V-levels that are not enabled (as per the LogSink) will not be written. Level V(0) is the default, and logger.V(0).Info() has the same meaning as logger.Info(). Negative V-levels have the same meaning as V(0). Error messages do not have a verbosity level and are always logged. Where we might have written: We can write: Logger instances can have name strings so that all messages logged through that instance have additional context. For example, you might want to add a subsystem name: The WithName() method returns a new Logger, which can be passed to constructors or other functions for further use. Repeated use of WithName() will accumulate name "segments". These name segments will be joined in some way by the LogSink implementation. It is strongly recommended that name segments contain simple identifiers (letters, digits, and hyphen), and do not contain characters that could muddle the log output or confuse the joining operation (e.g. whitespace, commas, periods, slashes, brackets, quotes, etc). Logger instances can store any number of key/value pairs, which will be logged alongside all messages logged through that instance. For example, you might want to create a Logger instance per managed object: With the standard log package, we might write: With logr we'd write: Logger has very few hard rules, with the goal that LogSink implementations might have a lot of freedom to differentiate. There are, however, some things to consider. The log message consists of a constant message attached to the log line. This should generally be a simple description of what's occurring, and should never be a format string. Variable information can then be attached using named values. Keys are arbitrary strings, but should generally be constant values. Values may be any Go value, but how the value is formatted is determined by the LogSink implementation. Logger instances are meant to be passed around by value. Code that receives such a value can call its methods without having to check whether the instance is ready for use. The zero logger (= Logger{}) is identical to Discard() and discards all log entries. Code that receives a Logger by value can simply call it, the methods will never crash. For cases where passing a logger is optional, a pointer to Logger should be used. Keys are not strictly required to conform to any specification or regex, but it is recommended that they: These guidelines help ensure that log data is processed properly regardless of the log implementation. For example, log implementations will try to output JSON data or will store data for later database (e.g. SQL) queries. While users are generally free to use key names of their choice, it's generally best to avoid using the following keys, as they're frequently used by implementations: Implementations are encouraged to make use of these keys to represent the above concepts, when necessary (for example, in a pure-JSON output form, it would be necessary to represent at least message and timestamp as ordinary named values). Implementations may choose to give callers access to the underlying logging implementation. The recommended pattern for this is: Logger grants access to the sink to enable type assertions like this: Custom `With*` functions can be implemented by copying the complete Logger struct and replacing the sink in the copy: Don't use New to construct a new Logger with a LogSink retrieved from an existing Logger. Source code attribution might not work correctly and unexported fields in Logger get lost. Beware that the same LogSink instance may be shared by different logger instances. Calling functions that modify the LogSink will affect all of those.
Package nutsdb implements a simple, fast, embeddable and persistent key/value store written in pure Go. It supports fully serializable transactions. And it also supports data structure such as list、set、sorted set etc. NutsDB currently works on Mac OS, Linux and Windows. NutsDB has the following main types: DB, BPTree, Entry, DataFile And Tx. and NutsDB supports bucket, A bucket is a collection of unique keys that are associated with values. All operations happen inside a Tx. Tx represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given key , or iterate over a set of key-value pairs (prefix scanning or range scanning). read-write transactions can also update and delete keys from the DB. See the examples for more usage details.
Package codepipeline provides the API client, operations, and parameter types for AWS CodePipeline. This is the CodePipeline API Reference. This guide provides descriptions of the actions and data types for CodePipeline. Some functionality for your pipeline can only be configured through the API. For more information, see the CodePipeline User Guide. You can use the CodePipeline API to work with pipelines, stages, actions, and transitions. Pipelines are models of automated release processes. Each pipeline is uniquely named, and consists of stages, actions, and transitions. You can work with pipelines by calling: CreatePipeline DeletePipeline GetPipeline GetPipelineExecution GetPipelineState ListActionExecutions ListPipelines ListPipelineExecutions StartPipelineExecution StopPipelineExecution UpdatePipeline Pipelines include stages. Each stage contains one or more actions that must complete before the next stage begins. A stage results in success or failure. If a stage fails, the pipeline stops at that stage and remains stopped until either a new version of an artifact appears in the source location, or a user takes action to rerun the most recent artifact through the pipeline. You can call GetPipelineState, which displays the status of a pipeline, including the status of stages in the pipeline, or GetPipeline, which returns the entire structure of the pipeline, including the stages of that pipeline. For more information about the structure of stages and actions, see CodePipeline Pipeline Structure Reference. Pipeline stages include actions that are categorized into categories such as source or build actions performed in a stage of a pipeline. For example, you can use a source action to import artifacts into a pipeline from a source such as Amazon S3. Like stages, you do not work with actions directly in most cases, but you do define and interact with actions when working with pipeline operations such as CreatePipelineand GetPipelineState. Valid action categories are: Source Build Test Deploy Approval Invoke Compute Pipelines also include transitions, which allow the transition of artifacts from one stage to the next in a pipeline after the actions in one stage complete. You can work with transitions by calling: DisableStageTransition EnableStageTransition For third-party integrators or developers who want to create their own integrations with CodePipeline, the expected sequence varies from the standard API user. To integrate with CodePipeline, developers need to work with the following items: Jobs, which are instances of an action. For example, a job for a source action might import a revision of an artifact from a source. You can work with jobs by calling: AcknowledgeJob GetJobDetails PollForJobs PutJobFailureResult PutJobSuccessResult Third party jobs, which are instances of an action created by a partner action and integrated into CodePipeline. Partner actions are created by members of the Amazon Web Services Partner Network. You can work with third party jobs by calling: AcknowledgeThirdPartyJob GetThirdPartyJobDetails PollForThirdPartyJobs PutThirdPartyJobFailureResult PutThirdPartyJobSuccessResult
Package secp256k1 implements optimized secp256k1 elliptic curve operations. This package provides an optimized pure Go implementation of elliptic curve cryptography operations over the secp256k1 curve as well as data structures and functions for working with public and private secp256k1 keys. See https://www.secg.org/sec2-v2.pdf for details on the standard. In addition, sub packages are provided to produce, verify, parse, and serialize ECDSA signatures and EC-Schnorr-DCRv0 (a custom Schnorr-based signature scheme specific to Decred) signatures. See the README.md files in the relevant sub packages for more details about those aspects. An overview of the features provided by this package are as follows: It also provides an implementation of the Go standard library crypto/elliptic Curve interface via the S256 function so that it may be used with other packages in the standard library such as crypto/tls, crypto/x509, and crypto/ecdsa. However, in the case of ECDSA, it is highly recommended to use the ecdsa sub package of this package instead since it is optimized specifically for secp256k1 and is significantly faster as a result. Although this package was primarily written for dcrd, it has intentionally been designed so it can be used as a standalone package for any projects needing to use optimized secp256k1 elliptic curve cryptography. Finally, a comprehensive suite of tests is provided to provide a high level of quality assurance. At the time of this writing, the primary public key cryptography in widespread use on the Decred network used to secure coins is based on elliptic curves defined by the secp256k1 domain parameters. This example demonstrates use of GenerateSharedSecret to encrypt a message for a recipient's public key, and subsequently decrypt the message using the recipient's private key.
Package boom implements probabilistic data structures for processing continuous, unbounded data streams. This includes Stable Bloom Filters, Scalable Bloom Filters, Counting Bloom Filters, Inverse Bloom Filters, several variants of traditional Bloom filters, HyperLogLog, Count-Min Sketch, and MinHash. Classic Bloom filters generally require a priori knowledge of the data set in order to allocate an appropriately sized bit array. This works well for offline processing, but online processing typically involves unbounded data streams. With enough data, a traditional Bloom filter "fills up", after which it has a false-positive probability of 1. Boom Filters are useful for situations where the size of the data set isn't known ahead of time. For example, a Stable Bloom Filter can be used to deduplicate events from an unbounded event stream with a specified upper bound on false positives and minimal false negatives. Alternatively, an Inverse Bloom Filter is ideal for deduplicating a stream where duplicate events are relatively close together. This results in no false positives and, depending on how close together duplicates are, a small probability of false negatives. Scalable Bloom Filters place a tight upper bound on false positives while avoiding false negatives but require allocating memory proportional to the size of the data set. Counting Bloom Filters and Cuckoo Filters are useful for cases which require adding and removing elements to and from a set. For large or unbounded data sets, calculating the exact cardinality is impractical. HyperLogLog uses a fraction of the memory while providing an accurate approximation. Similarly, Count-Min Sketch provides an efficient way to estimate event frequency for data streams. TopK tracks the top-k most frequent elements. MinHash is a probabilistic algorithm to approximate the similarity between two sets. This can be used to cluster or compare documents by splitting the corpus into a bag of words.
Package pdf implements reading of PDF files. PDF is Adobe's Portable Document Format, ubiquitous on the internet. A PDF document is a complex data format built on a fairly simple structure. This package exposes the simple structure along with some wrappers to extract basic information. If more complex information is needed, it is possible to extract that information by interpreting the structure exposed by this package. Specifically, a PDF is a data structure built from Values, each of which has one of the following Kinds: The accessors on Value—Int64, Float64, Bool, Name, and so on—return a view of the data as the given type. When there is no appropriate view, the accessor returns a zero result. For example, the Name accessor returns the empty string if called on a Value v for which v.Kind() != Name. Returning zero values this way, especially from the Dict and Array accessors, which themselves return Values, makes it possible to traverse a PDF quickly without writing any error checking. On the other hand, it means that mistakes can go unreported. The basic structure of the PDF file is exposed as the graph of Values. Most richer data structures in a PDF file are dictionaries with specific interpretations of the name-value pairs. The Font and Page wrappers make the interpretation of a specific Value as the corresponding type easier. They are only helpers, though: they are implemented only in terms of the Value API and could be moved outside the package. Equally important, traversal of other PDF data structures can be implemented in other packages as needed.
Package cuckoo provides a Cuckoo Filter, a Bloom filter replacement for approximated set-membership queries. While Bloom filters are well-known space-efficient data structures to serve queries like "if item x is in a set?", they do not support deletion. Their variances to enable deletion (like counting Bloom filters) usually require much more space. Cuckoo filters provide the flexibility to add and remove items dynamically. A cuckoo filter is based on cuckoo hashing (and therefore named as cuckoo filter). It is essentially a cuckoo hash table storing each key's fingerprint. Cuckoo hash tables can be highly compact, thus a cuckoo filter could use less space than conventional Bloom filters, for applications that require low false positive rates (< 3%). For details about the algorithm and citations please use this article: "Cuckoo Filter: Better Than Bloom" by Bin Fan, Dave Andersen and Michael Kaminsky (https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf) Note: This implementation uses a a static bucket size of 4 fingerprints and a fingerprint size of 1 byte based on my understanding of an optimal bucket/fingerprint/size ratio from the aforementioned paper.
Package naming defines the naming API and related data structures for gRPC. This package is deprecated: please use package resolver instead.
Package secp256k1 implements support for the elliptic curves needed for Decred. Decred uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See http://www.secg.org/sec2-v2.pdf for details on the standard. This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with dcrd, but should be general enough for other uses of elliptic curve crypto. It was originally based on some initial work by ThePiachu, but has significantly diverged since then. This example demonstrates decrypting a message using a private key that is first parsed from raw bytes. This example demonstrates encrypting a message for a public key that is first parsed from raw bytes, then decrypting it using the corresponding private key. This example demonstrates signing a message with a secp256k1 private key that is first parsed form raw bytes and serializing the generated signature. This example demonstrates verifying a secp256k1 signature against a public key that is first parsed from raw bytes. The signature is also parsed from raw bytes.
Package secp256k1 implements support for the elliptic curves needed for Decred. Decred uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See https://www.secg.org/sec2-v2.pdf for details on the standard. This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with dcrd, but should be general enough for other uses of elliptic curve crypto. It was originally based on some initial work by ThePiachu, but has significantly diverged since then. This example demonstrates decrypting a message using a private key that is first parsed from raw bytes. This example demonstrates encrypting a message for a public key that is first parsed from raw bytes, then decrypting it using the corresponding private key. This example demonstrates signing a message with a secp256k1 private key that is first parsed form raw bytes and serializing the generated signature. This example demonstrates verifying a secp256k1 signature against a public key that is first parsed from raw bytes. The signature is also parsed from raw bytes.
Implementation of an R-Way Trie data structure. A Trie has a root Node which is the base of the tree. Each subsequent Node has a letter and children, which are nodes that have letter values associated with them.
Package set provides both threadsafe and non-threadsafe implementations of a generic set data structure. In the threadsafe set, safety encompasses all operations on one set. Operations on multiple sets are consistent in that the elements of each set used was valid at exactly one point in time between the start and the end of the operation.
Package cleanenv gives you a single tool to read application configuration from several sources with ease. - read from several file formats (YAML, JSON, TOML, ENV, EDN) and parse into the internal structure; - read environment variables into the internal structure; - output environment variable list with descriptions into help output; - custom variable readers (e.g. if you want to read from remote config server, etc). You can just prepare the config structure and fill it from the config file and environment variables. You can list all of your environment variables by means of help output: Then run go run main.go -h and the output will include: For more detailed information check examples and example tests. Example_setter uses type with a custom setter to parse environment variable data Example_updater uses a type with a custom updater
Package txscript implements the Decred transaction script language. This package provides data structures and functions to parse and execute decred transaction scripts. Decred transaction scripts are written in a stack-base, FORTH-like language. The Decred script language consists of a number of opcodes which fall into several categories such pushing and popping data to and from the stack, performing basic and bitwise arithmetic, conditional branching, comparing hashes, and checking cryptographic signatures. Scripts are processed from left to right and intentionally do not provide loops. The vast majority of Decred scripts at the time of this writing are of several standard forms which consist of a spender providing a public key and a signature which proves the spender owns the associated private key. This information is used to prove the the spender is authorized to perform the transaction. One benefit of using a scripting language is added flexibility in specifying what conditions must be met in order to spend decreds. Errors returned by this package are of type txscript.Error. This allows the caller to programmatically determine the specific error by examining the ErrorCode field of the type asserted txscript.Error while still providing rich error messages with contextual information. A convenience function named IsErrorCode is also provided to allow callers to easily check for a specific error code. See ErrorCode in the package documentation for a full list.
Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram data structure. The HDR Histogram allows for fast and accurate analysis of the extreme ranges of data with non-normal distributions, like latency. Histograms are encoded using the HdrHistogram V2 format which is based on an adapted ZigZag LEB128 encoding where: consecutive zero counters are encoded as a negative number representing the count of consecutive zeros non zero counter values are encoded as a positive number A typical histogram (2 digits precision 1 usec to 1 day range) can be encoded in less than the typical MTU size of 1500 bytes. The log format encodes into a single file, multiple histograms with optional shared meta data.
Package gcs provides an API for building and using a Golomb-coded set filter. A Golomb-coded set is a probabilistic data structure used similarly to a Bloom filter. A filter uses constant-size overhead plus on average n+2 bits per item added to the filter, where 2^-n is the desired false positive (collision) probability. GCS filters are a mechanism for storing and transmitting per-block filters. The usage is intended to be the inverse of Bloom filters: a consensus-validating full node commits to a single filter for every block and serves the filter to SPV clients that match against the filter locally to determine if the block is potentially relevant. The suggested collision probability for Decred use is 2^-20.
Package dcrjson provides primitives for working with the Decred JSON-RPC API. When communicating via the JSON-RPC protocol, all of the commands need to be marshalled to and from the the wire in the appropriate format. This package provides data structures and primitives to ease this process. In addition, it also provides some additional features such as custom command registration, command categorization, and reflection-based help generation. This information is not necessary in order to use this package, but it does provide some intuition into what the marshalling and unmarshalling that is discussed below is doing under the hood. As defined by the JSON-RPC spec, there are effectively two forms of messages on the wire: Request Objects {"jsonrpc":"1.0","id":"SOMEID","method":"SOMEMETHOD","params":[SOMEPARAMS]} NOTE: Notifications are the same format except the id field is null. Response Objects {"result":SOMETHING,"error":null,"id":"SOMEID"} {"result":null,"error":{"code":SOMEINT,"message":SOMESTRING},"id":"SOMEID"} For requests, the params field can vary in what it contains depending on the method (a.k.a. command) being sent. Each parameter can be as simple as an int or a complex structure containing many nested fields. The id field is used to identify a request and will be included in the associated response. When working with asynchronous transports, such as websockets, spontaneous notifications are also possible. As indicated, they are the same as a request object, except they have the id field set to null. Therefore, servers will ignore requests with the id field set to null, while clients can choose to consume or ignore them. Unfortunately, the original Bitcoin JSON-RPC API (and hence anything compatible with it) doesn't always follow the spec and will sometimes return an error string in the result field with a null error for certain commands. However, for the most part, the error field will be set as described on failure. Based upon the discussion above, it should be easy to see how the types of this package map into the required parts of the protocol To simplify the marshalling of the requests and responses, the MarshalCmd and MarshalResponse functions are provided. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides two approaches for creating a new command. This first, and preferred, method is to use one of the New<Foo>Cmd functions. This allows static compile-time checking to help ensure the parameters stay in sync with the struct definitions. The second approach is the NewCmd function which takes a method (command) name and variable arguments. The function includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. The command handling of this package is built around the concept of registered commands. This is true for the wide variety of commands already provided by the package, but it also means caller can easily provide custom commands with all of the same functionality as the built-in commands. Use the RegisterCmd function for this purpose. A list of all registered methods can be obtained with the RegisteredCmdMethods function. All registered commands are registered with flags that identify information such as whether the command applies to a chain server, wallet server, or is a notification along with the method name to use. These flags can be obtained with the MethodUsageFlags flags, and the method can be obtained with the CmdMethod function. To facilitate providing consistent help to users of the RPC server, this package exposes the GenerateHelp and function which uses reflection on registered commands or notifications, as well as the provided expected result types, to generate the final help text. In addition, the MethodUsageText function is provided to generate consistent one-line usage for registered commands and notifications using reflection. There are 2 distinct type of errors supported by this package: The first category of errors (type Error) typically indicates a programmer error and can be avoided by properly using the API. Errors of this type will be returned from the various functions available in this package. They identify issues such as unsupported field types, attempts to register malformed commands, and attempting to create a new command with an improper number of parameters. The specific reason for the error can be detected by type asserting it to a *dcrjson.Error and accessing the ErrorCode field. The second category of errors (type RPCError), on the other hand, are useful for returning errors to RPC clients. Consequently, they are used in the previously described Response type. This example demonstrates how to unmarshal a JSON-RPC response and then unmarshal the result field in the response to a concrete type.
Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram data structure. The HDR Histogram allows for fast and accurate analysis of the extreme ranges of data with non-normal distributions, like latency.
Package goque provides embedded, disk-based implementations of stack, queue, and priority queue data structures. Motivation for creating this project was the need for a persistent priority queue that remained performant while growing well beyond the available memory of a given machine. While there are many packages for Go offering queues, they all seem to be memory based and/or standalone solutions that are not embeddable within an application. Instead of using an in-memory heap structure to store data, everything is stored using the Go port of LevelDB (https://github.com/syndtr/goleveldb). This results in very little memory being used no matter the size of the database, while read and write performance remains near constant. See README.md or visit https://github.com/beeker1121/goque for more info. ExampleObject demonstrates enqueuing a struct object. ExamplePrefixQueue demonstrates the implementation of a Goque queue. ExamplePriorityQueue demonstrates the implementation of a Goque queue. ExampleQueue demonstrates the implementation of a Goque queue. ExampleStack demonstrates the implementation of a Goque stack.
Package gosnowflake is a pure Go Snowflake driver for the database/sql package. Clients can use the database/sql package directly. For example: Use the Open() function to create a database handle with connection parameters: The Go Snowflake Driver supports the following connection syntaxes (or data source name (DSN) formats): where all parameters must be escaped or use Config and DSN to construct a DSN string. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). The following example opens a database handle with the Snowflake account named "my_account" under the organization named "my_organization", where the username is "jsmith", password is "mypassword", database is "mydb", schema is "testschema", and warehouse is "mywh": The connection string (DSN) can contain both connection parameters (described below) and session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). The following connection parameters are supported: account <string>: Specifies your Snowflake account, where "<string>" is the account identifier assigned to your account by Snowflake. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). If you are using a global URL, then append the connection group and ".global" (e.g. "<account_identifier>-<connection_group>.global"). The account identifier and the connection group are separated by a dash ("-"), as shown above. This parameter is optional if your account identifier is specified after the "@" character in the connection string. region <string>: DEPRECATED. You may specify a region, such as "eu-central-1", with this parameter. However, since this parameter is deprecated, it is best to specify the region as part of the account parameter. For details, see the description of the account parameter. database: Specifies the database to use by default in the client session (can be changed after login). schema: Specifies the database schema to use by default in the client session (can be changed after login). warehouse: Specifies the virtual warehouse to use by default for queries, loading, etc. in the client session (can be changed after login). role: Specifies the role to use by default for accessing Snowflake objects in the client session (can be changed after login). passcode: Specifies the passcode provided by Duo when using multi-factor authentication (MFA) for login. passcodeInPassword: false by default. Set to true if the MFA passcode is embedded in the login password. Appends the MFA passcode to the end of the password. loginTimeout: Specifies the timeout, in seconds, for login. The default is 60 seconds. The login request gives up after the timeout length if the HTTP response is success. requestTimeout: Specifies the timeout, in seconds, for a query to complete. 0 (zero) specifies that the driver should wait indefinitely. The default is 0 seconds. The query request gives up after the timeout length if the HTTP response is success. authenticator: Specifies the authenticator to use for authenticating user credentials: To use the internal Snowflake authenticator, specify snowflake (Default). If you want to cache your MFA logins, use AuthTypeUsernamePasswordMFA authenticator. To authenticate through Okta, specify https://<okta_account_name>.okta.com (URL prefix for Okta). To authenticate using your IDP via a browser, specify externalbrowser. To authenticate via OAuth, specify oauth and provide an OAuth Access Token (see the token parameter below). application: Identifies your application to Snowflake Support. disableOCSPChecks: false by default. Set to true to bypass the Online Certificate Status Protocol (OCSP) certificate revocation check. IMPORTANT: Change the default value for testing or emergency situations only. insecureMode: deprecated. Use disableOCSPChecks instead. token: a token that can be used to authenticate. Should be used in conjunction with the "oauth" authenticator. client_session_keep_alive: Set to true have a heartbeat in the background every hour to keep the connection alive such that the connection session will never expire. Care should be taken in using this option as it opens up the access forever as long as the process is alive. ocspFailOpen: true by default. Set to false to make OCSP check fail closed mode. validateDefaultParameters: true by default. Set to false to disable checks on existence and privileges check for Database, Schema, Warehouse and Role when setting up the connection tracing: Specifies the logging level to be used. Set to error by default. Valid values are trace, debug, info, print, warning, error, fatal, panic. disableQueryContextCache: disables parsing of query context returned from server and resending it to server as well. Default value is false. clientConfigFile: specifies the location of the client configuration json file. In this file you can configure Easy Logging feature. disableSamlURLCheck: disables the SAML URL check. Default value is false. All other parameters are interpreted as session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). For example, the TIMESTAMP_OUTPUT_FORMAT session parameter can be set by adding: A complete connection string looks similar to the following: Session-level parameters can also be set by using the SQL command "ALTER SESSION" (https://docs.snowflake.com/en/sql-reference/sql/alter-session.html). Alternatively, use OpenWithConfig() function to create a database handle with the specified Config. # Connection Config You can also connect to your warehouse using the connection config. The dbSql library states that when you want to take advantage of driver-specific connection features that aren’t available in a connection string. Each driver supports its own set of connection properties, often providing ways to customize the connection request specific to the DBMS For example: If you are using this method, you dont need to pass a driver name to specify the driver type in which you are looking to connect. Since the driver name is not needed, you can optionally bypass driver registration on startup. To do this, set `GOSNOWFLAKE_SKIP_REGISTERATION` in your environment. This is useful you wish to register multiple verions of the driver. Note: GOSNOWFLAKE_SKIP_REGISTERATION should not be used if sql.Open() is used as the method to connect to the server, as sql.Open will require registration so it can map the driver name to the driver type, which in this case is "snowflake" and SnowflakeDriver{}. You can load the connnection configuration with .toml file format. With two environment variables SNOWFLAKE_HOME(connections.toml file directory) SNOWFLAKE_DEFAULT_CONNECTION_NAME(DSN name), the driver will search the config file and load the connection. You can find how to use this connection way at ./cmd/tomlfileconnection or Snowflake doc: https://docs.snowflake.com/en/developer-guide/snowflake-cli-v2/connecting/specify-credentials The Go Snowflake Driver honors the environment variables HTTP_PROXY, HTTPS_PROXY and NO_PROXY for the forward proxy setting. NO_PROXY specifies which hostname endings should be allowed to bypass the proxy server, e.g. no_proxy=.amazonaws.com means that Amazon S3 access does not need to go through the proxy. NO_PROXY does not support wildcards. Each value specified should be one of the following: The end of a hostname (or a complete hostname), for example: ".amazonaws.com" or "xy12345.snowflakecomputing.com". An IP address, for example "192.196.1.15". If more than one value is specified, values should be separated by commas, for example: By default, the driver's builtin logger is exposing logrus's FieldLogger and default at INFO level. Users can use SetLogger in driver.go to set a customized logger for gosnowflake package. In order to enable debug logging for the driver, user could use SetLogLevel("debug") in SFLogger interface as shown in demo code at cmd/logger.go. To redirect the logs SFlogger.SetOutput method could do the work. If you want to define S3 client logging, override S3LoggingMode variable using configuration: https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/aws#ClientLogMode Example: A custom query tag can be set in the context. Each query run with this context will include the custom query tag as metadata that will appear in the Query Tag column in the Query History log. For example: A specific query request ID can be set in the context and will be passed through in place of the default randomized request ID. For example: If you need query ID for your query you have to use raw connection. For queries: ``` ``` For execs: ``` ``` The result of your query can be retrieved by setting the query ID in the WithFetchResultByID context. ``` ``` From 0.5.0, a signal handling responsibility has moved to the applications. If you want to cancel a query/command by Ctrl+C, add a os.Interrupt trap in context to execute methods that can take the context parameter (e.g. QueryContext, ExecContext). See cmd/selectmany.go for the full example. The Go Snowflake Driver now supports the Arrow data format for data transfers between Snowflake and the Golang client. The Arrow data format avoids extra conversions between binary and textual representations of the data. The Arrow data format can improve performance and reduce memory consumption in clients. Snowflake continues to support the JSON data format. The data format is controlled by the session-level parameter GO_QUERY_RESULT_FORMAT. To use JSON format, execute: The valid values for the parameter are: If the user attempts to set the parameter to an invalid value, an error is returned. The parameter name and the parameter value are case-insensitive. This parameter can be set only at the session level. Usage notes: The Arrow data format reduces rounding errors in floating point numbers. You might see slightly different values for floating point numbers when using Arrow format than when using JSON format. In order to take advantage of the increased precision, you must pass in the context.Context object provided by the WithHigherPrecision function when querying. Traditionally, the rows.Scan() method returned a string when a variable of types interface was passed in. Turning on the flag ENABLE_HIGHER_PRECISION via WithHigherPrecision will return the natural, expected data type as well. For some numeric data types, the driver can retrieve larger values when using the Arrow format than when using the JSON format. For example, using Arrow format allows the full range of SQL NUMERIC(38,0) values to be retrieved, while using JSON format allows only values in the range supported by the Golang int64 data type. Users should ensure that Golang variables are declared using the appropriate data type for the full range of values contained in the column. For an example, see below. When using the Arrow format, the driver supports more Golang data types and more ways to convert SQL values to those Golang data types. The table below lists the supported Snowflake SQL data types and the corresponding Golang data types. The columns are: The SQL data type. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from Arrow data format via an interface{}. The possible Golang data types that can be returned when you use snowflakeRows.Scan() to read data from Arrow data format directly. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format via an interface{}. (All returned values are strings.) The standard Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format directly. Go Data Types for Scan() =================================================================================================================== | ARROW | JSON =================================================================================================================== SQL Data Type | Default Go Data Type | Supported Go Data | Default Go Data Type | Supported Go Data | for Scan() interface{} | Types for Scan() | for Scan() interface{} | Types for Scan() =================================================================================================================== BOOLEAN | bool | string | bool ------------------------------------------------------------------------------------------------------------------- VARCHAR | string | string ------------------------------------------------------------------------------------------------------------------- DOUBLE | float32, float64 [1] , [2] | string | float32, float64 ------------------------------------------------------------------------------------------------------------------- INTEGER that | int, int8, int16, int32, int64 | string | int, int8, int16, fits in int64 | [1] , [2] | | int32, int64 ------------------------------------------------------------------------------------------------------------------- INTEGER that doesn't | int, int8, int16, int32, int64, *big.Int | string | error fit in int64 | [1] , [2] , [3] , [4] | ------------------------------------------------------------------------------------------------------------------- NUMBER(P, S) | float32, float64, *big.Float | string | float32, float64 where S > 0 | [1] , [2] , [3] , [5] | ------------------------------------------------------------------------------------------------------------------- DATE | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIME | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_LTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_NTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_TZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- BINARY | []byte | string | []byte ------------------------------------------------------------------------------------------------------------------- ARRAY [6] | string / array | string / array ------------------------------------------------------------------------------------------------------------------- OBJECT [6] | string / struct | string / struct ------------------------------------------------------------------------------------------------------------------- VARIANT | string | string ------------------------------------------------------------------------------------------------------------------- MAP | map | map [1] Converting from a higher precision data type to a lower precision data type via the snowflakeRows.Scan() method can lose low bits (lose precision), lose high bits (completely change the value), or result in error. [2] Attempting to convert from a higher precision data type to a lower precision data type via interface{} causes an error. [3] Higher precision data types like *big.Int and *big.Float can be accessed by querying with a context returned by WithHigherPrecision(). [4] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Int64()/.String()/.Uint64() methods. For an example, see below. [5] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Float32()/.String()/.Float64() methods. For an example, see below. [6] Arrays and objects can be either semistructured or structured, see more info in section below. Note: SQL NULL values are converted to Golang nil values, and vice-versa. Snowflake supports two flavours of "structured data" - semistructured and structured. Semistructured types are variants, objects and arrays without schema. When data is fetched, it's represented as strings and the client is responsible for its interpretation. Example table definition: The data not have any corresponding schema, so values in table may be slightly different. Semistuctured variants, objects and arrays are always represented as strings for scanning: When inserting, a marker indicating correct type must be used, for example: Structured types differentiate from semistructured types by having specific schema. In all rows of the table, values must conform to this schema. Example table definition: To retrieve structured objects, follow these steps: 1. Create a struct implementing sql.Scanner interface, example: a) b) Automatic scan goes through all fields in a struct and read object fields. Struct fields have to be public. Embedded structs have to be pointers. Matching name is built using struct field name with first letter lowercase. Additionally, `sf` tag can be added: - first value is always a name of a field in an SQL object - additionally `ignore` parameter can be passed to omit this field 2. Use WithStructuredTypesEnabled context while querying data. 3. Use it in regular scan: See StructuredObject for all available operations including null support, embedding nested structs, etc. Retrieving array of simple types works exactly the same like normal values - using Scan function. You can use WithMapValuesNullable and WithArrayValuesNullable contexts to handle null values in, respectively, maps and arrays of simple types in the database. In that case, sql null types will be used: If you want to scan array of structs, you have to use a helper function ScanArrayOfScanners: Retrieving structured maps is very similar to retrieving arrays: To bind structured objects use: 1. Create a type which implements a StructuredObjectWriter interface, example: a) b) 2. Use an instance as regular bind. 3. If you need to bind nil value, use special syntax: Binding structured arrays are like any other parameter. The only difference is - if you want to insert empty array (not nil but empty), you have to use: The following example shows how to retrieve very large values using the math/big package. This example retrieves a large INTEGER value to an interface and then extracts a big.Int value from that interface. If the value fits into an int64, then the code also copies the value to a variable of type int64. Note that a context that enables higher precision must be passed in with the query. If the variable named "rows" is known to contain a big.Int, then you can use the following instead of scanning into an interface and then converting to a big.Int: If the variable named "rows" contains a big.Int, then each of the following fails: Similar code and rules also apply to big.Float values. If you are not sure what data type will be returned, you can use code similar to the following to check the data type of the returned value: You can retrieve data in a columnar format similar to the format a server returns, without transposing them to rows. When working with the arrow columnar format in go driver, ArrowBatch structs are used. These are structs mostly corresponding to data chunks received from the backend. They allow for access to specific arrow.Record structs. An ArrowBatch can exist in a state where the underlying data has not yet been loaded. The data is downloaded and translated only on demand. Translation options are retrieved from a context.Context interface, which is either passed from query context or set by the user using WithContext(ctx) method. In order to access them you must use `WithArrowBatches` context, similar to the following: This returns []*ArrowBatch. ArrowBatch functions: GetRowCount(): Returns the number of rows in the ArrowBatch. Note that this returns 0 if the data has not yet been loaded, irrespective of it’s actual size. WithContext(ctx context.Context): Sets the context of the ArrowBatch to the one provided. Note that the context will not retroactively apply to data that has already been downloaded. For example: will produce the same result in records1 and records2, irrespective of the newly provided ctx. Context worth noting are: -WithArrowBatchesTimestampOption -WithHigherPrecision -WithArrowBatchesUtf8Validation described in more detail later. Fetch(): Returns the underlying records as *[]arrow.Record. When this function is called, the ArrowBatch checks whether the underlying data has already been loaded, and downloads it if not. Limitations: How to handle timestamps in Arrow batches: Snowflake returns timestamps natively (from backend to driver) in multiple formats. The Arrow timestamp is an 8-byte data type, which is insufficient to handle the larger date and time ranges used by Snowflake. Also, Snowflake supports 0-9 (nanosecond) digit precision for seconds, while Arrow supports only 3 (millisecond), 6 (microsecond), an 9 (nanosecond) precision. Consequently, Snowflake uses a custom timestamp format in Arrow, which differs on timestamp type and precision. If you want to use timestamps in Arrow batches, you have two options: How to handle invalid UTF-8 characters in Arrow batches: Snowflake previously allowed users to upload data with invalid UTF-8 characters. Consequently, Arrow records containing string columns in Snowflake could include these invalid UTF-8 characters. However, according to the Arrow specifications (https://arrow.apache.org/docs/cpp/api/datatype.html and https://github.com/apache/arrow/blob/a03d957b5b8d0425f9d5b6c98b6ee1efa56a1248/go/arrow/datatype.go#L73-L74), Arrow string columns should only contain UTF-8 characters. To address this issue and prevent potential downstream disruptions, the context WithArrowBatchesUtf8Validation, is introduced. When enabled, this feature iterates through all values in string columns, identifying and replacing any invalid characters with `�`. This ensures that Arrow records conform to the UTF-8 standards, preventing validation failures in downstream services like the Rust Arrow library that impose strict validation checks. How to handle higher precision in Arrow batches: To preserve BigDecimal values within Arrow batches, use WithHigherPrecision. This offers two main benefits: it helps avoid precision loss and defers the conversion to upstream services. Alternatively, without this setting, all non-zero scale numbers will be converted to float64, potentially resulting in loss of precision. Zero-scale numbers (DECIMAL256, DECIMAL128) will be converted to int64, which could lead to overflow. WHen using NUMBERs with non zero scale, the value is returned as an integer type and a scale is provided in record metadata. Example. When we have a 123.45 value that comes from NUMBER(9, 4), it will be represented as 1234500 with scale equal to 4. It is a client responsibility to interpret it correctly. Also - see limitations section above. Binding allows a SQL statement to use a value that is stored in a Golang variable. Without binding, a SQL statement specifies values by specifying literals inside the statement. For example, the following statement uses the literal value “42“ in an UPDATE statement: With binding, you can execute a SQL statement that uses a value that is inside a variable. For example: The “?“ inside the “VALUES“ clause specifies that the SQL statement uses the value from a variable. Binding data that involves time zones can require special handling. For details, see the section titled "Timestamps with Time Zones". Version 1.6.23 (and later) of the driver takes advantage of sql.Null types which enables the proper handling of null parameters inside function calls, i.e.: The timestamp nullability had to be achieved by wrapping the sql.NullTime type as the Snowflake provides several date and time types which are mapped to single Go time.Time type: Version 1.3.9 (and later) of the Go Snowflake Driver supports the ability to bind an array variable to a parameter in a SQL INSERT statement. You can use this technique to insert multiple rows in a single batch. As an example, the following code inserts rows into a table that contains integer, float, boolean, and string columns. The example binds arrays to the parameters in the INSERT statement. If the array contains SQL NULL values, use slice []interface{}, which allows Golang nil values. This feature is available in version 1.6.12 (and later) of the driver. For example, For slices []interface{} containing time.Time values, a binding parameter flag is required for the preceding array variable in the Array() function. This feature is available in version 1.6.13 (and later) of the driver. For example, Note: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). When you use array binding to insert a large number of values, the driver can improve performance by streaming the data (without creating files on the local machine) to a temporary stage for ingestion. The driver automatically does this when the number of values exceeds a threshold (no changes are needed to user code). In order for the driver to send the data to a temporary stage, the user must have the following privilege on the schema: If the user does not have this privilege, the driver falls back to sending the data with the query to the Snowflake database. In addition, the current database and schema for the session must be set. If these are not set, the CREATE TEMPORARY STAGE command executed by the driver can fail with the following error: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). Go's database/sql package supports the ability to bind a parameter in a SQL statement to a time.Time variable. However, when the client binds data to send to the server, the driver cannot determine the correct Snowflake date/timestamp data type to associate with the binding parameter. For example: To resolve this issue, a binding parameter flag is introduced that associates any subsequent time.Time type to the DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ or BINARY data type. The above example could be rewritten as follows: The driver fetches TIMESTAMP_TZ (timestamp with time zone) data using the offset-based Location types, which represent a collection of time offsets in use in a geographical area, such as CET (Central European Time) or UTC (Coordinated Universal Time). The offset-based Location data is generated and cached when a Go Snowflake Driver application starts, and if the given offset is not in the cache, it is generated dynamically. Currently, Snowflake does not support the name-based Location types (e.g. "America/Los_Angeles"). For more information about Location types, see the Go documentation for https://golang.org/pkg/time/#Location. Internally, this feature leverages the []byte data type. As a result, BINARY data cannot be bound without the binding parameter flag. In the following example, sf is an alias for the gosnowflake package: The driver directly downloads a result set from the cloud storage if the size is large. It is required to shift workloads from the Snowflake database to the clients for scale. The download takes place by goroutine named "Chunk Downloader" asynchronously so that the driver can fetch the next result set while the application can consume the current result set. The application may change the number of result set chunk downloader if required. Note this does not help reduce memory footprint by itself. Consider Custom JSON Decoder. Custom JSON Decoder for Parsing Result Set (Experimental) The application may have the driver use a custom JSON decoder that incrementally parses the result set as follows. This option will reduce the memory footprint to half or even quarter, but it can significantly degrade the performance depending on the environment. The test cases running on Travis Ubuntu box show five times less memory footprint while four times slower. Be cautious when using the option. The Go Snowflake Driver supports JWT (JSON Web Token) authentication. To enable this feature, construct the DSN with fields "authenticator=SNOWFLAKE_JWT&privateKey=<your_private_key>", or using a Config structure specifying: The <your_private_key> should be a base64 URL encoded PKCS8 rsa private key string. One way to encode a byte slice to URL base 64 URL format is through the base64.URLEncoding.EncodeToString() function. On the server side, you can alter the public key with the SQL command: The <your_public_key> should be a base64 Standard encoded PKI public key string. One way to encode a byte slice to base 64 Standard format is through the base64.StdEncoding.EncodeToString() function. To generate the valid key pair, you can execute the following commands in the shell: Note: As of February 2020, Golang's official library does not support passcode-encrypted PKCS8 private key. For security purposes, Snowflake highly recommends that you store the passcode-encrypted private key on the disk and decrypt the key in your application using a library you trust. JWT tokens are recreated on each retry and they are valid (`exp` claim) for `jwtTimeout` seconds. Each retry timeout is configured by `jwtClientTimeout`. Retries are limited by total time of `loginTimeout`. The driver allows to authenticate using the external browser. When a connection is created, the driver will open the browser window and ask the user to sign in. To enable this feature, construct the DSN with field "authenticator=EXTERNALBROWSER" or using a Config structure with following Authenticator specified: The external browser authentication implements timeout mechanism. This prevents the driver from hanging interminably when browser window was closed, or not responding. Timeout defaults to 120s and can be changed through setting DSN field "externalBrowserTimeout=240" (time in seconds) or using a Config structure with following ExternalBrowserTimeout specified: This feature is available in version 1.3.8 or later of the driver. By default, Snowflake returns an error for queries issued with multiple statements. This restriction helps protect against SQL Injection attacks (https://en.wikipedia.org/wiki/SQL_injection). The multi-statement feature allows users skip this restriction and execute multiple SQL statements through a single Golang function call. However, this opens up the possibility for SQL injection, so it should be used carefully. The risk can be reduced by specifying the exact number of statements to be executed, which makes it more difficult to inject a statement by appending it. More details are below. The Go Snowflake Driver provides two functions that can execute multiple SQL statements in a single call: To compose a multi-statement query, simply create a string that contains all the queries, separated by semicolons, in the order in which the statements should be executed. To protect against SQL Injection attacks while using the multi-statement feature, pass a Context that specifies the number of statements in the string. For example: When multiple queries are executed by a single call to QueryContext(), multiple result sets are returned. After you process the first result set, get the next result set (for the next SQL statement) by calling NextResultSet(). The following pseudo-code shows how to process multiple result sets: The function db.ExecContext() returns a single result, which is the sum of the number of rows changed by each individual statement. For example, if your multi-statement query executed two UPDATE statements, each of which updated 10 rows, then the result returned would be 20. Individual row counts for individual statements are not available. The following code shows how to retrieve the result of a multi-statement query executed through db.ExecContext(): Note: Because a multi-statement ExecContext() returns a single value, you cannot detect offsetting errors. For example, suppose you expected the return value to be 20 because you expected each UPDATE statement to update 10 rows. If one UPDATE statement updated 15 rows and the other UPDATE statement updated only 5 rows, the total would still be 20. You would see no indication that the UPDATES had not functioned as expected. The ExecContext() function does not return an error if passed a query (e.g. a SELECT statement). However, it still returns only a single value, not a result set, so using it to execute queries (or a mix of queries and non-query statements) is impractical. The QueryContext() function does not return an error if passed non-query statements (e.g. DML). The function returns a result set for each statement, whether or not the statement is a query. For each non-query statement, the result set contains a single row that contains a single column; the value is the number of rows changed by the statement. If you want to execute a mix of query and non-query statements (e.g. a mix of SELECT and DML statements) in a multi-statement query, use QueryContext(). You can retrieve the result sets for the queries, and you can retrieve or ignore the row counts for the non-query statements. Note: PUT statements are not supported for multi-statement queries. If a SQL statement passed to ExecQuery() or QueryContext() fails to compile or execute, that statement is aborted, and subsequent statements are not executed. Any statements prior to the aborted statement are unaffected. For example, if the statements below are run as one multi-statement query, the multi-statement query fails on the third statement, and an exception is thrown. If you then query the contents of the table named "test", the values 1 and 2 would be present. When using the QueryContext() and ExecContext() functions, golang code can check for errors the usual way. For example: Preparing statements and using bind variables are also not supported for multi-statement queries. The Go Snowflake Driver supports asynchronous execution of SQL statements. Asynchronous execution allows you to start executing a statement and then retrieve the result later without being blocked while waiting. While waiting for the result of a SQL statement, you can perform other tasks, including executing other SQL statements. Most of the steps to execute an asynchronous query are the same as the steps to execute a synchronous query. However, there is an additional step, which is that you must call the WithAsyncMode() function to update your Context object to specify that asynchronous mode is enabled. In the code below, the call to "WithAsyncMode()" is specific to asynchronous mode. The rest of the code is compatible with both asynchronous mode and synchronous mode. The function db.QueryContext() returns an object of type snowflakeRows regardless of whether the query is synchronous or asynchronous. However: The call to the Next() function of snowflakeRows is always synchronous (i.e. blocking). If the query has not yet completed and the snowflakeRows object (named "rows" in this example) has not been filled in yet, then rows.Next() waits until the result set has been filled in. More generally, calls to any Golang SQL API function implemented in snowflakeRows or snowflakeResult are blocking calls, and wait if results are not yet available. (Examples of other synchronous calls include: snowflakeRows.Err(), snowflakeRows.Columns(), snowflakeRows.columnTypes(), snowflakeRows.Scan(), and snowflakeResult.RowsAffected().) Because the example code above executes only one query and no other activity, there is no significant difference in behavior between asynchronous and synchronous behavior. The differences become significant if, for example, you want to perform some other activity after the query starts and before it completes. The example code below starts a query, which run in the background, and then retrieves the results later. This example uses small SELECT statements that do not retrieve enough data to require asynchronous handling. However, the technique works for larger data sets, and for situations where the programmer might want to do other work after starting the queries and before retrieving the results. For a more elaborative example please see cmd/async/async.go The Go Snowflake Driver supports the PUT and GET commands. The PUT command copies a file from a local computer (the computer where the Golang client is running) to a stage on the cloud platform. The GET command copies data files from a stage on the cloud platform to a local computer. See the following for information on the syntax and supported parameters: Using PUT: The following example shows how to run a PUT command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: Different client platforms (e.g. linux, Windows) have different path name conventions. Ensure that you specify path names appropriately. This is particularly important on Windows, which uses the backslash character as both an escape character and as a separator in path names. To send information from a stream (rather than a file) use code similar to the code below. (The ReplaceAll() function is needed on Windows to handle backslashes in the path to the file.) Note: PUT statements are not supported for multi-statement queries. Using GET: The following example shows how to run a GET command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: To download a file into an in-memory stream (rather than a file) use code similar to the code below. Note: GET statements are not supported for multi-statement queries. Specifying temporary directory for encryption and compression: Putting and getting requires compression and/or encryption, which is done in the OS temporary directory. If you cannot use default temporary directory for your OS or you want to specify it yourself, you can use "tmpDirPath" DSN parameter. Remember, to encode slashes. Example: Using custom configuration for PUT/GET: If you want to override some default configuration options, you can use `WithFileTransferOptions` context. There are multiple config parameters including progress bars or compression.
Package pdf implements reading of PDF files. PDF is Adobe's Portable Document Format, ubiquitous on the internet. A PDF document is a complex data format built on a fairly simple structure. This package exposes the simple structure along with some wrappers to extract basic information. If more complex information is needed, it is possible to extract that information by interpreting the structure exposed by this package. Specifically, a PDF is a data structure built from Values, each of which has one of the following Kinds: The accessors on Value—Int64, Float64, Bool, Name, and so on—return a view of the data as the given type. When there is no appropriate view, the accessor returns a zero result. For example, the Name accessor returns the empty string if called on a Value v for which v.Kind() != Name. Returning zero values this way, especially from the Dict and Array accessors, which themselves return Values, makes it possible to traverse a PDF quickly without writing any error checking. On the other hand, it means that mistakes can go unreported. The basic structure of the PDF file is exposed as the graph of Values. Most richer data structures in a PDF file are dictionaries with specific interpretations of the name-value pairs. The Font and Page wrappers make the interpretation of a specific Value as the corresponding type easier. They are only helpers, though: they are implemented only in terms of the Value API and could be moved outside the package. Equally important, traversal of other PDF data structures can be implemented in other packages as needed.
Lane package provides queue, priority queue, stack and deque data structures implementations. Its was designed with simplicity, performance, and concurrent usage in mind.
Package txscript implements the Decred transaction script language. This package provides data structures and functions to parse and execute decred transaction scripts. Decred transaction scripts are written in a stack-base, FORTH-like language. The Decred script language consists of a number of opcodes which fall into several categories such pushing and popping data to and from the stack, performing basic and bitwise arithmetic, conditional branching, comparing hashes, and checking cryptographic signatures. Scripts are processed from left to right and intentionally do not provide loops. The vast majority of Decred scripts at the time of this writing are of several standard forms which consist of a spender providing a public key and a signature which proves the spender owns the associated private key. This information is used to prove the spender is authorized to perform the transaction. One benefit of using a scripting language is added flexibility in specifying what conditions must be met in order to spend decreds. Errors returned by this package are of type txscript.Error. This allows the caller to programmatically determine the specific error by examining the ErrorCode field of the type asserted txscript.Error while still providing rich error messages with contextual information. A convenience function named IsErrorCode is also provided to allow callers to easily check for a specific error code. See ErrorCode in the package documentation for a full list.
Package txscript implements the Decred transaction script language. This package provides data structures and functions to parse and execute decred transaction scripts. Decred transaction scripts are written in a stack-base, FORTH-like language. The Decred script language consists of a number of opcodes which fall into several categories such pushing and popping data to and from the stack, performing basic and bitwise arithmetic, conditional branching, comparing hashes, and checking cryptographic signatures. Scripts are processed from left to right and intentionally do not provide loops. The vast majority of Decred scripts at the time of this writing are of several standard forms which consist of a spender providing a public key and a signature which proves the spender owns the associated private key. This information is used to prove the spender is authorized to perform the transaction. One benefit of using a scripting language is added flexibility in specifying what conditions must be met in order to spend decred. Errors returned by this package are of type txscript.ErrorKind wrapped by txscript.Error which has full support for the standard library errors.Is and errors.As functions. This allows the caller to programmatically determine the specific error while still providing rich error messages with contextual information. See the constants defined with ErrorKind in the package documentation for a full list.
Package types implements concrete types for marshalling to and from the dcrd JSON-RPC commands, return values, and notifications. When communicating via the JSON-RPC protocol, all requests and responses must be marshalled to and from the wire in the appropriate format. This package provides data structures and primitives that are registered with dcrjson to ease this process. An overview specific to this package is provided here, however it is also instructive to read the documentation for the dcrjson package (https://pkg.go.dev/github.com/decred/dcrd/dcrjson/v3). The types in this package map to the required parts of the protocol as discussed in the dcrjson documentation To simplify the marshalling of the requests and responses, the dcrjson.MarshalCmd and dcrjson.MarshalResponse functions may be used. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides two approaches for creating a new command. This first, and preferred, method is to use one of the New<Foo>Cmd functions. This allows static compile-time checking to help ensure the parameters stay in sync with the struct definitions. The second approach is the dcrjson.NewCmd function which takes a method (command) name and variable arguments. Since this package registers all of its types with dcrjson, the function will recognize them and includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. To facilitate providing consistent help to users of the RPC server, the dcrjson package exposes the GenerateHelp and function which uses reflection on commands and notifications registered by this package, as well as the provided expected result types, to generate the final help text. In addition, the dcrjson.MethodUsageText function may be used to generate consistent one-line usage for registered commands and notifications using reflection.
Package gcs provides an API for building and using a Golomb-coded set filter. A Golomb-Coded Set (GCS) is a space-efficient probabilistic data structure that is used to test set membership with a tunable false positive rate while simultaneously preventing false negatives. In other words, items that are in the set will always match, but items that are not in the set will also sometimes match with the chosen false positive rate. This package currently implements two different versions for backwards compatibility. Version 1 is deprecated and therefore should no longer be used. Version 2 is the GCS variation that follows the specification details in DCP0005: https://github.com/decred/dcps/blob/master/dcp-0005/dcp-0005.mediawiki#golomb-coded-sets. Version 2 sets do not permit empty items (data of zero length) to be added and are parameterized by the following: * A parameter `B` that defines the remainder code bit size * A parameter `M` that defines the false positive rate as `1/M` * A key for the SipHash-2-4 function * The items to include in the set Errors returned by this package are of type gcs.Error. This allows the caller to programmatically determine the specific error by examining the ErrorCode field of the type asserted gcs.Error while still providing rich error messages with contextual information. A convenience function named IsErrorCode is also provided to allow callers to easily check for a specific error code. See ErrorCode in the package documentation for a full list. GCS is used as a mechanism for storing, transmitting, and committing to per-block filters. Consensus-validating full nodes commit to a single filter for every block and serve the filter to SPV clients that match against the filter locally to determine if the block is potentially relevant. The required parameters for Decred are defined by the blockcf2 package. For more details, see the the Block Filters section of DCP0005: https://github.com/decred/dcps/blob/master/dcp-0005/dcp-0005.mediawiki#block-filters
Package merkletree implements a Merkle Tree capable of storing arbitrary content. A Merkle Tree is a hash tree that provides an efficient way to verify the contents of a set data are present and untampered with. At its core, a Merkle Tree is a list of items representing the data that should be verified. Each of these items is inserted into a leaf node and a tree of hashes is constructed bottom up using a hash of the nodes left and right children's hashes. This means that the root node will effictively be a hash of all other nodes (hashes) in the tree. This property allows the tree to be reproduced and thus verified by on the hash of the root node of the tree. The benefit of the tree structure is verifying any single content entry in the tree will require only nlog2(n) steps in the worst case. Creating a new merkletree requires that the type that the tree will be constructed from implements the Content interface. A slice of the Content items should be created and then passed to the NewTree method. t represents the Merkle Tree and can be verified and manipulated with the API methods described below.
Package graph contains generic implementations of basic graph algorithms. The algorithms in this library can be applied to any graph data structure implementing the two Iterator methods: Order, which returns the number of vertices, and Visit, which iterates over the neighbors of a vertex. All algorithms operate on directed graphs with a fixed number of vertices, labeled from 0 to n-1, and edges with integer cost. An undirected edge {v, w} of cost c is represented by the two directed edges (v, w) and (w, v), both of cost c. A self-loop, an edge connecting a vertex to itself, is both directed and undirected. The type Mutable represents a directed graph with a fixed number of vertices and weighted edges that can be added or removed. The implementation uses hash maps to associate each vertex in the graph with its adjacent vertices. This gives constant time performance for all basic operations. The type Immutable is a compact representation of an immutable graph. The implementation uses lists to associate each vertex in the graph with its adjacent vertices. This makes for fast and predictable iteration: the Visit method produces its elements by reading from a fixed sorted precomputed list. This type supports multigraphs. The subpackage graph/build offers a tool for building virtual graphs. In a virtual graph no vertices or edges are stored in memory, they are instead computed as needed. New virtual graphs are constructed by composing and filtering a set of standard graphs, or by writing functions that describe the edges of a graph. The Basics example shows how to build a plain graph and how to efficiently use the Visit iterator, the key abstraction of this package. The DFS example contains a full implementation of depth-first search. Build a plain graph and visit all of its edges. Show how to use this package by implementing a complete depth-first search.
Lane package provides queue, priority queue, stack and deque data structures implementations. Its was designed with simplicity, performance, and concurrent usage in mind.
Package embd provides a hardware abstraction layer for doing embedded programming on supported platforms like the Raspberry Pi, BeagleBone Black and CHIP. Most of the examples below will work without change (i.e. the same binary) on all supported platforms. == Overall structure It's best to think of the top-level embd package as a switchboard that doesn't implement anything on its own but rather relies on sub-packages for hosts drivers and devices and stitches them together. The exports in the top-level package serve a number of different purposes, which can be confusing at first: - it defines a number of driver interfaces, such as the GPIODriver, this is the interface that the driver for each specific platform must implement and is not something of concern to the typical user. - it defines the main low-level hardware interface types: analog pins, digital pins, interrupt pins, I2Cbuses, SPI buses, PWM pins and LEDs. Each type has a New function to instantiate one of these pins or buses. - it defines a number of InitXXX functions that initialize the various drivers, however, these are called by the coresponding NewXXX functions, so can be ignored. - it defines a number of top-level convenience functions, such as DigitalWrite, that can be called as 1-liners instead of first instantiating a DigitalPin and then writing to it To get started a host driver needs to be registered with the top-level embd package. This is most easily accomplished by doing an "underscore import" on of the sub-packages of embd/host, e.g., `import _ "github.com/kidoman/embd/host/chip"`. An `Init()` function in the host driver registers all the individual drivers with embd. After getting the host driver the next step might be to instantiate a GPIO pin using `NewDigitalPin` or an I2CBus using `NewI2CBus`. Such a pin or bus can be used directly but often it is passed into the initializer of a sensor, controller or other user-level driver which provides a high-level interface to some device. For example, the New function for the BMP180 type in the `embd/sensor/bmp180` package takes an I2CBus as argument, which it will use to reach the sensor. == Samples This section shows a few choice samples, more are available in the samples folder. Use the LED driver to toggle LEDs on the BBB: Even shorter while prototyping: BBB + PWM: Control GPIO pins on the RaspberryPi / BeagleBone Black: Could also do: Or read data from the Bosch BMP085 barometric sensor: Even find out the heading from the LSM303 magnetometer: The above two examples depend on I2C and therefore will work without change on almost all platforms.