Package zap provides fast, structured, leveled logging. For applications that log in the hot path, reflection-based serialization and string formatting are prohibitively expensive - they're CPU-intensive and make many small allocations. Put differently, using json.Marshal and fmt.Fprintf to log tons of interface{} makes your application slow. Zap takes a different approach. It includes a reflection-free, zero-allocation JSON encoder, and the base Logger strives to avoid serialization overhead and allocations wherever possible. By building the high-level SugaredLogger on that foundation, zap lets users choose when they need to count every allocation and when they'd prefer a more familiar, loosely typed API. In contexts where performance is nice, but not critical, use the SugaredLogger. It's 4-10x faster than other structured logging packages and supports both structured and printf-style logging. Like log15 and go-kit, the SugaredLogger's structured logging APIs are loosely typed and accept a variadic number of key-value pairs. (For more advanced use cases, they also accept strongly typed fields - see the SugaredLogger.With documentation for details.) By default, loggers are unbuffered. However, since zap's low-level APIs allow buffering, calling Sync before letting your process exit is a good habit. In the rare contexts where every microsecond and every allocation matter, use the Logger. It's even faster than the SugaredLogger and allocates far less, but it only supports strongly-typed, structured logging. Choosing between the Logger and SugaredLogger doesn't need to be an application-wide decision: converting between the two is simple and inexpensive. The simplest way to build a Logger is to use zap's opinionated presets: NewExample, NewProduction, and NewDevelopment. These presets build a logger with a single function call: Presets are fine for small projects, but larger projects and organizations naturally require a bit more customization. For most users, zap's Config struct strikes the right balance between flexibility and convenience. See the package-level BasicConfiguration example for sample code. More unusual configurations (splitting output between files, sending logs to a message queue, etc.) are possible, but require direct use of go.uber.org/zap/zapcore. See the package-level AdvancedConfiguration example for sample code. The zap package itself is a relatively thin wrapper around the interfaces in go.uber.org/zap/zapcore. Extending zap to support a new encoding (e.g., BSON), a new log sink (e.g., Kafka), or something more exotic (perhaps an exception aggregation service, like Sentry or Rollbar) typically requires implementing the zapcore.Encoder, zapcore.WriteSyncer, or zapcore.Core interfaces. See the zapcore documentation for details. Similarly, package authors can use the high-performance Encoder and Core implementations in the zapcore package to build their own loggers. An FAQ covering everything from installation errors to design decisions is available at https://github.com/uber-go/zap/blob/master/FAQ.md.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/master/_examples Validator is designed to be thread-safe and used as a singleton instance. It caches information about your struct and validations, in essence only parsing your validation tags once per struct type. Using multiple instances neglects the benefit of caching. The not thread-safe functions are explicitly marked as such in the documentation. Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rgb|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. Allows to skip the validation if the value is nil (same as omitempty, but only for the nil-values). This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For booleans ensures value is not false. For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value when using WithRequiredStructEnabled. The field under validation must be present and not empty only if all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty unless all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Example: The field under validation must not be present or not empty only if all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must not be present or empty unless all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, len will ensure that the value is equal to the duration given in the parameter. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, max will ensure that the value is less than or equal to the duration given in the parameter. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, min will ensure that the value is greater than or equal to the duration given in the parameter. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, eq will ensure that the value is equal to the duration given in the parameter. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, ne will ensure that the value is not equal to the duration given in the parameter. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. To match strings with spaces in them, include the target string between single quotes. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Example #3 (time.Duration) For time.Duration, gt will ensure that the value is greater than the duration given in the parameter. Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). Example #3 (time.Duration) For time.Duration, gte will ensure that the value is greater than or equal to the duration given in the parameter. For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Example #3 (time.Duration) For time.Duration, lt will ensure that the value is less than the duration given in the parameter. Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). Example #3 (time.Duration) For time.Duration, lte will ensure that the value is less than or equal to the duration given in the parameter. This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value can successfully be parsed into a boolean with strconv.ParseBool This validates that a string value contains number values only. For integers or float it returns true. This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains only lowercase characters. An empty string is not a valid lowercase string. This validates that a string value contains only uppercase characters. An empty string is not a valid uppercase string. This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid E.164 Phone number https://en.wikipedia.org/wiki/E.164 (ex. +1123456789) This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value is valid JSON This validates that a string value is a valid JWT This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid file path and that the file exists on the machine and is an image. This is done using os.Stat and github.com/gabriel-vasile/mimetype This validates that a string value contains a valid file path but does not validate the existence of that file. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validates that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid bas324 value. Although an empty string is valid base32 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value, but without = padding, according the RFC4648 spec, section 3.2. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providing reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format. This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value does not start with the supplied string value This validates that a string value does not end with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains a valid ULID value. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid directory but does not validate the existence of that directory. This is done using os.Stat, which is a platform independent function. It is safest to suffix the string with os.PathSeparator if the directory may not exist at the time of validation. This validates that a string value contains a valid DNS hostname and port that can be used to validate fields typically passed to sockets and connections. This validates that a string value is a valid datetime based on the supplied datetime format. Supplied format must match the official Go time format layout as documented in https://golang.org/pkg/time/ This validates that a string value is a valid country code based on iso3166-1 alpha-2 standard. see: https://www.iso.org/iso-3166-country-codes.html This validates that a string value is a valid country code based on iso3166-1 alpha-3 standard. see: https://www.iso.org/iso-3166-country-codes.html This validates that a string value is a valid country code based on iso3166-1 alpha-numeric standard. see: https://www.iso.org/iso-3166-country-codes.html This validates that a string value is a valid BCP 47 language tag, as parsed by language.Parse. More information on https://pkg.go.dev/golang.org/x/text/language BIC (SWIFT code) This validates that a string value is a valid Business Identifier Code (SWIFT code), defined in ISO 9362. More information on https://www.iso.org/standard/60390.html This validates that a string value is a valid dns RFC 1035 label, defined in RFC 1035. More information on https://datatracker.ietf.org/doc/html/rfc1035 This validates that a string value is a valid time zone based on the time zone database present on the system. Although empty value and Local value are allowed by time.LoadLocation golang function, they are not allowed by this validator. More information on https://golang.org/pkg/time/#LoadLocation This validates that a string value is a valid semver version, defined in Semantic Versioning 2.0.0. More information on https://semver.org/ This validates that a string value is a valid cve id, defined in cve mitre. More information on https://cve.mitre.org/ This validates that a string value contains a valid credit card number using Luhn algorithm. This validates that a string or (u)int value contains a valid checksum using the Luhn algorithm. This validates that a string is a valid 24 character hexadecimal string or valid connection string. Example: This validates that a string value contains a valid cron expression. This validates that a string is valid for use with SpiceDb for the indicated purpose. If no purpose is given, a purpose of 'id' is assumed. Alias Validators and Tags NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/v9/_examples Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validataes that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providng reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format Full validation is blocked by https://github.com/golang/crypto/pull/28 This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. Why not a better error message? Because this library intends for you to handle your own error messages. Why should I handle my own errors? Many reasons. We built an internationalized application and needed to know the field, and what validation failed so we could provide a localized error. Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only returns nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the default separator of validation tags. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is usefull if inside of you program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Is a special tag without a validation function attached. It is used when a field is a Pointer, Interface or Invalid and you wish to validate that it exists. Example: want to ensure a bool exists if you define the bool as a pointer and use exists it will ensure there is a value; couldn't use required as it would fail when the bool was false. exists will fail is the value is a Pointer, Interface or Invalid and is nil. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For numbers, max will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This validates that a string value contains alpha characters only This validates that a string value contains alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all posibilities. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. This validates that a string value contains a valid version 3 UUID. This validates that a string value contains a valid version 4 UUID. This validates that a string value contains a valid version 5 UUID. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Adress. This validates that a string value contains a valid v4 IP Adress. This validates that a string value contains a valid v6 IP Adress. This validates that a string value contains a valid CIDR Adress. This validates that a string value contains a valid v4 CIDR Adress. This validates that a string value contains a valid v6 CIDR Adress. This validates that a string value contains a valid resolvable TCP Adress. This validates that a string value contains a valid resolvable v4 TCP Adress. This validates that a string value contains a valid resolvable v6 TCP Adress. This validates that a string value contains a valid resolvable UDP Adress. This validates that a string value contains a valid resolvable v4 UDP Adress. This validates that a string value contains a valid resolvable v6 UDP Adress. This validates that a string value contains a valid resolvable IP Adress. This validates that a string value contains a valid resolvable v4 IP Adress. This validates that a string value contains a valid resolvable v6 IP Adress. This validates that a string value contains a valid Unix Adress. This validates that a string value contains a valid MAC Adress. Note: See Go's ParseMAC for accepted formats and types: NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package blackfriday is a markdown processor. It translates plain text with simple formatting rules into an AST, which can then be further processed to HTML (provided by Blackfriday itself) or other formats (provided by the community). The simplest way to invoke Blackfriday is to call the Run function. It will take a text input and produce a text output in HTML (or other format). A slightly more sophisticated way to use Blackfriday is to create a Markdown processor and to call Parse, which returns a syntax tree for the input document. You can leverage Blackfriday's parsing for content extraction from markdown documents. You can assign a custom renderer and set various options to the Markdown processor. If you're interested in calling Blackfriday from command line, see https://github.com/russross/blackfriday-tool. Blackfriday includes an algorithm for creating sanitized anchor names corresponding to a given input text. This algorithm is used to create anchors for headings when AutoHeadingIDs extension is enabled. The algorithm is specified below, so that other packages can create compatible anchor names and links to those anchors. The algorithm iterates over the input text, interpreted as UTF-8, one Unicode code point (rune) at a time. All runes that are letters (category L) or numbers (category N) are considered valid characters. They are mapped to lower case, and included in the output. All other runes are considered invalid characters. Invalid characters that precede the first valid character, as well as invalid character that follow the last valid character are dropped completely. All other sequences of invalid characters between two valid characters are replaced with a single dash character '-'. SanitizedAnchorName exposes this functionality, and can be used to create compatible links to the anchor names generated by blackfriday. This algorithm is also implemented in a small standalone package at github.com/shurcooL/sanitized_anchor_name. It can be useful for clients that want a small package and don't need full functionality of blackfriday.
Package blackfriday is a Markdown processor. It translates plain text with simple formatting rules into HTML or LaTeX. Blackfriday includes an algorithm for creating sanitized anchor names corresponding to a given input text. This algorithm is used to create anchors for headings when EXTENSION_AUTO_HEADER_IDS is enabled. The algorithm is specified below, so that other packages can create compatible anchor names and links to those anchors. The algorithm iterates over the input text, interpreted as UTF-8, one Unicode code point (rune) at a time. All runes that are letters (category L) or numbers (category N) are considered valid characters. They are mapped to lower case, and included in the output. All other runes are considered invalid characters. Invalid characters that preceed the first valid character, as well as invalid character that follow the last valid character are dropped completely. All other sequences of invalid characters between two valid characters are replaced with a single dash character '-'. SanitizedAnchorName exposes this functionality, and can be used to create compatible links to the anchor names generated by blackfriday. This algorithm is also implemented in a small standalone package at github.com/shurcooL/sanitized_anchor_name. It can be useful for clients that want a small package and don't need full functionality of blackfriday.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/v9/_examples Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validataes that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providng reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format Full validation is blocked by https://github.com/golang/crypto/pull/28 This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package logging contains a Cloud Logging client suitable for writing logs. For reading logs, and working with sinks, metrics and monitored resources, see package cloud.google.com/go/logging/logadmin. This client uses Logging API v2. See https://cloud.google.com/logging/docs/api/v2/ for an introduction to the API. Use a Client to interact with the Cloud Logging API. For most use cases, you'll want to add log entries to a buffer to be periodically flushed (automatically and asynchronously) to the Cloud Logging service. You should call Client.Close before your program exits to flush any buffered log entries to the Cloud Logging service. For critical errors, you may want to send your log entries immediately. LogSync is slow and will block until the log entry has been sent, so it is not recommended for normal use. For cases when runtime environment supports out-of-process log ingestion, like logging agent, you can opt-in to write log entries to io.Writer instead of ingesting them to Cloud Logging service. Usually, you will use os.Stdout or os.Stderr as writers because Google Cloud logging agents are configured to capture logs from standard output. The entries will be Jsonified and wrote as one line strings following the structured logging format. See https://cloud.google.com/logging/docs/structured-logging#special-payload-fields for the format description. To instruct Logger to redirect log entries add RedirectAsJSON() LoggerOption`s. An entry payload can be a string, as in the examples above. It can also be any value that can be marshaled to a JSON object, like a map[string]interface{} or a struct: If you have a []byte of JSON, wrap it in json.RawMessage: If you have proto.Message and want to send it as a protobuf payload, marshal it to anypb.Any: You may want use a standard log.Logger in your program. An Entry may have one of a number of severity levels associated with it. You can view Cloud logs for projects at https://console.cloud.google.com/logs/viewer. Use the dropdown at the top left. When running from a Google Cloud Platform VM, select "GCE VM Instance". Otherwise, select "Google Project" and then the project ID. Logs for organizations, folders and billing accounts can be viewed on the command line with the "gcloud logging read" command. To group all the log entries written during a single HTTP request, create two Loggers, a "parent" and a "child," with different log IDs. Both should be in the same project, and have the same MonitoredResource type and labels. - A child entry's timestamp must be within the time interval covered by the parent request. (i.e., before the parent.Timestamp and after the parent.Timestamp - parent.HTTPRequest.Latency. This assumes the parent.Timestamp marks the end of the request.) - The trace field must be populated in all of the entries and match exactly. You should observe the child log entries grouped under the parent on the console. The parent entry will not inherit the severity of its children; you must update the parent severity yourself. You can automatically populate the Trace, SpanID, and TraceSampled fields of an Entry object by providing an http.Request object within the Entry's HTTPRequest field: When Entry with an http.Request is logged, its Trace, SpanID, and TraceSampled fields may be automatically populated as follows: Note that if Trace, SpanID, or TraceSampled are explicitly provided within an Entry object, then those values take precedence over values automatically extracted values.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package byteio helps with writing number types in both big and little endian formats
Package zap provides fast, structured, leveled logging. For applications that log in the hot path, reflection-based serialization and string formatting are prohibitively expensive - they're CPU-intensive and make many small allocations. Put differently, using json.Marshal and fmt.Fprintf to log tons of interface{} makes your application slow. Zap takes a different approach. It includes a reflection-free, zero-allocation JSON encoder, and the base Logger strives to avoid serialization overhead and allocations wherever possible. By building the high-level SugaredLogger on that foundation, zap lets users choose when they need to count every allocation and when they'd prefer a more familiar, loosely typed API. In contexts where performance is nice, but not critical, use the SugaredLogger. It's 4-10x faster than other structured logging packages and supports both structured and printf-style logging. Like log15 and go-kit, the SugaredLogger's structured logging APIs are loosely typed and accept a variadic number of key-value pairs. (For more advanced use cases, they also accept strongly typed fields - see the SugaredLogger.With documentation for details.) By default, loggers are unbuffered. However, since zap's low-level APIs allow buffering, calling Sync before letting your process exit is a good habit. In the rare contexts where every microsecond and every allocation matter, use the Logger. It's even faster than the SugaredLogger and allocates far less, but it only supports strongly-typed, structured logging. Choosing between the Logger and SugaredLogger doesn't need to be an application-wide decision: converting between the two is simple and inexpensive. The simplest way to build a Logger is to use zap's opinionated presets: NewExample, NewProduction, and NewDevelopment. These presets build a logger with a single function call: Presets are fine for small projects, but larger projects and organizations naturally require a bit more customization. For most users, zap's Config struct strikes the right balance between flexibility and convenience. See the package-level BasicConfiguration example for sample code. More unusual configurations (splitting output between files, sending logs to a message queue, etc.) are possible, but require direct use of go.uber.org/zap/zapcore. See the package-level AdvancedConfiguration example for sample code. The zap package itself is a relatively thin wrapper around the interfaces in go.uber.org/zap/zapcore. Extending zap to support a new encoding (e.g., BSON), a new log sink (e.g., Kafka), or something more exotic (perhaps an exception aggregation service, like Sentry or Rollbar) typically requires implementing the zapcore.Encoder, zapcore.WriteSyncer, or zapcore.Core interfaces. See the zapcore documentation for details. Similarly, package authors can use the high-performance Encoder and Core implementations in the zapcore package to build their own loggers. An FAQ covering everything from installation errors to design decisions is available at https://github.com/uber-go/zap/blob/master/FAQ.md.
Package snappy implements the Snappy compression format. It aims for very high speeds and reasonable compression. There are actually two Snappy formats: block and stream. They are related, but different: trying to decompress block-compressed data as a Snappy stream will fail, and vice versa. The block format is the Decode and Encode functions and the stream format is the Reader and Writer types. The block format, the more common case, is used when the complete size (the number of bytes) of the original data is known upfront, at the time compression starts. The stream format, also known as the framing format, is for when that isn't always true. The canonical, C++ implementation is at https://github.com/google/snappy and it only implements the block format.
Package blackfriday is a Markdown processor. It translates plain text with simple formatting rules into HTML or LaTeX. Blackfriday includes an algorithm for creating sanitized anchor names corresponding to a given input text. This algorithm is used to create anchors for headings when EXTENSION_AUTO_HEADER_IDS is enabled. The algorithm is specified below, so that other packages can create compatible anchor names and links to those anchors. The algorithm iterates over the input text, interpreted as UTF-8, one Unicode code point (rune) at a time. All runes that are letters (category L) or numbers (category N) are considered valid characters. They are mapped to lower case, and included in the output. All other runes are considered invalid characters. Invalid characters that preceed the first valid character, as well as invalid character that follow the last valid character are dropped completely. All other sequences of invalid characters between two valid characters are replaced with a single dash character '-'. SanitizedAnchorName exposes this functionality, and can be used to create compatible links to the anchor names generated by blackfriday. This algorithm is also implemented in a small standalone package at github.com/shurcooL/sanitized_anchor_name. It can be useful for clients that want a small package and don't need full functionality of blackfriday.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package mimetype uses magic number signatures to detect the MIME type of a file. File formats are stored in a hierarchy with application/octet-stream at its root. For example, the hierarchy for HTML format is application/octet-stream -> text/plain -> text/html. Pure io.Readers (meaning those without a Seek method) cannot be read twice. This means that once DetectReader has been called on an io.Reader, that reader is missing the bytes representing the header of the file. To detect the MIME type and then reuse the input, use a buffer, io.TeeReader, and io.MultiReader to create a new reader containing the original, unaltered data. If the input is an io.ReadSeeker instead, call input.Seek(0, io.SeekStart) before reusing it. Use Extend to add support for a file format which is not detected by mimetype. https://www.garykessler.net/library/file_sigs.html and https://github.com/file/file/tree/master/magic/Magdir have signatures for a multitude of file formats. Considering the definition of a binary file as "a computer file that is not a text file", they can differentiated by searching for the text/plain MIME in their MIME hierarchy.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package logr defines a general-purpose logging API and abstract interfaces to back that API. Packages in the Go ecosystem can depend on this package, while callers can implement logging with whatever backend is appropriate. Logging is done using a Logger instance. Logger is a concrete type with methods, which defers the actual logging to a LogSink interface. The main methods of Logger are Info() and Error(). Arguments to Info() and Error() are key/value pairs rather than printf-style formatted strings, emphasizing "structured logging". With Go's standard log package, we might write: With logr's structured logging, we'd write: Errors are much the same. Instead of: We'd write: Info() and Error() are very similar, but they are separate methods so that LogSink implementations can choose to do things like attach additional information (such as stack traces) on calls to Error(). Error() messages are always logged, regardless of the current verbosity. If there is no error instance available, passing nil is valid. Often we want to log information only when the application in "verbose mode". To write log lines that are more verbose, Logger has a V() method. The higher the V-level of a log line, the less critical it is considered. Log-lines with V-levels that are not enabled (as per the LogSink) will not be written. Level V(0) is the default, and logger.V(0).Info() has the same meaning as logger.Info(). Negative V-levels have the same meaning as V(0). Error messages do not have a verbosity level and are always logged. Where we might have written: We can write: Logger instances can have name strings so that all messages logged through that instance have additional context. For example, you might want to add a subsystem name: The WithName() method returns a new Logger, which can be passed to constructors or other functions for further use. Repeated use of WithName() will accumulate name "segments". These name segments will be joined in some way by the LogSink implementation. It is strongly recommended that name segments contain simple identifiers (letters, digits, and hyphen), and do not contain characters that could muddle the log output or confuse the joining operation (e.g. whitespace, commas, periods, slashes, brackets, quotes, etc). Logger instances can store any number of key/value pairs, which will be logged alongside all messages logged through that instance. For example, you might want to create a Logger instance per managed object: With the standard log package, we might write: With logr we'd write: Logger has very few hard rules, with the goal that LogSink implementations might have a lot of freedom to differentiate. There are, however, some things to consider. The log message consists of a constant message attached to the log line. This should generally be a simple description of what's occurring, and should never be a format string. Variable information can then be attached using named values. Keys are arbitrary strings, but should generally be constant values. Values may be any Go value, but how the value is formatted is determined by the LogSink implementation. Logger instances are meant to be passed around by value. Code that receives such a value can call its methods without having to check whether the instance is ready for use. The zero logger (= Logger{}) is identical to Discard() and discards all log entries. Code that receives a Logger by value can simply call it, the methods will never crash. For cases where passing a logger is optional, a pointer to Logger should be used. Keys are not strictly required to conform to any specification or regex, but it is recommended that they: These guidelines help ensure that log data is processed properly regardless of the log implementation. For example, log implementations will try to output JSON data or will store data for later database (e.g. SQL) queries. While users are generally free to use key names of their choice, it's generally best to avoid using the following keys, as they're frequently used by implementations: Implementations are encouraged to make use of these keys to represent the above concepts, when necessary (for example, in a pure-JSON output form, it would be necessary to represent at least message and timestamp as ordinary named values). Implementations may choose to give callers access to the underlying logging implementation. The recommended pattern for this is: Logger grants access to the sink to enable type assertions like this: Custom `With*` functions can be implemented by copying the complete Logger struct and replacing the sink in the copy: Don't use New to construct a new Logger with a LogSink retrieved from an existing Logger. Source code attribution might not work correctly and unexported fields in Logger get lost. Beware that the same LogSink instance may be shared by different logger instances. Calling functions that modify the LogSink will affect all of those.
Package amqp091 is an AMQP 0.9.1 client with RabbitMQ extensions Understand the AMQP 0.9.1 messaging model by reviewing these links first. Much of the terminology in this library directly relates to AMQP concepts. Most other broker clients publish to queues, but in AMQP, clients publish Exchanges instead. AMQP is programmable, meaning that both the producers and consumers agree on the configuration of the broker, instead of requiring an operator or system configuration that declares the logical topology in the broker. The routing between producers and consumer queues is via Bindings. These bindings form the logical topology of the broker. In this library, a message sent from publisher is called a "Publishing" and a message received to a consumer is called a "Delivery". The fields of Publishings and Deliveries are close but not exact mappings to the underlying wire format to maintain stronger types. Many other libraries will combine message properties with message headers. In this library, the message well known properties are strongly typed fields on the Publishings and Deliveries, whereas the user defined headers are in the Headers field. The method naming closely matches the protocol's method name with positional parameters mapping to named protocol message fields. The motivation here is to present a comprehensive view over all possible interactions with the server. Generally, methods that map to protocol methods of the "basic" class will be elided in this interface, and "select" methods of various channel mode selectors will be elided for example Channel.Confirm and Channel.Tx. The library is intentionally designed to be synchronous, where responses for each protocol message are required to be received in an RPC manner. Some methods have a noWait parameter like Channel.QueueDeclare, and some methods are asynchronous like Channel.Publish. The error values should still be checked for these methods as they will indicate IO failures like when the underlying connection closes. Clients of this library may be interested in receiving some of the protocol messages other than Deliveries like basic.ack methods while a channel is in confirm mode. The Notify* methods with Connection and Channel receivers model the pattern of asynchronous events like closes due to exceptions, or messages that are sent out of band from an RPC call like basic.ack or basic.flow. Any asynchronous events, including Deliveries and Publishings must always have a receiver until the corresponding chans are closed. Without asynchronous receivers, the synchronous methods will block. It's important as a client to an AMQP topology to ensure the state of the broker matches your expectations. For both publish and consume use cases, make sure you declare the queues, exchanges and bindings you expect to exist prior to calling Channel.PublishWithContext or Channel.Consume. When Dial encounters an amqps:// scheme, it will use the zero value of a tls.Config. This will only perform server certificate and host verification. Use DialTLS when you wish to provide a client certificate (recommended), include a private certificate authority's certificate in the cert chain for server validity, or run insecure by not verifying the server certificate. DialTLS will use the provided tls.Config when it encounters an amqps:// scheme and will dial a plain connection when it encounters an amqp:// scheme. SSL/TLS in RabbitMQ is documented here: http://www.rabbitmq.com/ssl.html In order to be notified when a connection or channel gets closed, both structures offer the possibility to register channels using Channel.NotifyClose and Connection.NotifyClose functions: No errors will be sent in case of a graceful connection close. In case of a non-graceful closure due to e.g. network issue, or forced connection closure from the Management UI, the error will be notified synchronously by the library. The library sends to notification channels just once. After sending a notification to all channels, the library closes all registered notification channels. After receiving a notification, the application should create and register a new channel. To avoid deadlocks in the library, it is necessary to consume from the channels. This could be done inside a different goroutine with a select listening on the two channels inside a for loop like: It is strongly recommended to use buffered channels to avoid deadlocks inside the library. Using Channel.NotifyPublish allows the caller of the library to be notified, through a go channel, when a message has been received and confirmed by the broker. It's advisable to wait for all Confirmations to arrive before calling Channel.Close or Connection.Close. It is also necessary to consume from this channel until it gets closed. The library sends synchronously to the registered channel. It is advisable to use a buffered channel, with capacity set to the maximum acceptable number of unconfirmed messages. It is important to consume from the confirmation channel at all times, in order to avoid deadlocks in the library. This exports a Client object that wraps this library. It automatically reconnects when the connection fails, and blocks all pushes until the connection succeeds. It also confirms every outgoing message, so none are lost. It doesn't automatically ack each message, but leaves that to the parent process, since it is usage-dependent. Try running this in one terminal, and rabbitmq-server in another. Stop & restart RabbitMQ to see how the queue reacts.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/v9/_examples Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validataes that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providng reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format Full validation is blocked by https://github.com/golang/crypto/pull/28 This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package jsonschema provides json-schema compilation and validation. Features: The schema is compiled against the version specified in "$schema" property. If "$schema" property is missing, it uses latest draft which currently implemented by this library. You can force to use specific draft, when "$schema" is missing, as follows: This package supports loading json-schema from filePath and fileURL. To load json-schema from HTTPURL, add following import: you can validate yaml documents. see https://play.golang.org/p/sJy1qY7dXgA Example_fromString shows how to load schema from string. Example_fromStrings shows how to load schema from more than one string. Example_userDefinedContent shows how to define "hex" contentEncoding and "application/xml" contentMediaType Example_userDefinedFormat shows how to define 'odd-number' format. Example_userDefinedLoader shows how to define custom schema loader. we are implementing a "map" protocol which servers schemas from go map variable.
Package ql implements a pure Go embedded SQL database engine. QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (github.com/cznic/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors github.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. An identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example No identifiers are predeclared, however note that no keyword can be used as an identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram data structure. The HDR Histogram allows for fast and accurate analysis of the extreme ranges of data with non-normal distributions, like latency. Histograms are encoded using the HdrHistogram V2 format which is based on an adapted ZigZag LEB128 encoding where: consecutive zero counters are encoded as a negative number representing the count of consecutive zeros non zero counter values are encoded as a positive number A typical histogram (2 digits precision 1 usec to 1 day range) can be encoded in less than the typical MTU size of 1500 bytes. The log format encodes into a single file, multiple histograms with optional shared meta data.
Package dcrjson provides primitives for working with the Decred JSON-RPC API. When communicating via the JSON-RPC protocol, all of the commands need to be marshalled to and from the the wire in the appropriate format. This package provides data structures and primitives to ease this process. In addition, it also provides some additional features such as custom command registration, command categorization, and reflection-based help generation. This information is not necessary in order to use this package, but it does provide some intuition into what the marshalling and unmarshalling that is discussed below is doing under the hood. As defined by the JSON-RPC spec, there are effectively two forms of messages on the wire: Request Objects {"jsonrpc":"1.0","id":"SOMEID","method":"SOMEMETHOD","params":[SOMEPARAMS]} NOTE: Notifications are the same format except the id field is null. Response Objects {"result":SOMETHING,"error":null,"id":"SOMEID"} {"result":null,"error":{"code":SOMEINT,"message":SOMESTRING},"id":"SOMEID"} For requests, the params field can vary in what it contains depending on the method (a.k.a. command) being sent. Each parameter can be as simple as an int or a complex structure containing many nested fields. The id field is used to identify a request and will be included in the associated response. When working with asynchronous transports, such as websockets, spontaneous notifications are also possible. As indicated, they are the same as a request object, except they have the id field set to null. Therefore, servers will ignore requests with the id field set to null, while clients can choose to consume or ignore them. Unfortunately, the original Bitcoin JSON-RPC API (and hence anything compatible with it) doesn't always follow the spec and will sometimes return an error string in the result field with a null error for certain commands. However, for the most part, the error field will be set as described on failure. Based upon the discussion above, it should be easy to see how the types of this package map into the required parts of the protocol To simplify the marshalling of the requests and responses, the MarshalCmd and MarshalResponse functions are provided. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides two approaches for creating a new command. This first, and preferred, method is to use one of the New<Foo>Cmd functions. This allows static compile-time checking to help ensure the parameters stay in sync with the struct definitions. The second approach is the NewCmd function which takes a method (command) name and variable arguments. The function includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. The command handling of this package is built around the concept of registered commands. This is true for the wide variety of commands already provided by the package, but it also means caller can easily provide custom commands with all of the same functionality as the built-in commands. Use the RegisterCmd function for this purpose. A list of all registered methods can be obtained with the RegisteredCmdMethods function. All registered commands are registered with flags that identify information such as whether the command applies to a chain server, wallet server, or is a notification along with the method name to use. These flags can be obtained with the MethodUsageFlags flags, and the method can be obtained with the CmdMethod function. To facilitate providing consistent help to users of the RPC server, this package exposes the GenerateHelp and function which uses reflection on registered commands or notifications, as well as the provided expected result types, to generate the final help text. In addition, the MethodUsageText function is provided to generate consistent one-line usage for registered commands and notifications using reflection. There are 2 distinct type of errors supported by this package: The first category of errors (type Error) typically indicates a programmer error and can be avoided by properly using the API. Errors of this type will be returned from the various functions available in this package. They identify issues such as unsupported field types, attempts to register malformed commands, and attempting to create a new command with an improper number of parameters. The specific reason for the error can be detected by type asserting it to a *dcrjson.Error and accessing the ErrorCode field. The second category of errors (type RPCError), on the other hand, are useful for returning errors to RPC clients. Consequently, they are used in the previously described Response type. This example demonstrates how to unmarshal a JSON-RPC response and then unmarshal the result field in the response to a concrete type.
Package gosnowflake is a pure Go Snowflake driver for the database/sql package. Clients can use the database/sql package directly. For example: Use the Open() function to create a database handle with connection parameters: The Go Snowflake Driver supports the following connection syntaxes (or data source name (DSN) formats): where all parameters must be escaped or use Config and DSN to construct a DSN string. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). The following example opens a database handle with the Snowflake account named "my_account" under the organization named "my_organization", where the username is "jsmith", password is "mypassword", database is "mydb", schema is "testschema", and warehouse is "mywh": The connection string (DSN) can contain both connection parameters (described below) and session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). The following connection parameters are supported: account <string>: Specifies your Snowflake account, where "<string>" is the account identifier assigned to your account by Snowflake. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). If you are using a global URL, then append the connection group and ".global" (e.g. "<account_identifier>-<connection_group>.global"). The account identifier and the connection group are separated by a dash ("-"), as shown above. This parameter is optional if your account identifier is specified after the "@" character in the connection string. region <string>: DEPRECATED. You may specify a region, such as "eu-central-1", with this parameter. However, since this parameter is deprecated, it is best to specify the region as part of the account parameter. For details, see the description of the account parameter. database: Specifies the database to use by default in the client session (can be changed after login). schema: Specifies the database schema to use by default in the client session (can be changed after login). warehouse: Specifies the virtual warehouse to use by default for queries, loading, etc. in the client session (can be changed after login). role: Specifies the role to use by default for accessing Snowflake objects in the client session (can be changed after login). passcode: Specifies the passcode provided by Duo when using multi-factor authentication (MFA) for login. passcodeInPassword: false by default. Set to true if the MFA passcode is embedded in the login password. Appends the MFA passcode to the end of the password. loginTimeout: Specifies the timeout, in seconds, for login. The default is 60 seconds. The login request gives up after the timeout length if the HTTP response is success. requestTimeout: Specifies the timeout, in seconds, for a query to complete. 0 (zero) specifies that the driver should wait indefinitely. The default is 0 seconds. The query request gives up after the timeout length if the HTTP response is success. authenticator: Specifies the authenticator to use for authenticating user credentials: To use the internal Snowflake authenticator, specify snowflake (Default). If you want to cache your MFA logins, use AuthTypeUsernamePasswordMFA authenticator. To authenticate through Okta, specify https://<okta_account_name>.okta.com (URL prefix for Okta). To authenticate using your IDP via a browser, specify externalbrowser. To authenticate via OAuth, specify oauth and provide an OAuth Access Token (see the token parameter below). application: Identifies your application to Snowflake Support. insecureMode: false by default. Set to true to bypass the Online Certificate Status Protocol (OCSP) certificate revocation check. IMPORTANT: Change the default value for testing or emergency situations only. token: a token that can be used to authenticate. Should be used in conjunction with the "oauth" authenticator. client_session_keep_alive: Set to true have a heartbeat in the background every hour to keep the connection alive such that the connection session will never expire. Care should be taken in using this option as it opens up the access forever as long as the process is alive. ocspFailOpen: true by default. Set to false to make OCSP check fail closed mode. validateDefaultParameters: true by default. Set to false to disable checks on existence and privileges check for Database, Schema, Warehouse and Role when setting up the connection tracing: Specifies the logging level to be used. Set to error by default. Valid values are trace, debug, info, print, warning, error, fatal, panic. disableQueryContextCache: disables parsing of query context returned from server and resending it to server as well. Default value is false. clientConfigFile: specifies the location of the client configuration json file. In this file you can configure Easy Logging feature. disableSamlURLCheck: disables the SAML URL check. Default value is false. All other parameters are interpreted as session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). For example, the TIMESTAMP_OUTPUT_FORMAT session parameter can be set by adding: A complete connection string looks similar to the following: Session-level parameters can also be set by using the SQL command "ALTER SESSION" (https://docs.snowflake.com/en/sql-reference/sql/alter-session.html). Alternatively, use OpenWithConfig() function to create a database handle with the specified Config. # Connection Config You can also connect to your warehouse using the connection config. The dbSql library states that when you want to take advantage of driver-specific connection features that aren’t available in a connection string. Each driver supports its own set of connection properties, often providing ways to customize the connection request specific to the DBMS For example: If you are using this method, you dont need to pass a driver name to specify the driver type in which you are looking to connect. Since the driver name is not needed, you can optionally bypass driver registration on startup. To do this, set `GOSNOWFLAKE_SKIP_REGISTERATION` in your environment. This is useful you wish to register multiple verions of the driver. Note: GOSNOWFLAKE_SKIP_REGISTERATION should not be used if sql.Open() is used as the method to connect to the server, as sql.Open will require registration so it can map the driver name to the driver type, which in this case is "snowflake" and SnowflakeDriver{}. You can load the connnection configuration with .toml file format. With two environment variables SNOWFLAKE_HOME(connections.toml file directory) SNOWFLAKE_DEFAULT_CONNECTION_NAME(DSN name), the driver will search the config file and load the connection. You can find how to use this connection way at ./cmd/tomlfileconnection or Snowflake doc: https://docs.snowflake.com/en/developer-guide/snowflake-cli-v2/connecting/specify-credentials The Go Snowflake Driver honors the environment variables HTTP_PROXY, HTTPS_PROXY and NO_PROXY for the forward proxy setting. NO_PROXY specifies which hostname endings should be allowed to bypass the proxy server, e.g. no_proxy=.amazonaws.com means that Amazon S3 access does not need to go through the proxy. NO_PROXY does not support wildcards. Each value specified should be one of the following: The end of a hostname (or a complete hostname), for example: ".amazonaws.com" or "xy12345.snowflakecomputing.com". An IP address, for example "192.196.1.15". If more than one value is specified, values should be separated by commas, for example: By default, the driver's builtin logger is exposing logrus's FieldLogger and default at INFO level. Users can use SetLogger in driver.go to set a customized logger for gosnowflake package. In order to enable debug logging for the driver, user could use SetLogLevel("debug") in SFLogger interface as shown in demo code at cmd/logger.go. To redirect the logs SFlogger.SetOutput method could do the work. A custom query tag can be set in the context. Each query run with this context will include the custom query tag as metadata that will appear in the Query Tag column in the Query History log. For example: A specific query request ID can be set in the context and will be passed through in place of the default randomized request ID. For example: If you need query ID for your query you have to use raw connection. For queries: ``` ``` For execs: ``` ``` The result of your query can be retrieved by setting the query ID in the WithFetchResultByID context. ``` ``` From 0.5.0, a signal handling responsibility has moved to the applications. If you want to cancel a query/command by Ctrl+C, add a os.Interrupt trap in context to execute methods that can take the context parameter (e.g. QueryContext, ExecContext). See cmd/selectmany.go for the full example. The Go Snowflake Driver now supports the Arrow data format for data transfers between Snowflake and the Golang client. The Arrow data format avoids extra conversions between binary and textual representations of the data. The Arrow data format can improve performance and reduce memory consumption in clients. Snowflake continues to support the JSON data format. The data format is controlled by the session-level parameter GO_QUERY_RESULT_FORMAT. To use JSON format, execute: The valid values for the parameter are: If the user attempts to set the parameter to an invalid value, an error is returned. The parameter name and the parameter value are case-insensitive. This parameter can be set only at the session level. Usage notes: The Arrow data format reduces rounding errors in floating point numbers. You might see slightly different values for floating point numbers when using Arrow format than when using JSON format. In order to take advantage of the increased precision, you must pass in the context.Context object provided by the WithHigherPrecision function when querying. Traditionally, the rows.Scan() method returned a string when a variable of types interface was passed in. Turning on the flag ENABLE_HIGHER_PRECISION via WithHigherPrecision will return the natural, expected data type as well. For some numeric data types, the driver can retrieve larger values when using the Arrow format than when using the JSON format. For example, using Arrow format allows the full range of SQL NUMERIC(38,0) values to be retrieved, while using JSON format allows only values in the range supported by the Golang int64 data type. Users should ensure that Golang variables are declared using the appropriate data type for the full range of values contained in the column. For an example, see below. When using the Arrow format, the driver supports more Golang data types and more ways to convert SQL values to those Golang data types. The table below lists the supported Snowflake SQL data types and the corresponding Golang data types. The columns are: The SQL data type. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from Arrow data format via an interface{}. The possible Golang data types that can be returned when you use snowflakeRows.Scan() to read data from Arrow data format directly. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format via an interface{}. (All returned values are strings.) The standard Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format directly. Go Data Types for Scan() =================================================================================================================== | ARROW | JSON =================================================================================================================== SQL Data Type | Default Go Data Type | Supported Go Data | Default Go Data Type | Supported Go Data | for Scan() interface{} | Types for Scan() | for Scan() interface{} | Types for Scan() =================================================================================================================== BOOLEAN | bool | string | bool ------------------------------------------------------------------------------------------------------------------- VARCHAR | string | string ------------------------------------------------------------------------------------------------------------------- DOUBLE | float32, float64 [1] , [2] | string | float32, float64 ------------------------------------------------------------------------------------------------------------------- INTEGER that | int, int8, int16, int32, int64 | string | int, int8, int16, fits in int64 | [1] , [2] | | int32, int64 ------------------------------------------------------------------------------------------------------------------- INTEGER that doesn't | int, int8, int16, int32, int64, *big.Int | string | error fit in int64 | [1] , [2] , [3] , [4] | ------------------------------------------------------------------------------------------------------------------- NUMBER(P, S) | float32, float64, *big.Float | string | float32, float64 where S > 0 | [1] , [2] , [3] , [5] | ------------------------------------------------------------------------------------------------------------------- DATE | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIME | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_LTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_NTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_TZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- BINARY | []byte | string | []byte ------------------------------------------------------------------------------------------------------------------- ARRAY [6] | string / array | string / array ------------------------------------------------------------------------------------------------------------------- OBJECT [6] | string / struct | string / struct ------------------------------------------------------------------------------------------------------------------- VARIANT | string | string ------------------------------------------------------------------------------------------------------------------- MAP | map | map [1] Converting from a higher precision data type to a lower precision data type via the snowflakeRows.Scan() method can lose low bits (lose precision), lose high bits (completely change the value), or result in error. [2] Attempting to convert from a higher precision data type to a lower precision data type via interface{} causes an error. [3] Higher precision data types like *big.Int and *big.Float can be accessed by querying with a context returned by WithHigherPrecision(). [4] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Int64()/.String()/.Uint64() methods. For an example, see below. [5] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Float32()/.String()/.Float64() methods. For an example, see below. [6] Arrays and objects can be either semistructured or structured, see more info in section below. Note: SQL NULL values are converted to Golang nil values, and vice-versa. Snowflake supports two flavours of "structured data" - semistructured and structured. Semistructured types are variants, objects and arrays without schema. When data is fetched, it's represented as strings and the client is responsible for its interpretation. Example table definition: The data not have any corresponding schema, so values in table may be slightly different. Semistuctured variants, objects and arrays are always represented as strings for scanning: When inserting, a marker indicating correct type must be used, for example: Structured types differentiate from semistructured types by having specific schema. In all rows of the table, values must conform to this schema. Example table definition: To retrieve structured objects, follow these steps: 1. Create a struct implementing sql.Scanner interface, example: a) b) Automatic scan goes through all fields in a struct and read object fields. Struct fields have to be public. Embedded structs have to be pointers. Matching name is built using struct field name with first letter lowercase. Additionally, `sf` tag can be added: - first value is always a name of a field in an SQL object - additionally `ignore` parameter can be passed to omit this field 2. Use WithStructuredTypesEnabled context while querying data. 3. Use it in regular scan: See StructuredObject for all available operations including null support, embedding nested structs, etc. Retrieving array of simple types works exactly the same like normal values - using Scan function. You can use WithMapValuesNullable and WithArrayValuesNullable contexts to handle null values in, respectively, maps and arrays of simple types in the database. In that case, sql null types will be used: If you want to scan array of structs, you have to use a helper function ScanArrayOfScanners: Retrieving structured maps is very similar to retrieving arrays: To bind structured objects use: 1. Create a type which implements a StructuredObjectWriter interface, example: a) b) 2. Use an instance as regular bind. 3. If you need to bind nil value, use special syntax: Binding structured arrays are like any other parameter. The only difference is - if you want to insert empty array (not nil but empty), you have to use: The following example shows how to retrieve very large values using the math/big package. This example retrieves a large INTEGER value to an interface and then extracts a big.Int value from that interface. If the value fits into an int64, then the code also copies the value to a variable of type int64. Note that a context that enables higher precision must be passed in with the query. If the variable named "rows" is known to contain a big.Int, then you can use the following instead of scanning into an interface and then converting to a big.Int: If the variable named "rows" contains a big.Int, then each of the following fails: Similar code and rules also apply to big.Float values. If you are not sure what data type will be returned, you can use code similar to the following to check the data type of the returned value: You can retrieve data in a columnar format similar to the format a server returns, without transposing them to rows. When working with the arrow columnar format in go driver, ArrowBatch structs are used. These are structs mostly corresponding to data chunks received from the backend. They allow for access to specific arrow.Record structs. An ArrowBatch can exist in a state where the underlying data has not yet been loaded. The data is downloaded and translated only on demand. Translation options are retrieved from a context.Context interface, which is either passed from query context or set by the user using WithContext(ctx) method. In order to access them you must use `WithArrowBatches` context, similar to the following: This returns []*ArrowBatch. ArrowBatch functions: GetRowCount(): Returns the number of rows in the ArrowBatch. Note that this returns 0 if the data has not yet been loaded, irrespective of it’s actual size. WithContext(ctx context.Context): Sets the context of the ArrowBatch to the one provided. Note that the context will not retroactively apply to data that has already been downloaded. For example: will produce the same result in records1 and records2, irrespective of the newly provided ctx. Context worth noting are: -WithArrowBatchesTimestampOption -WithHigherPrecision -WithArrowBatchesUtf8Validation described in more detail later. Fetch(): Returns the underlying records as *[]arrow.Record. When this function is called, the ArrowBatch checks whether the underlying data has already been loaded, and downloads it if not. Limitations: How to handle timestamps in Arrow batches: Snowflake returns timestamps natively (from backend to driver) in multiple formats. The Arrow timestamp is an 8-byte data type, which is insufficient to handle the larger date and time ranges used by Snowflake. Also, Snowflake supports 0-9 (nanosecond) digit precision for seconds, while Arrow supports only 3 (millisecond), 6 (microsecond), an 9 (nanosecond) precision. Consequently, Snowflake uses a custom timestamp format in Arrow, which differs on timestamp type and precision. If you want to use timestamps in Arrow batches, you have two options: How to handle invalid UTF-8 characters in Arrow batches: Snowflake previously allowed users to upload data with invalid UTF-8 characters. Consequently, Arrow records containing string columns in Snowflake could include these invalid UTF-8 characters. However, according to the Arrow specifications (https://arrow.apache.org/docs/cpp/api/datatype.html and https://github.com/apache/arrow/blob/a03d957b5b8d0425f9d5b6c98b6ee1efa56a1248/go/arrow/datatype.go#L73-L74), Arrow string columns should only contain UTF-8 characters. To address this issue and prevent potential downstream disruptions, the context WithArrowBatchesUtf8Validation, is introduced. When enabled, this feature iterates through all values in string columns, identifying and replacing any invalid characters with `�`. This ensures that Arrow records conform to the UTF-8 standards, preventing validation failures in downstream services like the Rust Arrow library that impose strict validation checks. How to handle higher precision in Arrow batches: To preserve BigDecimal values within Arrow batches, use WithHigherPrecision. This offers two main benefits: it helps avoid precision loss and defers the conversion to upstream services. Alternatively, without this setting, all non-zero scale numbers will be converted to float64, potentially resulting in loss of precision. Zero-scale numbers (DECIMAL256, DECIMAL128) will be converted to int64, which could lead to overflow. Binding allows a SQL statement to use a value that is stored in a Golang variable. Without binding, a SQL statement specifies values by specifying literals inside the statement. For example, the following statement uses the literal value “42“ in an UPDATE statement: With binding, you can execute a SQL statement that uses a value that is inside a variable. For example: The “?“ inside the “VALUES“ clause specifies that the SQL statement uses the value from a variable. Binding data that involves time zones can require special handling. For details, see the section titled "Timestamps with Time Zones". Version 1.6.23 (and later) of the driver takes advantage of sql.Null types which enables the proper handling of null parameters inside function calls, i.e.: The timestamp nullability had to be achieved by wrapping the sql.NullTime type as the Snowflake provides several date and time types which are mapped to single Go time.Time type: Version 1.3.9 (and later) of the Go Snowflake Driver supports the ability to bind an array variable to a parameter in a SQL INSERT statement. You can use this technique to insert multiple rows in a single batch. As an example, the following code inserts rows into a table that contains integer, float, boolean, and string columns. The example binds arrays to the parameters in the INSERT statement. If the array contains SQL NULL values, use slice []interface{}, which allows Golang nil values. This feature is available in version 1.6.12 (and later) of the driver. For example, For slices []interface{} containing time.Time values, a binding parameter flag is required for the preceding array variable in the Array() function. This feature is available in version 1.6.13 (and later) of the driver. For example, Note: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). When you use array binding to insert a large number of values, the driver can improve performance by streaming the data (without creating files on the local machine) to a temporary stage for ingestion. The driver automatically does this when the number of values exceeds a threshold (no changes are needed to user code). In order for the driver to send the data to a temporary stage, the user must have the following privilege on the schema: If the user does not have this privilege, the driver falls back to sending the data with the query to the Snowflake database. In addition, the current database and schema for the session must be set. If these are not set, the CREATE TEMPORARY STAGE command executed by the driver can fail with the following error: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). Go's database/sql package supports the ability to bind a parameter in a SQL statement to a time.Time variable. However, when the client binds data to send to the server, the driver cannot determine the correct Snowflake date/timestamp data type to associate with the binding parameter. For example: To resolve this issue, a binding parameter flag is introduced that associates any subsequent time.Time type to the DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ or BINARY data type. The above example could be rewritten as follows: The driver fetches TIMESTAMP_TZ (timestamp with time zone) data using the offset-based Location types, which represent a collection of time offsets in use in a geographical area, such as CET (Central European Time) or UTC (Coordinated Universal Time). The offset-based Location data is generated and cached when a Go Snowflake Driver application starts, and if the given offset is not in the cache, it is generated dynamically. Currently, Snowflake does not support the name-based Location types (e.g. "America/Los_Angeles"). For more information about Location types, see the Go documentation for https://golang.org/pkg/time/#Location. Internally, this feature leverages the []byte data type. As a result, BINARY data cannot be bound without the binding parameter flag. In the following example, sf is an alias for the gosnowflake package: The driver directly downloads a result set from the cloud storage if the size is large. It is required to shift workloads from the Snowflake database to the clients for scale. The download takes place by goroutine named "Chunk Downloader" asynchronously so that the driver can fetch the next result set while the application can consume the current result set. The application may change the number of result set chunk downloader if required. Note this does not help reduce memory footprint by itself. Consider Custom JSON Decoder. Custom JSON Decoder for Parsing Result Set (Experimental) The application may have the driver use a custom JSON decoder that incrementally parses the result set as follows. This option will reduce the memory footprint to half or even quarter, but it can significantly degrade the performance depending on the environment. The test cases running on Travis Ubuntu box show five times less memory footprint while four times slower. Be cautious when using the option. The Go Snowflake Driver supports JWT (JSON Web Token) authentication. To enable this feature, construct the DSN with fields "authenticator=SNOWFLAKE_JWT&privateKey=<your_private_key>", or using a Config structure specifying: The <your_private_key> should be a base64 URL encoded PKCS8 rsa private key string. One way to encode a byte slice to URL base 64 URL format is through the base64.URLEncoding.EncodeToString() function. On the server side, you can alter the public key with the SQL command: The <your_public_key> should be a base64 Standard encoded PKI public key string. One way to encode a byte slice to base 64 Standard format is through the base64.StdEncoding.EncodeToString() function. To generate the valid key pair, you can execute the following commands in the shell: Note: As of February 2020, Golang's official library does not support passcode-encrypted PKCS8 private key. For security purposes, Snowflake highly recommends that you store the passcode-encrypted private key on the disk and decrypt the key in your application using a library you trust. JWT tokens are recreated on each retry and they are valid (`exp` claim) for `jwtTimeout` seconds. Each retry timeout is configured by `jwtClientTimeout`. Retries are limited by total time of `loginTimeout`. The driver allows to authenticate using the external browser. When a connection is created, the driver will open the browser window and ask the user to sign in. To enable this feature, construct the DSN with field "authenticator=EXTERNALBROWSER" or using a Config structure with following Authenticator specified: The external browser authentication implements timeout mechanism. This prevents the driver from hanging interminably when browser window was closed, or not responding. Timeout defaults to 120s and can be changed through setting DSN field "externalBrowserTimeout=240" (time in seconds) or using a Config structure with following ExternalBrowserTimeout specified: This feature is available in version 1.3.8 or later of the driver. By default, Snowflake returns an error for queries issued with multiple statements. This restriction helps protect against SQL Injection attacks (https://en.wikipedia.org/wiki/SQL_injection). The multi-statement feature allows users skip this restriction and execute multiple SQL statements through a single Golang function call. However, this opens up the possibility for SQL injection, so it should be used carefully. The risk can be reduced by specifying the exact number of statements to be executed, which makes it more difficult to inject a statement by appending it. More details are below. The Go Snowflake Driver provides two functions that can execute multiple SQL statements in a single call: To compose a multi-statement query, simply create a string that contains all the queries, separated by semicolons, in the order in which the statements should be executed. To protect against SQL Injection attacks while using the multi-statement feature, pass a Context that specifies the number of statements in the string. For example: When multiple queries are executed by a single call to QueryContext(), multiple result sets are returned. After you process the first result set, get the next result set (for the next SQL statement) by calling NextResultSet(). The following pseudo-code shows how to process multiple result sets: The function db.ExecContext() returns a single result, which is the sum of the number of rows changed by each individual statement. For example, if your multi-statement query executed two UPDATE statements, each of which updated 10 rows, then the result returned would be 20. Individual row counts for individual statements are not available. The following code shows how to retrieve the result of a multi-statement query executed through db.ExecContext(): Note: Because a multi-statement ExecContext() returns a single value, you cannot detect offsetting errors. For example, suppose you expected the return value to be 20 because you expected each UPDATE statement to update 10 rows. If one UPDATE statement updated 15 rows and the other UPDATE statement updated only 5 rows, the total would still be 20. You would see no indication that the UPDATES had not functioned as expected. The ExecContext() function does not return an error if passed a query (e.g. a SELECT statement). However, it still returns only a single value, not a result set, so using it to execute queries (or a mix of queries and non-query statements) is impractical. The QueryContext() function does not return an error if passed non-query statements (e.g. DML). The function returns a result set for each statement, whether or not the statement is a query. For each non-query statement, the result set contains a single row that contains a single column; the value is the number of rows changed by the statement. If you want to execute a mix of query and non-query statements (e.g. a mix of SELECT and DML statements) in a multi-statement query, use QueryContext(). You can retrieve the result sets for the queries, and you can retrieve or ignore the row counts for the non-query statements. Note: PUT statements are not supported for multi-statement queries. If a SQL statement passed to ExecQuery() or QueryContext() fails to compile or execute, that statement is aborted, and subsequent statements are not executed. Any statements prior to the aborted statement are unaffected. For example, if the statements below are run as one multi-statement query, the multi-statement query fails on the third statement, and an exception is thrown. If you then query the contents of the table named "test", the values 1 and 2 would be present. When using the QueryContext() and ExecContext() functions, golang code can check for errors the usual way. For example: Preparing statements and using bind variables are also not supported for multi-statement queries. The Go Snowflake Driver supports asynchronous execution of SQL statements. Asynchronous execution allows you to start executing a statement and then retrieve the result later without being blocked while waiting. While waiting for the result of a SQL statement, you can perform other tasks, including executing other SQL statements. Most of the steps to execute an asynchronous query are the same as the steps to execute a synchronous query. However, there is an additional step, which is that you must call the WithAsyncMode() function to update your Context object to specify that asynchronous mode is enabled. In the code below, the call to "WithAsyncMode()" is specific to asynchronous mode. The rest of the code is compatible with both asynchronous mode and synchronous mode. The function db.QueryContext() returns an object of type snowflakeRows regardless of whether the query is synchronous or asynchronous. However: The call to the Next() function of snowflakeRows is always synchronous (i.e. blocking). If the query has not yet completed and the snowflakeRows object (named "rows" in this example) has not been filled in yet, then rows.Next() waits until the result set has been filled in. More generally, calls to any Golang SQL API function implemented in snowflakeRows or snowflakeResult are blocking calls, and wait if results are not yet available. (Examples of other synchronous calls include: snowflakeRows.Err(), snowflakeRows.Columns(), snowflakeRows.columnTypes(), snowflakeRows.Scan(), and snowflakeResult.RowsAffected().) Because the example code above executes only one query and no other activity, there is no significant difference in behavior between asynchronous and synchronous behavior. The differences become significant if, for example, you want to perform some other activity after the query starts and before it completes. The example code below starts a query, which run in the background, and then retrieves the results later. This example uses small SELECT statements that do not retrieve enough data to require asynchronous handling. However, the technique works for larger data sets, and for situations where the programmer might want to do other work after starting the queries and before retrieving the results. For a more elaborative example please see cmd/async/async.go The Go Snowflake Driver supports the PUT and GET commands. The PUT command copies a file from a local computer (the computer where the Golang client is running) to a stage on the cloud platform. The GET command copies data files from a stage on the cloud platform to a local computer. See the following for information on the syntax and supported parameters: Using PUT: The following example shows how to run a PUT command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: Different client platforms (e.g. linux, Windows) have different path name conventions. Ensure that you specify path names appropriately. This is particularly important on Windows, which uses the backslash character as both an escape character and as a separator in path names. To send information from a stream (rather than a file) use code similar to the code below. (The ReplaceAll() function is needed on Windows to handle backslashes in the path to the file.) Note: PUT statements are not supported for multi-statement queries. Using GET: The following example shows how to run a GET command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: To download a file into an in-memory stream (rather than a file) use code similar to the code below. Note: GET statements are not supported for multi-statement queries. Specifying temporary directory for encryption and compression: Putting and getting requires compression and/or encryption, which is done in the OS temporary directory. If you cannot use default temporary directory for your OS or you want to specify it yourself, you can use "tmpDirPath" DSN parameter. Remember, to encode slashes. Example: Using custom configuration for PUT/GET: If you want to override some default configuration options, you can use `WithFileTransferOptions` context. There are multiple config parameters including progress bars or compression.
Package dcrjson provides infrastructure for working with Decred JSON-RPC APIs. When communicating via the JSON-RPC protocol, all requests and responses must be marshalled to and from the wire in the appropriate format. This package provides infrastructure and primitives to ease this process. This information is not necessary in order to use this package, but it does provide some intuition into what the marshalling and unmarshalling that is discussed below is doing under the hood. As defined by the JSON-RPC spec, there are effectively two forms of messages on the wire: Request Objects {"jsonrpc":"1.0","id":"SOMEID","method":"SOMEMETHOD","params":[SOMEPARAMS]} NOTE: Notifications are the same format except the id field is null. Response Objects {"result":SOMETHING,"error":null,"id":"SOMEID"} {"result":null,"error":{"code":SOMEINT,"message":SOMESTRING},"id":"SOMEID"} For requests, the params field can vary in what it contains depending on the method (a.k.a. command) being sent. Each parameter can be as simple as an int or a complex structure containing many nested fields. The id field is used to identify a request and will be included in the associated response. When working with streamed RPC transports, such as websockets, spontaneous notifications are also possible. As indicated, they are the same as a request object, except they have the id field set to null. Therefore, servers will ignore requests with the id field set to null, while clients can choose to consume or ignore them. Unfortunately, the original Bitcoin JSON-RPC API (and hence anything compatible with it) doesn't always follow the spec and will sometimes return an error string in the result field with a null error for certain commands. However, for the most part, the error field will be set as described on failure. To simplify the marshalling of the requests and responses, the MarshalCmd and MarshalResponse functions are provided. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides the NewCmd function which takes a method (command) name and variable arguments. The function includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. External packages can and should implement types implementing Command for use with MarshalCmd/ParseParams. The command handling of this package is built around the concept of registered commands. This is true for the wide variety of commands already provided by the package, but it also means caller can easily provide custom commands with all of the same functionality as the built-in commands. Use the RegisterCmd function for this purpose. A list of all registered methods can be obtained with the RegisteredCmdMethods function. All registered commands are registered with flags that identify information such as whether the command applies to a chain server, wallet server, or is a notification along with the method name to use. These flags can be obtained with the MethodUsageFlags flags, and the method can be obtained with the CmdMethod function. To facilitate providing consistent help to users of the RPC server, this package exposes the GenerateHelp and function which uses reflection on registered commands or notifications to generate the final help text. In addition, the MethodUsageText function is provided to generate consistent one-line usage for registered commands and notifications using reflection. There are 2 distinct type of errors supported by this package: The first category of errors (type Error) typically indicates a programmer error and can be avoided by properly using the API. Errors of this type will be returned from the various functions available in this package. They identify issues such as unsupported field types, attempts to register malformed commands, and attempting to create a new command with an improper number of parameters. The specific reason for the error can be detected by type asserting it to a *dcrjson.Error and accessing the ErrorCode field. The second category of errors (type RPCError), on the other hand, are useful for returning errors to RPC clients. Consequently, they are used in the previously described Response type. This example demonstrates how to unmarshal a JSON-RPC response and then unmarshal the result field in the response to a concrete type.
Package portaudio applies Go bindings to the PortAudio library. For the most part, these bindings parallel the underlying PortAudio API; please refer to http://www.portaudio.com/docs.html for details. Differences introduced by the bindings are documented here: Instead of passing a flag to OpenStream, audio sample formats are inferred from the signature of the stream callback or, for a blocking stream, from the types of the buffers. See the StreamCallback and Buffer types for details. Blocking I/O: Read and Write do not accept buffer arguments; instead they use the buffers (or pointers to buffers) provided to OpenStream. The number of samples to read or write is determined by the size of the buffers. The StreamParameters struct combines parameters for both the input and the output device as well as the sample rate, buffer size, and flags.
Package codeartifact provides the API client, operations, and parameter types for CodeArtifact. language-native package managers and build tools such as npm, Apache Maven, pip, and dotnet. You can use CodeArtifact to share packages with development teams and pull packages. Packages can be pulled from both public and CodeArtifact repositories. You can also create an upstream relationship between a CodeArtifact repository and another repository, which effectively merges their contents from the point of view of a package manager client. CodeArtifact concepts Repository: A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets, or files. Repositories are polyglot, so a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools such as the npm CLI or the Maven CLI ( mvn ). For a list of supported package managers, see the CodeArtifact User Guide. Domain: Repositories are aggregated into a higher-level entity known as a domain. All package assets and metadata are stored in the domain, but are consumed through repositories. A given package asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's present in. All of the assets and metadata in a domain are encrypted with the same customer master key (CMK) stored in Key Management Service (KMS). Each repository is a member of a single domain and can't be moved to a The domain allows organizational policy to be applied across multiple Although an organization can have multiple domains, we recommend a single In CodeArtifact, a package consists of: A name (for example, webpack is the name of a popular npm package) An optional namespace (for example, @types in @types/node ) A set of versions (for example, 1.0.0 , 1.0.1 , 1.0.2 , etc.) Package-level metadata (for example, npm tags) Package group: A group of packages that match a specified definition. Package groups can be used to apply configuration to multiple packages that match a defined pattern using package format, package namespace, and package name. You can use package groups to more conveniently configure package origin controls for multiple packages. Package origin controls are used to block or allow ingestion or publishing of new package versions, which protects users from malicious actions known as dependency substitution attacks. Package version: A version of a package, such as @types/node 12.6.9 . The version number format and semantics vary for different package formats. For example, npm package versions must conform to the Semantic Versioning specification. In CodeArtifact, a package version consists of the version identifier, metadata at the package version level, and a set of assets. Upstream repository: One repository is upstream of another when the package versions in it can be accessed from the repository endpoint of the downstream repository, effectively merging the contents of the two repositories from the point of view of a client. CodeArtifact allows creating an upstream relationship between two repositories. Asset: An individual file stored in CodeArtifact associated with a package version, such as an npm .tgz file or Maven POM and JAR files. CodeArtifact supported API operations AssociateExternalConnection : Adds an existing external connection to a repository. CopyPackageVersions : Copies package versions from one repository to another repository in the same domain. CreateDomain : Creates a domain. CreatePackageGroup : Creates a package group. CreateRepository : Creates a CodeArtifact repository in a domain. DeleteDomain : Deletes a domain. You cannot delete a domain that contains repositories. DeleteDomainPermissionsPolicy : Deletes the resource policy that is set on a domain. DeletePackage : Deletes a package and all associated package versions. DeletePackageGroup : Deletes a package group. Does not delete packages or package versions that are associated with a package group. DeletePackageVersions : Deletes versions of a package. After a package has been deleted, it can be republished, but its assets and metadata cannot be restored because they have been permanently removed from storage. DeleteRepository : Deletes a repository. DeleteRepositoryPermissionsPolicy : Deletes the resource policy that is set on a repository. DescribeDomain : Returns a DomainDescription object that contains information about the requested domain. DescribePackage : Returns a PackageDescriptionobject that contains details about a package. DescribePackageGroup : Returns a PackageGroupobject that contains details about a package group. DescribePackageVersion : Returns a PackageVersionDescriptionobject that contains details about a package version. DescribeRepository : Returns a RepositoryDescription object that contains detailed information about the requested repository. DisposePackageVersions : Disposes versions of a package. A package version with the status Disposed cannot be restored because they have been permanently removed from storage. DisassociateExternalConnection : Removes an existing external connection from a repository. GetAssociatedPackageGroup : Returns the most closely associated package group to the specified package. GetAuthorizationToken : Generates a temporary authorization token for accessing repositories in the domain. The token expires the authorization period has passed. The default authorization period is 12 hours and can be customized to any length with a maximum of 12 hours. GetDomainPermissionsPolicy : Returns the policy of a resource that is attached to the specified domain. GetPackageVersionAsset : Returns the contents of an asset that is in a package version. GetPackageVersionReadme : Gets the readme file or descriptive text for a package version. GetRepositoryEndpoint : Returns the endpoint of a repository for a specific package format. A repository has one endpoint for each package format: cargo generic maven npm nuget pypi ruby swift GetRepositoryPermissionsPolicy : Returns the resource policy that is set on a repository. ListAllowedRepositoriesForGroup : Lists the allowed repositories for a package group that has origin configuration set to ALLOW_SPECIFIC_REPOSITORIES . ListAssociatedPackages : Returns a list of packages associated with the requested package group. ListDomains : Returns a list of DomainSummary objects. Each returned DomainSummary object contains information about a domain. ListPackages : Lists the packages in a repository. ListPackageGroups : Returns a list of package groups in the requested domain. ListPackageVersionAssets : Lists the assets for a given package version. ListPackageVersionDependencies : Returns a list of the direct dependencies for a package version. ListPackageVersions : Returns a list of package versions for a specified package in a repository. ListRepositories : Returns a list of repositories owned by the Amazon Web Services account that called this method. ListRepositoriesInDomain : Returns a list of the repositories in a domain. ListSubPackageGroups : Returns a list of direct children of the specified package group. PublishPackageVersion : Creates a new package version containing one or more assets. PutDomainPermissionsPolicy : Attaches a resource policy to a domain. PutPackageOriginConfiguration : Sets the package origin configuration for a package, which determine how new versions of the package can be added to a specific repository. PutRepositoryPermissionsPolicy : Sets the resource policy on a repository that specifies permissions to access it. UpdatePackageGroup : Updates a package group. This API cannot be used to update a package group's origin configuration or pattern. UpdatePackageGroupOriginConfiguration : Updates the package origin configuration for a package group. UpdatePackageVersionsStatus : Updates the status of one or more versions of a package. UpdateRepository : Updates the properties of a repository.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package gcfg reads "INI-style" text-based configuration files with "name=value" pairs grouped into sections (gcfg files). This package is still a work in progress; see the sections below for planned changes. The syntax is based on that used by git config: http://git-scm.com/docs/git-config#_syntax . There are some (planned) differences compared to the git config format: The functions in this package read values into a user-defined struct. Each section corresponds to a struct field in the config struct, and each variable in a section corresponds to a data field in the section struct. The mapping of each section or variable name to fields is done either based on the "gcfg" struct tag or by matching the name of the section or variable, ignoring case. In the latter case, hyphens '-' in section and variable names correspond to underscores '_' in field names. Fields must be exported; to use a section or variable name starting with a letter that is neither upper- or lower-case, prefix the field name with 'X'. (See https://code.google.com/p/go/issues/detail?id=5763#c4 .) For sections with subsections, the corresponding field in config must be a map, rather than a struct, with string keys and pointer-to-struct values. Values for subsection variables are stored in the map with the subsection name used as the map key. (Note that unlike section and variable names, subsection names are case sensitive.) When using a map, and there is a section with the same section name but without a subsection name, its values are stored with the empty string used as the key. It is possible to provide default values for subsections in the section "default-<sectionname>" (or by setting values in the corresponding struct field "Default_<sectionname>"). The functions in this package panic if config is not a pointer to a struct, or when a field is not of a suitable type (either a struct or a map with string keys and pointer-to-struct values). The section structs in the config struct may contain single-valued or multi-valued variables. Variables of unnamed slice type (that is, a type starting with `[]`) are treated as multi-value; all others (including named slice types) are treated as single-valued variables. Single-valued variables are handled based on the type as follows. Unnamed pointer types (that is, types starting with `*`) are dereferenced, and if necessary, a new instance is allocated. For types implementing the encoding.TextUnmarshaler interface, the UnmarshalText method is used to set the value. Implementing this method is the recommended way for parsing user-defined types. For fields of string kind, the value string is assigned to the field, after unquoting and unescaping as needed. For fields of bool kind, the field is set to true if the value is "true", "yes", "on" or "1", and set to false if the value is "false", "no", "off" or "0", ignoring case. In addition, single-valued bool fields can be specified with a "blank" value (variable name without equals sign and value); in such case the value is set to true. Predefined integer types [u]int(|8|16|32|64) and big.Int are parsed as decimal or hexadecimal (if having '0x' prefix). (This is to prevent unintuitively handling zero-padded numbers as octal.) Other types having [u]int* as the underlying type, such as os.FileMode and uintptr allow decimal, hexadecimal, or octal values. Parsing mode for integer types can be overridden using the struct tag option ",int=mode" where mode is a combination of the 'd', 'h', and 'o' characters (each standing for decimal, hexadecimal, and octal, respectively.) All other types are parsed using fmt.Sscanf with the "%v" verb. For multi-valued variables, each individual value is parsed as above and appended to the slice. If the first value is specified as a "blank" value (variable name without equals sign and value), a new slice is allocated; that is any values previously set in the slice will be ignored. The types subpackage for provides helpers for parsing "enum-like" and integer types. There are 3 types of errors: Programmer errors trigger panics. These are should be fixed by the programmer before releasing code that uses gcfg. Data errors cause gcfg to return a non-nil error value. This includes the case when there are extra unknown key-value definitions in the configuration data (extra data). However, in some occasions it is desirable to be able to proceed in situations when the only data error is that of extra data. These errors are handled at a different (warning) priority and can be filtered out programmatically. To ignore extra data warnings, wrap the gcfg.Read*Into invocation into a call to gcfg.FatalOnly. The following is a list of changes under consideration:
Package monkit is a flexible code instrumenting and data collection library. I'm going to try and sell you as fast as I can on this library. Example usage We've got tools that capture distribution information (including quantiles) about int64, float64, and bool types. We have tools that capture data about events (we've got meters for deltas, rates, etc). We have rich tools for capturing information about tasks and functions, and literally anything that can generate a name and a number. Almost just as importantly, the amount of boilerplate and code you have to write to get these features is very minimal. Data that's hard to measure probably won't get measured. This data can be collected and sent to Graphite (http://graphite.wikidot.com/) or any other time-series database. Here's a selection of live stats from one of our storage nodes: This library generates call graphs of your live process for you. These call graphs aren't created through sampling. They're full pictures of all of the interesting functions you've annotated, along with quantile information about their successes, failures, how often they panic, return an error (if so instrumented), how many are currently running, etc. The data can be returned in dot format, in json, in text, and can be about just the functions that are currently executing, or all the functions the monitoring system has ever seen. Here's another example of one of our production nodes: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/callgraph2.png This library generates trace graphs of your live process for you directly, without requiring standing up some tracing system such as Zipkin (though you can do that too). Inspired by Google's Dapper (http://research.google.com/pubs/pub36356.html) and Twitter's Zipkin (http://zipkin.io), we have process-internal trace graphs, triggerable by a number of different methods. You get this trace information for free whenever you use Go contexts (https://blog.golang.org/context) and function monitoring. The output formats are svg and json. Additionally, the library supports trace observation plugins, and we've written a plugin that sends this data to Zipkin (http://github.com/spacemonkeygo/monkit-zipkin). https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/trace.png Before our crazy Go rewrite of everything (https://www.spacemonkey.com/blog/posts/go-space-monkey) (and before we had even seen Google's Dapper paper), we were a Python shop, and all of our "interesting" functions were decorated with a helper that collected timing information and sent it to Graphite. When we transliterated to Go, we wanted to preserve that functionality, so the first version of our monitoring package was born. Over time it started to get janky, especially as we found Zipkin and started adding tracing functionality to it. We rewrote all of our Go code to use Google contexts, and then realized we could get call graph information. We decided a refactor and then an all-out rethinking of our monitoring package was best, and so now we have this library. Sometimes you really want callstack contextual information without having to pass arguments through everything on the call stack. In other languages, many people implement this with thread-local storage. Example: let's say you have written a big system that responds to user requests. All of your libraries log using your log library. During initial development everything is easy to debug, since there's low user load, but now you've scaled and there's OVER TEN USERS and it's kind of hard to tell what log lines were caused by what. Wouldn't it be nice to add request ids to all of the log lines kicked off by that request? Then you could grep for all log lines caused by a specific request id. Geez, it would suck to have to pass all contextual debugging information through all of your callsites. Google solved this problem by always passing a context.Context interface through from call to call. A Context is basically just a mapping of arbitrary keys to arbitrary values that users can add new values for. This way if you decide to add a request context, you can add it to your Context and then all callsites that decend from that place will have the new data in their contexts. It is admittedly very verbose to add contexts to every function call. Painfully so. I hope to write more about it in the future, but Google also wrote up their thoughts about it (https://blog.golang.org/context), which you can go read. For now, just swallow your disgust and let's keep moving. Let's make a super simple Varnish (https://www.varnish-cache.org/) clone. Open up gedit! (Okay just kidding, open whatever text editor you want.) For this motivating program, we won't even add the caching, though there's comments for where to add it if you'd like. For now, let's just make a barebones system that will proxy HTTP requests. We'll call it VLite, but maybe we should call it VReallyLite. Run and build this and open localhost:8080 in your browser. If you use the default proxy target, it should inform you that the world hasn't been destroyed yet. The first thing you'll want to do is add the small amount of boilerplate to make the instrumentation we're going to add to your process observable later. Import the basic monkit packages: and then register environmental statistics and kick off a goroutine in your main method to serve debug requests: Rebuild, and then check out localhost:9000/stats (or localhost:9000/stats/json, if you prefer) in your browser! Remember what I said about Google's contexts (https://blog.golang.org/context)? It might seem a bit overkill for such a small project, but it's time to add them. To help out here, I've created a library that constructs contexts for you for incoming HTTP requests. Nothing that's about to happen requires my webhelp library (https://godoc.org/github.com/jtolds/webhelp), but here is the code now refactored to receive and pass contexts through our two per-request calls. You can create a new context for a request however you want. One reason to use something like webhelp is that the cancelation feature of Contexts is hooked up to the HTTP request getting canceled. Let's start to get statistics about how many requests we receive! First, this package (main) will need to get a monitoring Scope. Add this global definition right after all your imports, much like you'd create a logger with many logging libraries: Now, make the error return value of HandleHTTP named (so, (err error)), and add this defer line as the very first instruction of HandleHTTP: Let's also add the same line (albeit modified for the lack of error) to Proxy, replacing &err with nil: You should now have something like: We'll unpack what's going on here, but for now: For this new funcs dataset, if you want a graph, you can download a dot graph at localhost:9000/funcs/dot and json information from localhost:9000/funcs/json. You should see something like: with a similar report for the Proxy method, or a graph like: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/handlehttp.png This data reports the overall callgraph of execution for known traces, along with how many of each function are currently running, the most running concurrently (the highwater), how many were successful along with quantile timing information, how many errors there were (with quantile timing information if applicable), and how many panics there were. Since the Proxy method isn't capturing a returned err value, and since HandleHTTP always returns nil, this example won't ever have failures. If you're wondering about the success count being higher than you expected, keep in mind your browser probably requested a favicon.ico. Cool, eh? How it works is an interesting line of code - there's three function calls. If you look at the Go spec, all of the function calls will run at the time the function starts except for the very last one. The first function call, mon.Task(), creates or looks up a wrapper around a Func. You could get this yourself by requesting mon.Func() inside of the appropriate function or mon.FuncNamed(). Both mon.Task() and mon.Func() are inspecting runtime.Caller to determine the name of the function. Because this is a heavy operation, you can actually store the result of mon.Task() and reuse it somehow else if you prefer, so instead of you could instead use which is more performant every time after the first time. runtime.Caller only gets called once. Careful! Don't use the same myFuncMon in different functions unless you want to screw up your statistics! The second function call starts all the various stop watches and bookkeeping to keep track of the function. It also mutates the context pointer it's given to extend the context with information about what current span (in Zipkin parlance) is active. Notably, you *can* pass nil for the context if you really don't want a context. You just lose callgraph information. The last function call stops all the stop watches ad makes a note of any observed errors or panics (it repanics after observing them). Turns out, we don't even need to change our program anymore to get rich tracing information! Open your browser and go to localhost:9000/trace/svg?regex=HandleHTTP. It won't load, and in fact, it's waiting for you to open another tab and refresh localhost:8080 again. Once you retrigger the actual application behavior, the trace regex will capture a trace starting on the first function that matches the supplied regex, and return an svg. Go back to your first tab, and you should see a relatively uninteresting but super promising svg. Let's make the trace more interesting. Add a to your HandleHTTP method, rebuild, and restart. Load localhost:8080, then start a new request to your trace URL, then reload localhost:8080 again. Flip back to your trace, and you should see that the Proxy method only takes a portion of the time of HandleHTTP! https://cdn.rawgit.com/spacemonkeygo/monkit/master/images/trace.svg There's multiple ways to select a trace. You can select by regex using the preselect method (default), which first evaluates the regex on all known functions for sanity checking. Sometimes, however, the function you want to trace may not yet be known to monkit, in which case you'll want to turn preselection off. You may have a bad regex, or you may be in this case if you get the error "Bad Request: regex preselect matches 0 functions." Another way to select a trace is by providing a trace id, which we'll get to next! Make sure to check out what the addition of the time.Sleep call did to the other reports. It's easy to write plugins for monkit! Check out our first one that exports data to Zipkin (http://zipkin.io/)'s Scribe API: https://github.com/spacemonkeygo/monkit-zipkin We plan to have more (for HTrace, OpenTracing, etc, etc), soon!
Package dcrjson provides primitives for working with the Decred JSON-RPC API. When communicating via the JSON-RPC protocol, all of the commands need to be marshalled to and from the the wire in the appropriate format. This package provides data structures and primitives to ease this process. In addition, it also provides some additional features such as custom command registration, command categorization, and reflection-based help generation. This information is not necessary in order to use this package, but it does provide some intuition into what the marshalling and unmarshalling that is discussed below is doing under the hood. As defined by the JSON-RPC spec, there are effectively two forms of messages on the wire: Request Objects {"jsonrpc":"1.0","id":"SOMEID","method":"SOMEMETHOD","params":[SOMEPARAMS]} NOTE: Notifications are the same format except the id field is null. Response Objects {"result":SOMETHING,"error":null,"id":"SOMEID"} {"result":null,"error":{"code":SOMEINT,"message":SOMESTRING},"id":"SOMEID"} For requests, the params field can vary in what it contains depending on the method (a.k.a. command) being sent. Each parameter can be as simple as an int or a complex structure containing many nested fields. The id field is used to identify a request and will be included in the associated response. When working with asynchronous transports, such as websockets, spontaneous notifications are also possible. As indicated, they are the same as a request object, except they have the id field set to null. Therefore, servers will ignore requests with the id field set to null, while clients can choose to consume or ignore them. Unfortunately, the original Bitcoin JSON-RPC API (and hence anything compatible with it) doesn't always follow the spec and will sometimes return an error string in the result field with a null error for certain commands. However, for the most part, the error field will be set as described on failure. Based upon the discussion above, it should be easy to see how the types of this package map into the required parts of the protocol To simplify the marshalling of the requests and responses, the MarshalCmd and MarshalResponse functions are provided. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides two approaches for creating a new command. This first, and preferred, method is to use one of the New<Foo>Cmd functions. This allows static compile-time checking to help ensure the parameters stay in sync with the struct definitions. The second approach is the NewCmd function which takes a method (command) name and variable arguments. The function includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. The command handling of this package is built around the concept of registered commands. This is true for the wide variety of commands already provided by the package, but it also means caller can easily provide custom commands with all of the same functionality as the built-in commands. Use the RegisterCmd function for this purpose. A list of all registered methods can be obtained with the RegisteredCmdMethods function. All registered commands are registered with flags that identify information such as whether the command applies to a chain server, wallet server, or is a notification along with the method name to use. These flags can be obtained with the MethodUsageFlags flags, and the method can be obtained with the CmdMethod function. To facilitate providing consistent help to users of the RPC server, this package exposes the GenerateHelp and function which uses reflection on registered commands or notifications, as well as the provided expected result types, to generate the final help text. In addition, the MethodUsageText function is provided to generate consistent one-line usage for registered commands and notifications using reflection. There are 2 distinct type of errors supported by this package: The first category of errors (type Error) typically indicates a programmer error and can be avoided by properly using the API. Errors of this type will be returned from the various functions available in this package. They identify issues such as unsupported field types, attempts to register malformed commands, and attempting to create a new command with an improper number of parameters. The specific reason for the error can be detected by type asserting it to a *dcrjson.Error and accessing the ErrorCode field. The second category of errors (type RPCError), on the other hand, are useful for returning errors to RPC clients. Consequently, they are used in the previously described Response type. This example demonstrates how to unmarshal a JSON-RPC response and then unmarshal the result field in the response to a concrete type.
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Optionally, it can provide circuit breaker mechanism individually for each backend host. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For further information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt, loopback or dynamic. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. A dynamic route means that the final target will be defined in a filter. One of the filters in the chain must set the target backend url explicitly. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper has filter implementations of basic auth and OAuth2. It can be integrated with tokeninfo based OAuth2 providers. For details, see: https://godoc.org/github.com/zalando/skipper/filters/auth. Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Kubernetes: Skipper can be used as part of a Kubernetes Ingress Controller implementation together with https://github.com/zalando-incubator/kube-ingress-aws-controller . In this scenario, Skipper uses the Kubernetes API's Ingress extensions as a source for routing. For a complete deployment example, see more details in: https://github.com/zalando-incubator/kubernetes-on-aws/ . - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper provides circuit breakers, configured either globally, based on backend hosts or based on individual routes. It supports two types of circuit breaker behavior: open on N consecutive failures, or open on N failures out of M requests. For details, see: https://godoc.org/github.com/zalando/skipper/circuit. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Package dcrjson provides infrastructure for working with Decred JSON-RPC APIs. When communicating via the JSON-RPC protocol, all requests and responses must be marshalled to and from the wire in the appropriate format. This package provides infrastructure and primitives to ease this process. This information is not necessary in order to use this package, but it does provide some intuition into what the marshalling and unmarshalling that is discussed below is doing under the hood. As defined by the JSON-RPC spec, there are effectively two forms of messages on the wire: Request Objects {"jsonrpc":"1.0","id":"SOMEID","method":"SOMEMETHOD","params":[SOMEPARAMS]} NOTE: Notifications are the same format except the id field is null. Response Objects {"result":SOMETHING,"error":null,"id":"SOMEID"} {"result":null,"error":{"code":SOMEINT,"message":SOMESTRING},"id":"SOMEID"} For requests, the params field can vary in what it contains depending on the method (a.k.a. command) being sent. Each parameter can be as simple as an int or a complex structure containing many nested fields. The id field is used to identify a request and will be included in the associated response. When working with streamed RPC transports, such as websockets, spontaneous notifications are also possible. As indicated, they are the same as a request object, except they have the id field set to null. Therefore, servers will ignore requests with the id field set to null, while clients can choose to consume or ignore them. Unfortunately, the original Bitcoin JSON-RPC API (and hence anything compatible with it) doesn't always follow the spec and will sometimes return an error string in the result field with a null error for certain commands. However, for the most part, the error field will be set as described on failure. To simplify the marshalling of the requests and responses, the MarshalCmd and MarshalResponse functions are provided. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides the NewCmd function which takes a method (command) name and variable arguments. The function includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. External packages can and should implement types implementing Command for use with MarshalCmd/ParseParams. The command handling of this package is built around the concept of registered commands. This is true for the wide variety of commands already provided by the package, but it also means caller can easily provide custom commands with all of the same functionality as the built-in commands. Use the RegisterCmd function for this purpose. A list of all registered methods can be obtained with the RegisteredCmdMethods function. All registered commands are registered with flags that identify information such as whether the command applies to a chain server, wallet server, or is a notification along with the method name to use. These flags can be obtained with the MethodUsageFlags flags, and the method can be obtained with the CmdMethod function. To facilitate providing consistent help to users of the RPC server, this package exposes the GenerateHelp and function which uses reflection on registered commands or notifications to generate the final help text. In addition, the MethodUsageText function is provided to generate consistent one-line usage for registered commands and notifications using reflection. There are 2 distinct type of errors supported by this package: The first category of errors (type Error) typically indicates a programmer error and can be avoided by properly using the API. Errors of this type will be returned from the various functions available in this package. They identify issues such as unsupported field types, attempts to register malformed commands, and attempting to create a new command with an improper number of parameters. The specific reason for the error can be detected by type asserting it to a *dcrjson.Error and accessing the ErrorKind field. The second category of errors (type RPCError), on the other hand, are useful for returning errors to RPC clients. Consequently, they are used in the previously described Response type. This example demonstrates how to unmarshal a JSON-RPC response and then unmarshal the result field in the response to a concrete type.
Command pigeon generates parsers in Go from a PEG grammar. From Wikipedia [0]: Its features and syntax are inspired by the PEG.js project [1], while the implementation is loosely based on [2]. Formal presentation of the PEG theory by Bryan Ford is also an important reference [3]. An introductory blog post can be found at [4]. The pigeon tool must be called with PEG input as defined by the accepted PEG syntax below. The grammar may be provided by a file or read from stdin. The generated parser is written to stdout by default. The following options can be specified: If the code blocks in the grammar (see below, section "Code block") are golint- and go vet-compliant, then the resulting generated code will also be golint- and go vet-compliant. The generated code doesn't use any third-party dependency unless code blocks in the grammar require such a dependency. The accepted syntax for the grammar is formally defined in the grammar/pigeon.peg file, using the PEG syntax. What follows is an informal description of this syntax. Identifiers, whitespace, comments and literals follow the same notation as the Go language, as defined in the language specification (http://golang.org/ref/spec#Source_code_representation): The grammar must be Unicode text encoded in UTF-8. New lines are identified by the \n character (U+000A). Space (U+0020), horizontal tabs (U+0009) and carriage returns (U+000D) are considered whitespace and are ignored except to separate tokens. A PEG grammar consists of a set of rules. A rule is an identifier followed by a rule definition operator and an expression. An optional display name - a string literal used in error messages instead of the rule identifier - can be specified after the rule identifier. E.g.: The rule definition operator can be any one of those: A rule is defined by an expression. The following sections describe the various expression types. Expressions can be grouped by using parentheses, and a rule can be referenced by its identifier in place of an expression. The choice expression is a list of expressions that will be tested in the order they are defined. The first one that matches will be used. Expressions are separated by the forward slash character "/". E.g.: Because the first match is used, it is important to think about the order of expressions. For example, in this rule, "<=" would never be used because the "<" expression comes first: The sequence expression is a list of expressions that must all match in that same order for the sequence expression to be considered a match. Expressions are separated by whitespace. E.g.: A labeled expression consists of an identifier followed by a colon ":" and an expression. A labeled expression introduces a variable named with the label that can be referenced in the code blocks in the same scope. The variable will have the value of the expression that follows the colon. E.g.: The variable is typed as an empty interface, and the underlying type depends on the following: For terminals (character and string literals, character classes and the any matcher), the value is []byte. E.g.: For predicates (& and !), the value is always nil. E.g.: For a sequence, the value is a slice of empty interfaces, one for each expression value in the sequence. The underlying types of each value in the slice follow the same rules described here, recursively. E.g.: For a repetition (+ and *), the value is a slice of empty interfaces, one for each repetition. The underlying types of each value in the slice follow the same rules described here, recursively. E.g.: For a choice expression, the value is that of the matching choice. E.g.: For the optional expression (?), the value is nil or the value of the expression. E.g.: Of course, the type of the value can be anything once an action code block is used. E.g.: An expression prefixed with the ampersand "&" is the "and" predicate expression: it is considered a match if the following expression is a match, but it does not consume any input. An expression prefixed with the exclamation point "!" is the "not" predicate expression: it is considered a match if the following expression is not a match, but it does not consume any input. E.g.: The expression following the & and ! operators can be a code block. In that case, the code block must return a bool and an error. The operator's semantic is the same, & is a match if the code block returns true, ! is a match if the code block returns false. The code block has access to any labeled value defined in its scope. E.g.: An expression followed by "*", "?" or "+" is a match if the expression occurs zero or more times ("*"), zero or one time "?" or one or more times ("+") respectively. The match is greedy, it will match as many times as possible. E.g. A literal matcher tries to match the input against a single character or a string literal. The literal may be a single-quoted single character, a double-quoted string or a backtick-quoted raw string. The same rules as in Go apply regarding the allowed characters and escapes. The literal may be followed by a lowercase "i" (outside the ending quote) to indicate that the match is case-insensitive. E.g.: A character class matcher tries to match the input against a class of characters inside square brackets "[...]". Inside the brackets, characters represent themselves and the same escapes as in string literals are available, except that the single- and double-quote escape is not valid, instead the closing square bracket "]" must be escaped to be used. Character ranges can be specified using the "[a-z]" notation. Unicode classes can be specified using the "[\pL]" notation, where L is a single-letter Unicode class of characters, or using the "[\p{Class}]" notation where Class is a valid Unicode class (e.g. "Latin"). As for string literals, a lowercase "i" may follow the matcher (outside the ending square bracket) to indicate that the match is case-insensitive. A "^" as first character inside the square brackets indicates that the match is inverted (it is a match if the input does not match the character class matcher). E.g.: The any matcher is represented by the dot ".". It matches any character except the end of file, thus the "!." expression is used to indicate "match the end of file". E.g.: Code blocks can be added to generate custom Go code. There are three kinds of code blocks: the initializer, the action and the predicate. All code blocks appear inside curly braces "{...}". The initializer must appear first in the grammar, before any rule. It is copied as-is (minus the wrapping curly braces) at the top of the generated parser. It may contain function declarations, types, variables, etc. just like any Go file. Every symbol declared here will be available to all other code blocks. Although the initializer is optional in a valid grammar, it is usually required to generate a valid Go source code file (for the package clause). E.g.: Action code blocks are code blocks declared after an expression in a rule. Those code blocks are turned into a method on the "*current" type in the generated source code. The method receives any labeled expression's value as argument (as any) and must return two values, the first being the value of the expression (an any), and the second an error. If a non-nil error is returned, it is added to the list of errors that the parser will return. E.g.: Predicate code blocks are code blocks declared immediately after the and "&" or the not "!" operators. Like action code blocks, predicate code blocks are turned into a method on the "*current" type in the generated source code. The method receives any labeled expression's value as argument (as any) and must return two opt, the first being a bool and the second an error. If a non-nil error is returned, it is added to the list of errors that the parser will return. E.g.: State change code blocks are code blocks starting with "#". In contrast to action and predicate code blocks, state change code blocks are allowed to modify values in the global "state" store (see below). State change code blocks are turned into a method on the "*current" type in the generated source code. The method is passed any labeled expression's value as an argument (of type any) and must return a value of type error. If a non-nil error is returned, it is added to the list of errors that the parser will return, note that the parser does NOT backtrack if a non-nil error is returned. E.g: The "*current" type is a struct that provides four useful fields that can be accessed in action, state change, and predicate code blocks: "pos", "text", "state" and "globalStore". The "pos" field indicates the current position of the parser in the source input. It is itself a struct with three fields: "line", "col" and "offset". Line is a 1-based line number, col is a 1-based column number that counts runes from the start of the line, and offset is a 0-based byte offset. The "text" field is the slice of bytes of the current match. It is empty in a predicate code block. The "state" field is a global store, with backtrack support, of type "map[string]any". The values in the store are tied to the parser's backtracking, in particular if a rule fails to match then all updates to the state that occurred in the process of matching the rule are rolled back. For a key-value store that is not tied to the parser's backtracking, see the "globalStore". The values in the "state" store are available for read access in action and predicate code blocks, any changes made to the "state" store will be reverted once the action or predicate code block is finished running. To update values in the "state" use state change code blocks ("#{}"). IMPORTANT: The "globalStore" field is a global store of type "map[string]any", which allows to store arbitrary values, which are available in action and predicate code blocks for read as well as write access. It is important to notice, that the global store is completely independent from the backtrack mechanism of PEG and is therefore not set back to its old state during backtrack. The initialization of the global store may be achieved by using the GlobalStore function (http://godoc.org/github.com/mna/pigeon/test/predicates#GlobalStore). Be aware, that all keys starting with "_pigeon" are reserved for internal use of pigeon and should not be used nor modified. Those keys are treated as internal implementation details and therefore there are no guarantees given in regards of API stability. With options -support-left-recursion pigeon supports left recursion. E.g.: Supports indirect recursion: The implementation is based on the [Left-recursive PEG Grammars][9] article that links to [Left Recursion in Parsing Expression Grammars][10] and [Packrat Parsers Can Support Left Recursion][11] papers. References: pigeon supports an extension of the classical PEG syntax called failure labels, proposed by Maidl et al. in their paper "Error Reporting in Parsing Expression Grammars" [7]. The used syntax for the introduced expressions is borrowed from their lpeglabel [8] implementation. This extension allows to signal different kinds of errors and to specify, which recovery pattern should handle a given label. With labeled failures it is possible to distinguish between an ordinary failure and an error. Usually, an ordinary failure is produced when the matching of a character fails, and this failure is caught by ordered choice. An error (a non-ordinary failure), by its turn, is produced by the throw operator and may be caught by the recovery operator. In pigeon, the recovery expression consists of the regular expression, the recovery expression and a set of labels to be matched. First, the regular expression is tried. If this fails with one of the provided labels, the recovery expression is tried. If this fails as well, the error is propagated. E.g.: To signal a failure condition, the throw expression is used. E.g.: For concrete examples, how to use throw and recover, have a look at the examples "labeled_failures" and "thrownrecover" in the "test" folder. The implementation of the throw and recover operators work as follows: The failure recover expression adds the recover expression for every failure label to the recovery stack and runs the regular expression. The throw expression checks the recovery stack in reversed order for the provided failure label. If the label is found, the respective recovery expression is run. If this expression is successful, the parser continues the processing of the input. If the recovery expression is not successful, the parsing fails and the parser starts to backtrack. If throw and recover expressions are used together with global state, it is the responsibility of the author of the grammar to reset the global state to a valid state during the recovery operation. The parser generated by pigeon exports a few symbols so that it can be used as a package with public functions to parse input text. The exported API is: See the godoc page of the generated parser for the test/predicates grammar for an example documentation page of the exported API: http://godoc.org/github.com/mna/pigeon/test/predicates. Like the grammar used to generate the parser, the input text must be UTF-8-encoded Unicode. The start rule of the parser is the first rule in the PEG grammar used to generate the parser. A call to any of the Parse* functions returns the value generated by executing the grammar on the provided input text, and an optional error. Typically, the grammar should generate some kind of abstract syntax tree (AST), but for simple grammars it may evaluate the result immediately, such as in the examples/calculator example. There are no constraints imposed on the author of the grammar, it can return whatever is needed. When the parser returns a non-nil error, the error is always of type errList, which is defined as a slice of errors ([]error). Each error in the list is of type *parserError. This is a struct that has an "Inner" field that can be used to access the original error. So if a code block returns some well-known error like: The original error can be accessed this way: By default the parser will continue after an error is returned and will cumulate all errors found during parsing. If the grammar reaches a point where it shouldn't continue, a panic statement can be used to terminate parsing. The panic will be caught at the top-level of the Parse* call and will be converted into a *parserError like any error, and an errList will still be returned to the caller. The divide by zero error in the examples/calculator grammar leverages this feature (no special code is needed to handle division by zero, if it happens, the runtime panics and it is recovered and returned as a parsing error). Providing good error reporting in a parser is not a trivial task. Part of it is provided by the pigeon tool, by offering features such as filename, position, expected literals and rule name in the error message, but an important part of good error reporting needs to be done by the grammar author. For example, many programming languages use double-quotes for string literals. Usually, if the opening quote is found, the closing quote is expected, and if none is found, there won't be any other rule that will match, there's no need to backtrack and try other choices, an error should be added to the list and the match should be consumed. In order to do this, the grammar can look something like this: This is just one example, but it illustrates the idea that error reporting needs to be thought out when designing the grammar. Because the above mentioned error types (errList and parserError) are not exported, additional steps have to be taken, ff the generated parser is used as library package in other packages (e.g. if the same parser is used in multiple command line tools). One possible implementation for exported errors (based on interfaces) and customized error reporting (caret style formatting of the position, where the parsing failed) is available in the json example and its command line tool: http://godoc.org/github.com/mna/pigeon/examples/json Generated parsers have user-provided code mixed with pigeon code in the same package, so there is no package boundary in the resulting code to prevent access to unexported symbols. What is meant to be implementation details in pigeon is also available to user code - which doesn't mean it should be used. For this reason, it is important to precisely define what is intended to be the supported API of pigeon, the parts that will be stable in future versions. The "stability" of the version 1.0 API attempts to make a similar guarantee as the Go 1 compatibility [5]. The following lists what part of the current pigeon code falls under that guarantee (features may be added in the future): The pigeon command-line flags and arguments: those will not be removed and will maintain the same semantics. The explicitly exported API generated by pigeon. See [6] for the documentation of this API on a generated parser. The PEG syntax, as documented above. The code blocks (except the initializer) will always be generated as methods on the *current type, and this type is guaranteed to have the fields pos (type position) and text (type []byte). There are no guarantees on other fields and methods of this type. The position type will always have the fields line, col and offset, all defined as int. There are no guarantees on other fields and methods of this type. The type of the error value returned by the Parse* functions, when not nil, will always be errList defined as a []error. There are no guarantees on methods of this type, other than the fact it implements the error interface. Individual errors in the errList will always be of type *parserError, and this type is guaranteed to have an Inner field that contains the original error value. There are no guarantees on other fields and methods of this type. The above guarantee is given to the version 1.0 (https://github.com/mna/pigeon/releases/tag/v1.0.0) of pigeon, which has entered maintenance mode (bug fixes only). The current master branch includes the development toward a future version 2.0, which intends to further improve pigeon. While the given API stability should be maintained as far as it makes sense, breaking changes may be necessary to be able to improve pigeon. The new version 2.0 API has not yet stabilized and therefore changes to the API may occur at any time. References:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. If you currently use the $GOPATH scheme, install the package with the following command. To test the installation, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package goparquet is an implementation of the parquet file format in Go. It provides functionality to both read and write parquet files, as well as high-level functionality to manage the data schema of parquet files, to directly write Go objects to parquet files using automatic or custom marshalling and to read records from parquet files into Go objects using automatic or custom marshalling. parquet is a file format to store nested data structures in a flat columnar format. By storing in a column-oriented way, it allows for efficient reading of individual columns without having to read and decode complete rows. This allows for efficient reading and faster processing when using the file format in conjunction with distributed data processing frameworks like Apache Hadoop or distributed SQL query engines like Presto and AWS Athena. This particular implementation is divided into several packages. The top-level package that you're currently viewing is the low-level implementation of the file format. It is accompanied by the sub-packages parquetschema and floor. parquetschema provides functionality to parse textual schema definitions as well as the data types to manually or programmatically construct schema definitions by other means that are open to the user. The textual schema definition format is based on the barely documented schema definition format that is implemented in the parquet Java implementation. See the parquetschema sub-package for further documentation on how to use this package and the grammar of the schema definition format as well as examples. floor is a high-level wrapper around the low-level package. It provides functionality to open parquet files to read from them or to write to them. When reading from parquet files, floor takes care of automatically unmarshal the low-level data into the user-provided Go object. When writing to parquet files, user-provided Go objects are first marshalled to a low-level data structure that is then written to the parquet file. These mechanisms allow to directly read and write Go objects without having to deal with the details of the low-level parquet format. Alternatively, marshalling and unmarshalling can be implemented in a custom manner, giving the user maximum flexibility in case of disparities between the parquet schema definition and the actual Go data structure. For more information, please refer to the floor sub-package's documentation. To aid in working with parquet files, this package also provides a commandline tool named "parquet-tool" that allows you to inspect a parquet file's schema, meta data, row count and content as well as to merge and split parquet files. When operating with parquet files, most users should be able to cover their regular use cases of reading and writing files using just the high-level floor package as well as the parquetschema package. Only if a user has more special requirements in how to work with the parquet files, it is advisable to use this low-level package. To write to a parquet file, the type provided by this package is the FileWriter. Create a new *FileWriter object using the NewFileWriter function. You have a number of options available with which you can influence the FileWriter's behaviour. You can use these options to e.g. set meta data, the compression algorithm to use, the schema definition to use, or whether the data should be written in the V2 format. If you didn't set a schema definition, you then need to manually create columns using the functions NewDataColumn, NewListColumn and NewMapColumn, and then add them to the FileWriter by using the AddColumn method. To further structure your data into groups, use AddGroup to create groups. When you add columns to groups, you need to provide the full column name using dotted notation (e.g. "groupname.fieldname") to AddColumn. Using the AddData method, you can then add records. The provided data is of type map[string]interface{}. This data can be nested: to provide data for a repeated field, the data type to use for the map value is []interface{}. When the provided data is a group, the data type for the group itself again needs to be map[string]interface{}. The data within a parquet file is divided into row groups of a certain size. You can either set the desired row group size as a FileWriterOption, or you can manually check the estimated data size of the current row group using the CurrentRowGroupSize method, and use FlushRowGroup to write the data to disk and start a new row group. Please note that CurrentRowGroupSize only estimates the _uncompressed_ data size. If you've enabled compression, it is impossible to predict the compressed data size, so the actual row groups written to disk may be a lot smaller than uncompressed, depending on how efficiently your data can be compressed. When you're done writing, always use the Close method to flush any remaining data and to write the file's footer. To read from files, create a FileReader object using the NewFileReader function. You can optionally provide a list of columns to read. If these are set, only these columns are read from the file, while all other columns are ignored. If no columns are proided, then all columns are read. With the FileReader, you can then go through the row groups (using PreLoad and SkipRowGroup). and iterate through the row data in each row group (using NextRow). To find out how many rows to expect in total and per row group, use the NumRows and RowGroupNumRows methods. The number of row groups can be determined using the RowGroupCount method.
Package config is an encoding-agnostic configuration abstraction. It supports merging multiple configuration files, expanding environment variables, and a variety of other small niceties. It currently supports YAML, but may be extended in the future to support more restrictive encodings like JSON or TOML. It's often convenient to separate configuration into multiple files; for example, an application may want to first load some universally-applicable configuration and then merge in some environment-specific overrides. This package supports this pattern in a variety of ways, all of which use the same merge logic. Simple types (numbers, strings, dates, and anything else YAML would consider a scalar) are merged by replacing lower-priority values with higher-priority overrides. For example, consider this merge of base.yaml and override.yaml: Slices, arrays, and anything else YAML would consider a sequence are also replaced. Again merging base.yaml and override.yaml: Maps are recursively deep-merged, handling scalars and sequences as described above. Consider a merge between a more complex set of YAML files: In all cases, explicit nils (represented in YAML with a tilde) override any pre-existing configuration. For example, By default, the NewYAML constructor enables gopkg.in/yaml.v2's strict unmarshalling mode. This prevents a variety of common programmer errors, especially when deep-merging loosely-typed YAML files. In strict mode, providers throw errors if keys are duplicated in the same configuration source, all keys aren't used when populating a struct, or a merge encounters incompatible data types. This behavior can be disabled with the Permissive option. To maintain backward compatibility, all other constructors default to permissive unmarshalling. YAML allows strings to appear quoted or unquoted, so these two lines are identical: However, the YAML specification special-cases some unquoted strings. Most obviously, true and false are interpreted as Booleans (unless quoted). Less obviously, yes, no, on, off, and many variants of these words are also treated as Booleans (see http://yaml.org/type/bool.html for the complete specification). Correctly deep-merging sources requires this package to unmarshal and then remarshal all YAML, which implicitly converts these special-cased unquoted strings to their canonical representation. For example, Quoting special-cased strings prevents this surprising behavior. Unfortunately, this package was released with a variety of bugs and an overly large API. The internals of the configuration provider have been completely reworked and all known bugs have been addressed, but many duplicative exported functions were retained to preserve backward compatibility. New users should rely on the NewYAML constructor. In particular, avoid NewValue - it's unnecessary, complex, and may panic. Deprecated functions are documented in the format expected by the staticcheck linter, available at https://staticcheck.io/.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package peer provides a common base for creating and managing Decred network peers. This package builds upon the wire package, which provides the fundamental primitives necessary to speak the Decred wire protocol, in order to simplify the process of creating fully functional peers. In essence, it provides a common base for creating concurrent safe fully validating nodes, Simplified Payment Verification (SPV) nodes, proxies, etc. A quick overview of the major features peer provides are as follows: All peer configuration is handled with the Config struct. This allows the caller to specify things such as the user agent name and version, the decred network to use, which services it supports, and callbacks to invoke when decred messages are received. See the documentation for each field of the Config struct for more details. A peer can either be inbound or outbound. The caller is responsible for establishing the connection to remote peers and listening for incoming peers. This provides high flexibility for things such as connecting via proxies, acting as a proxy, creating bridge peers, choosing whether to listen for inbound peers, etc. NewOutboundPeer and NewInboundPeer functions must be followed by calling Connect with a net.Conn instance to the peer. This will start all async I/O goroutines and initiate the protocol negotiation process. Once finished with the peer call Disconnect to disconnect from the peer and clean up all resources. WaitForDisconnect can be used to block until peer disconnection and resource cleanup has completed. In order to do anything useful with a peer, it is necessary to react to decred messages. This is accomplished by creating an instance of the MessageListeners struct with the callbacks to be invoke specified and setting the Listeners field of the Config struct specified when creating a peer to it. For convenience, a callback hook for all of the currently supported decred messages is exposed which receives the peer instance and the concrete message type. In addition, a hook for OnRead is provided so even custom messages types for which this package does not directly provide a hook, as long as they implement the wire.Message interface, can be used. Finally, the OnWrite hook is provided, which in conjunction with OnRead, can be used to track server-wide byte counts. It is often useful to use closures which encapsulate state when specifying the callback handlers. This provides a clean method for accessing that state when callbacks are invoked. The QueueMessage function provides the fundamental means to send messages to the remote peer. As the name implies, this employs a non-blocking queue. A done channel which will be notified when the message is actually sent can optionally be specified. There are certain message types which are better sent using other functions which provide additional functionality. Of special interest are inventory messages. Rather than manually sending MsgInv messages via Queuemessage, the inventory vectors should be queued using the QueueInventory function. It employs batching and trickling along with intelligent known remote peer inventory detection and avoidance through the use of a most-recently used algorithm. In addition to the bare QueueMessage function previously described, the PushAddrMsg, PushGetBlocksMsg, PushGetHeadersMsg, and PushRejectMsg functions are provided as a convenience. While it is of course possible to create and send these message manually via QueueMessage, these helper functions provided additional useful functionality that is typically desired. For example, the PushAddrMsg function automatically limits the addresses to the maximum number allowed by the message and randomizes the chosen addresses when there are too many. This allows the caller to simply provide a slice of known addresses, such as that returned by the addrmgr package, without having to worry about the details. Next, the PushGetBlocksMsg and PushGetHeadersMsg functions will construct proper messages using a block locator and ignore back to back duplicate requests. Finally, the PushRejectMsg function can be used to easily create and send an appropriate reject message based on the provided parameters as well as optionally provides a flag to cause it to block until the message is actually sent. A snapshot of the current peer statistics can be obtained with the StatsSnapshot function. This includes statistics such as the total number of bytes read and written, the remote address, user agent, and negotiated protocol version. This package provides extensive logging capabilities through the UseLogger function which allows a slog.Logger to be specified. For example, logging at the debug level provides summaries of every message sent and received, and logging at the trace level provides full dumps of parsed messages as well as the raw message bytes using a format similar to hexdump -C. This package supports all improvement proposals supported by the wire package. (https://godoc.org/github.com/decred/dcrd/wire#hdr-Bitcoin_Improvement_Proposals) This example demonstrates the basic process for initializing and creating an outbound peer. Peers negotiate by exchanging version and verack messages. For demonstration, a simple handler for version message is attached to the peer.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/v9/_examples Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validataes that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providng reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format Full validation is blocked by https://github.com/golang/crypto/pull/28 This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package peer provides a common base for creating and managing Decred network peers. This package builds upon the wire package, which provides the fundamental primitives necessary to speak the Decred wire protocol, in order to simplify the process of creating fully functional peers. In essence, it provides a common base for creating concurrent safe fully validating nodes, Simplified Payment Verification (SPV) nodes, proxies, etc. A quick overview of the major features peer provides are as follows: All peer configuration is handled with the Config struct. This allows the caller to specify things such as the user agent name and version, the decred network to use, which services it supports, and callbacks to invoke when decred messages are received. See the documentation for each field of the Config struct for more details. A peer can either be inbound or outbound. The caller is responsible for establishing the connection to remote peers and listening for incoming peers. This provides high flexibility for things such as connecting via proxies, acting as a proxy, creating bridge peers, choosing whether to listen for inbound peers, etc. NewOutboundPeer and NewInboundPeer functions must be followed by calling Connect with a net.Conn instance to the peer. This will start all async I/O goroutines and initiate the protocol negotiation process. Once finished with the peer call Disconnect to disconnect from the peer and clean up all resources. WaitForDisconnect can be used to block until peer disconnection and resource cleanup has completed. In order to do anything useful with a peer, it is necessary to react to decred messages. This is accomplished by creating an instance of the MessageListeners struct with the callbacks to be invoke specified and setting the Listeners field of the Config struct specified when creating a peer to it. For convenience, a callback hook for all of the currently supported decred messages is exposed which receives the peer instance and the concrete message type. In addition, a hook for OnRead is provided so even custom messages types for which this package does not directly provide a hook, as long as they implement the wire.Message interface, can be used. Finally, the OnWrite hook is provided, which in conjunction with OnRead, can be used to track server-wide byte counts. It is often useful to use closures which encapsulate state when specifying the callback handlers. This provides a clean method for accessing that state when callbacks are invoked. The QueueMessage function provides the fundamental means to send messages to the remote peer. As the name implies, this employs a non-blocking queue. A done channel which will be notified when the message is actually sent can optionally be specified. There are certain message types which are better sent using other functions which provide additional functionality. Of special interest are inventory messages. Rather than manually sending MsgInv messages via Queuemessage, the inventory vectors should be queued using the QueueInventory function. It employs batching and trickling along with intelligent known remote peer inventory detection and avoidance through the use of a most-recently used algorithm. In addition to the bare QueueMessage function previously described, the PushAddrMsg, PushGetBlocksMsg, and PushGetHeadersMsg functions are provided as a convenience. While it is of course possible to create and send these messages manually via QueueMessage, these helper functions provided additional useful functionality that is typically desired. For example, the PushAddrMsg function automatically limits the addresses to the maximum number allowed by the message and randomizes the chosen addresses when there are too many. This allows the caller to simply provide a slice of known addresses, such as that returned by the addrmgr package, without having to worry about the details. Finally, the PushGetBlocksMsg and PushGetHeadersMsg functions will construct proper messages using a block locator and ignore back to back duplicate requests. A snapshot of the current peer statistics can be obtained with the StatsSnapshot function. This includes statistics such as the total number of bytes read and written, the remote address, user agent, and negotiated protocol version. This package provides extensive logging capabilities through the UseLogger function which allows a slog.Logger to be specified. For example, logging at the debug level provides summaries of every message sent and received, and logging at the trace level provides full dumps of parsed messages as well as the raw message bytes using a format similar to hexdump -C. This package supports all improvement proposals supported by the wire package. This example demonstrates the basic process for initializing and creating an outbound peer. Peers negotiate by exchanging version and verack messages. For demonstration, a simple handler for version message is attached to the peer.
Package nrlogrusplugin decorates logs for sending to the New Relic backend. Use this package if you already send your logs to New Relic and want to enable linking between your APM events and traces with your logs. Since Logrus is completely api-compatible with the stdlib logger, you can replace your `"log"` imports with `log "github.com/sirupsen/logrus"` and follow the steps below to enable the logging product for use with the stdlib Go logger. Using `logger.WithField` (https://godoc.org/github.com/sirupsen/logrus#Logger.WithField) and `logger.WithFields` (https://godoc.org/github.com/sirupsen/logrus#Logger.WithFields) is supported. However, if the field key collides with one of the keys used by the New Relic Formatter, the value will be overwritten. Reserved keys are those found in the `logcontext` package (https://godoc.org/github.com/newrelic/go-agent/v3/integrations/logcontext/#pkg-constants). Supported types for `logger.WithField` and `logger.WithFields` field values are numbers, booleans, strings, and errors. Func types are dropped and all other types are converted to strings. Requires v1.4.0 of the Logrus package or newer. For the best linking experience be sure to enable Distributed Tracing: To enable log decoration, set your log's formatter to the `nrlogrusplugin.ContextFormatter` or if you are using the logrus standard logger The logger will now look for a newrelic.Transaction inside its context and decorate logs accordingly. Therefore, the Transaction must be added to the context and passed to the logger. For example, this logging call must be transformed to include the context, such as: When properly configured, your log statements will be in JSON format with one message per line: If the `trace.id` key is missing, be sure that Distributed Tracing is enabled and that the Transaction context has been added to the logger using `WithContext` (https://godoc.org/github.com/sirupsen/logrus#Logger.WithContext).
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package peer provides a common base for creating and managing Decred network peers. This package builds upon the wire package, which provides the fundamental primitives necessary to speak the Decred wire protocol, in order to simplify the process of creating fully functional peers. In essence, it provides a common base for creating concurrent safe fully validating nodes, Simplified Payment Verification (SPV) nodes, proxies, etc. A quick overview of the major features peer provides are as follows: All peer configuration is handled with the Config struct. This allows the caller to specify things such as the user agent name and version, the decred network to use, which services it supports, and callbacks to invoke when decred messages are received. See the documentation for each field of the Config struct for more details. A peer can either be inbound or outbound. The caller is responsible for establishing the connection to remote peers and listening for incoming peers. This provides high flexibility for things such as connecting via proxies, acting as a proxy, creating bridge peers, choosing whether to listen for inbound peers, etc. NewOutboundPeer and NewInboundPeer functions must be followed by calling Connect with a net.Conn instance to the peer. This will start all async I/O goroutines and initiate the protocol negotiation process. Once finished with the peer call Disconnect to disconnect from the peer and clean up all resources. WaitForDisconnect can be used to block until peer disconnection and resource cleanup has completed. In order to do anything useful with a peer, it is necessary to react to decred messages. This is accomplished by creating an instance of the MessageListeners struct with the callbacks to be invoke specified and setting the Listeners field of the Config struct specified when creating a peer to it. For convenience, a callback hook for all of the currently supported decred messages is exposed which receives the peer instance and the concrete message type. In addition, a hook for OnRead is provided so even custom messages types for which this package does not directly provide a hook, as long as they implement the wire.Message interface, can be used. Finally, the OnWrite hook is provided, which in conjunction with OnRead, can be used to track server-wide byte counts. It is often useful to use closures which encapsulate state when specifying the callback handlers. This provides a clean method for accessing that state when callbacks are invoked. The QueueMessage function provides the fundamental means to send messages to the remote peer. As the name implies, this employs a non-blocking queue. A done channel which will be notified when the message is actually sent can optionally be specified. There are certain message types which are better sent using other functions which provide additional functionality. Of special interest are inventory messages. Rather than manually sending MsgInv messages via Queuemessage, the inventory vectors should be queued using the QueueInventory function. It employs batching and trickling along with intelligent known remote peer inventory detection and avoidance through the use of a most-recently used algorithm. In addition to the bare QueueMessage function previously described, the PushAddrMsg, PushGetBlocksMsg, PushGetHeadersMsg, and PushRejectMsg functions are provided as a convenience. While it is of course possible to create and send these message manually via QueueMessage, these helper functions provided additional useful functionality that is typically desired. For example, the PushAddrMsg function automatically limits the addresses to the maximum number allowed by the message and randomizes the chosen addresses when there are too many. This allows the caller to simply provide a slice of known addresses, such as that returned by the addrmgr package, without having to worry about the details. Next, the PushGetBlocksMsg and PushGetHeadersMsg functions will construct proper messages using a block locator and ignore back to back duplicate requests. Finally, the PushRejectMsg function can be used to easily create and send an appropriate reject message based on the provided parameters as well as optionally provides a flag to cause it to block until the message is actually sent. A snapshot of the current peer statistics can be obtained with the StatsSnapshot function. This includes statistics such as the total number of bytes read and written, the remote address, user agent, and negotiated protocol version. This package provides extensive logging capabilities through the UseLogger function which allows a slog.Logger to be specified. For example, logging at the debug level provides summaries of every message sent and received, and logging at the trace level provides full dumps of parsed messages as well as the raw message bytes using a format similar to hexdump -C. This package supports all improvement proposals supported by the wire package. This example demonstrates the basic process for initializing and creating an outbound peer. Peers negotiate by exchanging version and verack messages. For demonstration, a simple handler for version message is attached to the peer.
Package golangNeo4jBoltDriver implements a driver for the Neo4J Bolt Protocol. The driver is compatible with Golang's sql.driver interface, but aims to implement a more complete featureset in line with what Neo4J and Bolt provides. As such, there are multiple interfaces the user can choose from. It's highly recommended that the user use the Neo4J-specific interfaces as they are more flexible and efficient than the provided sql.driver compatible methods. The interface tries to be consistent throughout. The sql.driver interfaces are standard, but the Neo4J-specific ones contain a naming convention of either "Neo" or "Pipeline". The "Neo" ones are the basic interfaces for making queries to Neo4j and it's expected that these would be used the most. The "Pipeline" ones are to support Bolt's pipelining features. Pipelines allow the user to send Neo4j many queries at once and have them executed by the database concurrently. This is useful if you have a bunch of queries that aren't necessarily dependant on one another, and you want to get better performance. The internal APIs will also pipeline statements where it is able to reliably do so, but by manually using the pipelining feature you can maximize your throughput. The API provides connection pooling using the `NewDriverPool` method. This allows you to pass it the maximum number of open connections to be used in the pool. Once this limit is hit, any new clients will have to wait for a connection to become available again. The sql driver is registered as "neo4j-bolt". The sql.driver interface is much more limited than what bolt and neo4j supports. In some cases, concessions were made in order to make that interface work with the neo4j way of doing things. The main instance of this is the marshalling of objects to/from the sql.driver.Value interface. In order to support object types that aren't supported by this interface, the internal encoding package is used to marshal these objects to byte strings. This ultimately makes for a less efficient and more 'clunky' implementation. A glaring instance of this is passing parameters. Neo4j expects named parameters but the driver interface can only really support positional parameters. To get around this, the user must create a map[string]interface{} of their parameters and marshal it to a driver.Value using the encoding.Marshal function. Similarly, the user must unmarshal data returned from the queries using the encoding.Unmarshal function, then use type assertions to retrieve the proper type. In most cases the driver will return the data from neo as the proper go-specific types. For integers they always come back as int64 and floats always come back as float64. This is for the convenience of the user and acts similarly to go's JSON interface. This prevents the user from having to use reflection to get these values. Internally, the types are always transmitted over the wire with as few bytes as possible. There are also cases where no go-specific type matches the returned values, such as when you query for a node, relationship, or path. The driver exposes specific structs which represent this data in the 'structures.graph' package. There are 4 types - Node, Relationship, UnboundRelationship, and Path. The driver returns interface{} objects which must have their types properly asserted to get the data out. There are some limitations to the types of collections the driver supports. Specifically, maps should always be of type map[string]interface{} and lists should always be of type []interface{}. It doesn't seem that the Bolt protocol supports uint64 either, so the biggest number it can send right now is the int64 max. The URL format is: `bolt://(user):(password)@(host):(port)` Schema must be `bolt`. User and password is only necessary if you are authenticating. TLS is supported by using query parameters on the connection string, like so: `bolt://host:port?tls=true&tls_no_verify=false` The supported query params are: * timeout - the number of seconds to set the connection timeout to. Defaults to 60 seconds. * tls - Set to 'true' or '1' if you want to use TLS encryption * tls_no_verify - Set to 'true' or '1' if you want to accept any server certificate (for testing, not secure) * tls_ca_cert_file - path to a custom ca cert for a self-signed TLS cert * tls_cert_file - path to a cert file for this client (need to verify this is processed by Neo4j) * tls_key_file - path to a key file for this client (need to verify this is processed by Neo4j) Errors returned from the API support wrapping, so if you receive an error from the library, it might be wrapping other errors. You can get the innermost error by using the `InnerMost` method. Failure messages from Neo4J are reported, along with their metadata, as an error. In order to get the failure message metadata from a wrapped error, you can do so by calling `err.(*errors.Error).InnerMost().(messages.FailureMessage).Metadata` If there is an error with the database connection, you should get a sql/driver ErrBadConn as per the best practice recommendations of the Golang SQL Driver. However, this error may be wrapped, so you might have to call `InnerMost` to get it, as specified above.
Package xmlpath implements a strict subset of the XPath specification for the Go language. The XPath specification is available at: Path expressions supported by this package are in the following format, with all components being optional: At the moment, xmlpath is compatible with the XPath specification to the following extent: For example, assuming the following document: The following examples are valid path expressions, and the first match has the indicated value: To run an expression, compile it, and then apply the compiled path to any number of context nodes, from one or more parsed xml documents:
Package fpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates go-pdf/fpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. go-pdf/fpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the go-pdf/fpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the go-pdf/fpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.SummaryCompare() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package rdap implements a client for the Registration Data Access Protocol (RDAP). RDAP is a modern replacement for the text-based WHOIS (port 43) protocol. It provides registration data for domain names/IP addresses/AS numbers, and more, in a structured format. This client executes RDAP queries and returns the responses as Go values. Quick usage: The QueryDomain(), QueryAutnum(), and QueryIP() methods all provide full contact information, and timeout after 30s. Normal usage: As of June 2017, all five number registries (AFRINIC, ARIN, APNIC, LANIC, RIPE) run RDAP servers. A small number of TLDs (top level domains) support RDAP so far, listed on https://data.iana.org/rdap/dns.json. The RDAP protocol uses HTTP, with responses in a JSON format. A bootstrapping mechanism (http://data.iana.org/rdap/) is used to determine the server to query.
Package rdns implements a variety of functionality to make DNS resulution configurable and extensible. It offers DNS resolvers as well as listeners with a number of protcols such as DNS-over-TLS, DNS-over-HTTP, and plain wire format DNS. In addition it is possible to route queries based on the query name or type. There are 4 fundamental types of objects available in this library. Resolvers implement name resolution with upstream resolvers. All of them implement connection reuse as well as pipelining (sending multiple queries and receiving them out-of-order). Groups typically wrap multiple resolvers and implement failover or load-balancing algorithms accross all resolvers in the group. Groups too are resolvers and can therefore be nested into other groups for more complex query routing. Routers are used to send DNS queries to resolvers, groups, or even other routers based on the query content. As with groups, routers too are resolvers that can be combined to form more advanced configurations. While resolvers handle outgoing queries to upstream servers, listeners are the receivers of queries. Multiple listeners can be started for different protocols and on different ports. Each listener forwards received queries to one resolver, group, or router. This example starts a stub resolver on the local machine which will forward all queries via DNS-over-TLS to provide privacy.