Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package tk9.0 is a CGo-free, cross platform GUI toolkit for Go. It is similar to Tkinter for Python. Also available in _examples/hello.go To execute the above program on any supported target issue something like The CGO_ENABLED=0 is optional and here it only demonstrates the program can be built without CGo. Do I need to install the Tcl/Tk libraries on my system to use this package or programs that import it? No. You still have to have a desktop environment installed on systems where that is not necessarily the case by default. That means some of the unix-like systems. Usually installing any desktop environment, like Gnome, Xfce etc. provides all the required library (.so) files. The minimum is the X Window System and this package was tested to work there, although with all the limitations one can expect in this case. Windows: How to build an executable that doesn't open a console window when run? From the documentation for cmd/link: On Windows, -H windowsgui writes a "GUI binary" instead of a "console binary.". To pass the flag to the Go build system use 'go build -ldflags -H=windowsgui somefile.go', for example. What does CGo-free really mean? cgo is a tool used by the Go build system when Go code uses the pseudo-import "C". For technical details please see the link. For us it is important that using CGo ends up invoking a C compiler during building of a Go program/package. The C compiler is used to determine exact, possibly locally dependent, values of C preprocessor constants and other defines, as well as the exact layout of C structs. This enables the Go compiler to correctly handle things like, schematically `C.someStruct.someField` appearing in Go code. At runtime a Go program using CGo must switch stacks when calling into C. Additionally the runtime scheduler is made aware of such calls into C. The former is necessary, the later is not, but it is good to have as it improves performance and provides better resource management. There is an evironment variable defined, `CGO_ENABLED`. When the Go build system compiles Go code, it checks for the value of this env var. If it is not set or its value is "1", then CGo is enabled and used when 'import "C"' is encountered. If the env var contains "0", CGo is disabled and programs using 'import "C"' will not compile. After this longish intro we can finally get to the short answer: CGo-free means this package can be compiled with CGO_ENABLED=0. In other words, there's no 'import "C"' clause anywhere. The consequences of being CGo-free follows from the above. The Go build system does not need to invoke a C compiler when compiling this package. Hence users don't have to have a C compiler installed in their machines. There are advantages when a C compiler is not invoked during compilation/build of Go code. Programs can be installed on all targets supported by this package the easy way: '$ go install example.com/foo@latest' and programs for all supported targets can be cross-compiled on all Go-supported targets just by setting the respective env vars, like performing '$ GOOS=darwin GOARCH=arm64 go build' on a Windows/AMD64 machine, for example. How does this package achieve being CGo-free? The answer depends on the particular target in question. Targets supported by purego call into the Tcl/Tk C libraries without using CGo. See the source code at the link for how it is done. On other targets CGo is avoided by transpiling all the C libraries and their transitive dependencies to Go. In both cases the advantages are the same: CGo-free programs are go-installable and CGo-free programs can be cross-compiled without having a C compiler or a cross-C compiler tool chain installed. Does being CGo-free remove the overhead of crossing the Go-C boundary? For the purego targets, no. Only the C compiler is not involved anymore. For other supported targets the boundary for calling Tcl/Tk C API from Go is gone. No free lunches though, the transpilled code has to care about additional things the C code does not need to - with the respective performance penalties, now just in different places. Consider this program in _examples/debugging.go: Execute the program using the tags as indicated, then close the window or click the Hello button. With the tk.dmesg tag the package initialization prints the debug messages path. So we can view it, for example, like this: 18876 was the process PID in this particular run. Using the tags allows to inspect the Tcl/Tk code executed during the lifetime of the process. These combinations of GOOS and GOARCH are currently supported Specific to FreeBSD: When building with cross-compiling or CGO_ENABLED=0, add the following argument to `go` so that these symbols are defined by making fakecgo the Cgo. Builder results available at modern-c.appspot.com. At the moment the package is a MVP allowing to build at least some simple, yet useful programs. The full Tk API is not yet usable. Please report needed, but non-exposed Tk features at the issue tracker, thanks. Providing feedback about the missing building blocks, bugs and your user experience is invaluable in helping this package to eventually reach version 1. See also RERO. The ErrorMode variable selects the behaviour on errors for certain functions that do not return error. When ErrorMode is PanicOnError, the default, errors will panic, providing a stack trace. When ErrorMode is CollectErrors, errors will be recorded using errors.Join in the Error variable. Even if a function does not return error, it is still possible to handle errors in the usual way when needed, except that Error is now a static variable. That's a problem in the general case, but less so in this package that must be used from a single goroutine only, as documented elsewhere. This is obviously a compromise enabling to have a way to check for errors and, at the same time, the ability to write concise code like: There are altogether four different places where the call to the Button function can produce errors as additionally to the call itself, every of its three arguments can independently fail as well. Checking each and one of them separately is not always necessary in GUI code. But the explicit option in the first example is still available when needed. There is a centralized theme register in Themes. Theme providers can opt in to call RegisterTheme at package initialization to make themes discoverable at run-time. Clients can use ActivateTheme to apply a theme by name. Example in _examples/azure.go. There is a VNC over wbesockets functionality available for X11 backed hosts. See the tk9.0/vnc package for details. Package initialization is done lazily. This saves noticeable additional startup time and avoids screen flicker in hybrid programs that use the GUI only on demand. (For a hybrid example see _examples/ring.go.) Early package initialization can be enforced by Initialize. Initialization will fail if a Unix process starts on a machine with no X server or the process is started in a way that it has no access to the X server. On the other hand, this package may work on Unix machines with no X server if the process is started remotely using '$ ssh -X foo@bar' and the X forwarding is enabled/supported. Darwin port uses the macOS GUI API and does not use X11. Zero or more options can be specified when creating a widget. For example or Tcl/Tk uses widget pathnames, image and font names explicitly set by user code. This package generates those names automatically and they are not directly needed in code that uses this package. There is, for a example, a Tcl/tk 'text' widget and a '-text' option. This package exports the widget as type 'TextWidget', its constructor as function 'Text' and the option as function 'Txt'. The complete list is: This package should be used from the same goroutine that initialized the package. Package initialization performs a runtime.LockOSThread, meaning func main() will start execuing locked on the same OS thread. The Command() and similar options expect an argument that must be one of: - An EventHandler or a function literal of the same signature. - A func(). This can be used when the handler does not need the associated Event instance. When passing an argument of type time.Durarion to a function accepting 'any', the duration is converted to an integer number of milliseconds. When passing an argument of type image.Image to a function accepting 'any', the image is converted to a encoding/base64 encoded string of the PNG representation of the image. When passing an argument of type []byte to a function accepting 'any', the byte slice is converted to a encoding/base64 encoded string. When passing an argument of type []FileType to a function accepting 'any', the slice is converted to the representation the Tcl/Tk -filetypes option expects. At least some minimal knowledge of reading Tcl/Tk code is probably required for using this package and/or using the related documentation. However you will not need to write any Tcl code and you do not need to care about the grammar of Tcl words/string literals and how it differs from Go. There are several Tcl/Tk tutorials available, for example at tutorialspoint. Merge requests for known issues are always welcome. Please send merge requests for new features/APIs after filling and discussing the additions/changes at the issue tracker first. Most of the documentation is generated directly from the Tcl/Tk documentation and may not be entirely correct for the Go package. Those parts hopefully still serve as a quick/offline Tcl/Tk reference. Parts of the documentation are copied and/or modified from the tcl.tk site, see the LICENSE-TCLTK file for details. Parts of the documentation are copied and/or modified from the tkinter.ttk site which is You can support the maintenance and further development of this package at jnml's LiberaPay (using PayPal). "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Menubutton.indicator" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "Treeitem.indicator" style element options: "arrow" style element options: "border" style element options: "downarrow" style element options: "field" style element options: "leftarrow" style element options: "rightarrow" style element options: "slider" style element options: "thumb" style element options: "uparrow" style element options: "alt" theme style list Style map: -foreground {disabled #a3a3a3} -background {disabled #d9d9d9 active #ececec} -embossed {disabled 1} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -border 1 -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -highlightcolor {alternate black} -relief { {pressed !disabled} sunken {active !disabled} raised } Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Style map: -indicatorcolor {pressed #d9d9d9 alternate #aaaaaa disabled #d9d9d9} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} -arrowcolor {disabled #a3a3a3} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Labelframe.border -sticky nswe Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {1.5p 1.5p 0.75p 0}} -background {selected #d9d9d9} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} Style map: -indicatorcolor {pressed #d9d9d9 alternate #aaaaaa disabled #d9d9d9} - - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} -arrowcolor {disabled #a3a3a3} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} -background {pressed #c3c3c3 active #ececec} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled #a3a3a3 selected #ffffff} -background {disabled #d9d9d9 selected #4a6984} Layout: Treeitem.separator -sticky nswe "Button.button" style element options: "Checkbutton.button" style element options: "Combobox.button" style element options: "DisclosureButton.button" style element options: "Entry.field" style element options: "GradientButton.button" style element options: "HelpButton.button" style element options: "Horizontal.Scrollbar.leftarrow" style element options: "Horizontal.Scrollbar.rightarrow" style element options: "Horizontal.Scrollbar.thumb" style element options: "Horizontal.Scrollbar.trough" style element options: "InlineButton.button" style element options: "Labelframe.border" style element options: "Menubutton.button" style element options: "Notebook.client" style element options: "Notebook.tab" style element options: "Progressbar.track" style element options: "Radiobutton.button" style element options: "RecessedButton.button" style element options: "RoundedRectButton.button" style element options: "Scale.slider" style element options: "Scale.trough" style element options: "Searchbox.field" style element options: "SidebarButton.button" style element options: "Spinbox.downarrow" style element options: "Spinbox.field" style element options: "Spinbox.uparrow" style element options: "Toolbar.background" style element options: "Toolbutton.border" style element options: "Treeheading.cell" style element options: "Treeitem.indicator" style element options: "Treeview.treearea" style element options: "Vertical.Scrollbar.downarrow" style element options: "Vertical.Scrollbar.thumb" style element options: "Vertical.Scrollbar.trough" style element options: "Vertical.Scrollbar.uparrow" style element options: "background" style element options: "field" style element options: "fill" style element options: "hseparator" style element options: "separator" style element options: "sizegrip" style element options: "vseparator" style element options: "aqua" theme style list Style map: -selectforeground { background systemSelectedTextColor !focus systemSelectedTextColor} -foreground { disabled systemDisabledControlTextColor background systemLabelColor} -selectbackground { background systemSelectedTextBackgroundColor !focus systemSelectedTextBackgroundColor} Layout: DisclosureButton.button -sticky nswe Layout: GradientButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Layout: Treeheading.cell -sticky nswe Treeheading.image -side right -sticky {} Treeheading.text -side top -sticky {} Layout: HelpButton.button -sticky nswe Layout: Horizontal.Scrollbar.trough -sticky we -children {Horizontal.Scrollbar.thumb -sticky nswe Horizontal.Scrollbar.rightarrow -side right -sticky {} Horizontal.Scrollbar.leftarrow -side right -sticky {}} Layout: Button.padding -sticky nswe -children {Button.label -sticky nswe} Style map: -foreground { pressed systemLabelColor !pressed systemSecondaryLabelColor } Layout: InlineButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -foreground { disabled systemWindowBackgroundColor } Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -side left -sticky {}} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: RecessedButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -font { selected RecessedFont active RecessedFont pressed RecessedFont } -foreground { {disabled selected} systemWindowBackgroundColor3 {disabled !selected} systemDisabledControlTextColor selected systemTextBackgroundColor active white pressed white } Layout: RoundedRectButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Layout: Searchbox.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Layout: SidebarButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -foreground { {disabled selected} systemWindowBackgroundColor3 {disabled !selected} systemDisabledControlTextColor selected systemTextColor active systemTextColor pressed systemTextColor } Layout: Button.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -foreground { pressed white {alternate !pressed !background} white disabled systemDisabledControlTextColor} Layout: Checkbutton.button -sticky nswe -children {Checkbutton.padding -sticky nswe -children {Checkbutton.label -side left -sticky {}}} Layout: Combobox.button -sticky nswe -children {Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -foreground { disabled systemDisabledControlTextColor } -selectbackground { !focus systemUnemphasizedSelectedTextBackgroundColor } Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -foreground { disabled systemDisabledControlTextColor } -selectbackground { !focus systemUnemphasizedSelectedTextBackgroundColor } Layout: Labelframe.border -sticky nswe Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.button -sticky nswe -children {Menubutton.padding -sticky nswe -children {Menubutton.label -side left -sticky {}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -sticky nswe -children {Notebook.label -sticky nswe}} Style map: -foreground { {background !selected} systemControlTextColor {background selected} black {!background selected} systemSelectedTabTextColor disabled systemDisabledControlTextColor} Layout: Progressbar.track -sticky nswe Layout: Radiobutton.button -sticky nswe -children {Radiobutton.padding -sticky nswe -children {Radiobutton.label -side left -sticky {}}} - Layout: Spinbox.buttons -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.field -sticky we -children {Spinbox.textarea -sticky we} Style map: -foreground { disabled systemDisabledControlTextColor } -selectbackground { !focus systemUnemphasizedSelectedTextBackgroundColor } Layout: Notebook.tab -sticky nswe -children {Notebook.padding -sticky nswe -children {Notebook.label -sticky nswe}} Layout: Toolbar.background -sticky nswe Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Layout: Treeview.field -sticky nswe -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -background { selected systemSelectedTextBackgroundColor } Layout: Vertical.Scrollbar.trough -sticky ns -children {Vertical.Scrollbar.thumb -sticky nswe Vertical.Scrollbar.downarrow -side bottom -sticky {} Vertical.Scrollbar.uparrow -side bottom -sticky {}} "Checkbutton.indicator" style element options: "Combobox.field" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "arrow" style element options: "bar" style element options: "border" style element options: "client" style element options: "downarrow" style element options: "field" style element options: "hgrip" style element options: "leftarrow" style element options: "pbar" style element options: "rightarrow" style element options: "slider" style element options: "tab" style element options: "thumb" style element options: "trough" style element options: "uparrow" style element options: "vgrip" style element options: "clam" theme style list Style map: -selectforeground {!focus white} -foreground {disabled #999999} -selectbackground {!focus #9e9a91} -background {disabled #dcdad5 active #eeebe7} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Sash.hsash -sticky nswe -children {Sash.hgrip -sticky nswe} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} - Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -border 1 -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -lightcolor {pressed #bab5ab} -background {disabled #dcdad5 pressed #bab5ab active #eeebe7} -bordercolor {alternate #000000} -darkcolor {pressed #bab5ab} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Style map: -indicatorbackground {pressed #dcdad5 {!disabled alternate} #5895bc {disabled alternate} #a0a0a0 disabled #dcdad5} Layout: Combobox.downarrow -side right -sticky ns Combobox.field -sticky nswe -children {Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -foreground {{readonly focus} #ffffff} -fieldbackground {{readonly focus} #4a6984 readonly #dcdad5} -background {active #eeebe7 pressed #eeebe7} -bordercolor {focus #4a6984} -arrowcolor {disabled #999999} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -lightcolor {focus #6f9dc6} -background {readonly #dcdad5} -bordercolor {focus #4a6984} Layout: Labelframe.border -sticky nswe Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -lightcolor {selected #eeebe7 {} #cfcdc8} -padding {selected {4.5p 3p 4.5p 1.5p}} -background {selected #dcdad5 {} #bab5ab} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} Style map: -indicatorbackground {pressed #dcdad5 {!disabled alternate} #5895bc {disabled alternate} #a0a0a0 disabled #dcdad5} - - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -background {readonly #dcdad5} -bordercolor {focus #4a6984} -arrowcolor {disabled #999999} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -lightcolor {pressed #bab5ab} -relief {disabled flat selected sunken pressed sunken active raised} -background {disabled #dcdad5 pressed #bab5ab active #eeebe7} -darkcolor {pressed #bab5ab} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled #999999 selected #ffffff} -background {disabled #dcdad5 selected #4a6984} -bordercolor {focus #4a6984} Layout: Treeitem.separator -sticky nswe Layout: Sash.vsash -sticky nswe -children {Sash.vgrip -sticky nswe} "Button.border" style element options: "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Menubutton.indicator" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "arrow" style element options: "downarrow" style element options: "highlight" style element options: "hsash" style element options: "leftarrow" style element options: "rightarrow" style element options: "slider" style element options: "uparrow" style element options: "vsash" style element options: "classic" theme style list Style map: -highlightcolor {focus black} -foreground {disabled #a3a3a3} -background {disabled #d9d9d9 active #ececec} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Horizontal.Scale.highlight -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.slider -side left -sticky {}}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} - Layout: Treeitem.separator -sticky nswe Layout: Button.highlight -sticky nswe -children {Button.border -sticky nswe -border 1 -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -relief {{!disabled pressed} sunken} Layout: Checkbutton.highlight -sticky nswe -children {Checkbutton.border -sticky nswe -children {Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.label -side left -sticky nswe}}} Style map: -indicatorrelief {alternate raised selected sunken pressed sunken} -indicatorcolor {pressed #d9d9d9 alternate #b05e5e selected #b03060} Layout: Combobox.highlight -sticky nswe -children {Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Entry.highlight -sticky nswe -children {Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Labelframe.border -sticky nswe Layout: Menubutton.highlight -sticky nswe -children {Menubutton.border -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -sticky {}}}} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -background {selected #d9d9d9} - Layout: Radiobutton.highlight -sticky nswe -children {Radiobutton.border -sticky nswe -children {Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.label -side left -sticky nswe}}} Style map: -indicatorrelief {alternate raised selected sunken pressed sunken} -indicatorcolor {pressed #d9d9d9 alternate #b05e5e selected #b03060} Style map: -sliderrelief {{pressed !disabled} sunken} Style map: -relief {{pressed !disabled} sunken} Layout: Spinbox.highlight -sticky nswe -children {Spinbox.field -sticky nswe -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.focus -sticky nswe -children {Toolbutton.border -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} -background {pressed #b3b3b3 active #ececec} Layout: Treeview.highlight -sticky nswe -children {Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}}} Style map: -foreground {disabled #a3a3a3 selected #000000} -background {disabled #d9d9d9 selected #c3c3c3} Layout: Treeitem.separator -sticky nswe Layout: Vertical.Scale.highlight -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.slider -side top -sticky {}}} "" style element options: "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Menubutton.indicator" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "Treeheading.cell" style element options: "Treeitem.indicator" style element options: "Treeitem.row" style element options: "Treeitem.separator" style element options: "arrow" style element options: "background" style element options: "border" style element options: "client" style element options: "ctext" style element options: "downarrow" style element options: "field" style element options: "fill" style element options: "focus" style element options: "hsash" style element options: "hseparator" style element options: "image" style element options: "indicator" style element options: "label" style element options: "leftarrow" style element options: "padding" style element options: "pbar" style element options: "rightarrow" style element options: "separator" style element options: "sizegrip" style element options: "slider" style element options: "tab" style element options: "text" style element options: "textarea" style element options: "thumb" style element options: "treearea" style element options: "trough" style element options: "uparrow" style element options: "vsash" style element options: "vseparator" style element options: "default" theme style list Style map: -foreground {disabled #a3a3a3} -background {disabled #edeceb active #ececec} Layout: Treedata.padding -sticky nswe -children {Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Sash.hsash -sticky we Layout: Horizontal.Progressbar.trough -sticky nswe -children {Horizontal.Progressbar.pbar -side left -sticky ns Horizontal.Progressbar.ctext -side left -sticky {}} Layout: Horizontal.Scale.focus -sticky nswe -children {Horizontal.Scale.padding -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.slider -side left -sticky {}}}} Layout: Horizontal.Scrollbar.trough -sticky we -children {Horizontal.Scrollbar.leftarrow -side left -sticky {} Horizontal.Scrollbar.rightarrow -side right -sticky {} Horizontal.Scrollbar.thumb -sticky nswe} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.row -sticky nswe - Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -border 1 -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -relief {{!disabled pressed} sunken} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Style map: -indicatorbackground {{alternate disabled} #a3a3a3 {alternate pressed} #5895bc alternate #4a6984 {selected disabled} #a3a3a3 {selected pressed} #5895bc selected #4a6984 disabled #edeceb pressed #c3c3c3} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #edeceb disabled #edeceb} -arrowcolor {disabled #a3a3a3} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -fieldbackground {readonly #edeceb disabled #edeceb} Layout: Frame.border -sticky nswe Layout: Label.border -sticky nswe -border 1 -children {Label.padding -sticky nswe -border 1 -children {Label.label -sticky nswe}} Layout: Labelframe.border -sticky nswe Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Style map: -arrowcolor {disabled #a3a3a3} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -highlightcolor {selected #4a6984} -highlight {selected 1} -background {selected #edeceb} Layout: Panedwindow.background -sticky {} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} Style map: -indicatorbackground {{alternate disabled} #a3a3a3 {alternate pressed} #5895bc alternate #4a6984 {selected disabled} #a3a3a3 {selected pressed} #5895bc selected #4a6984 disabled #edeceb pressed #c3c3c3} Style map: -outercolor {active #ececec} Style map: -arrowcolor {disabled #a3a3a3} Layout: Separator.separator -sticky nswe Layout: Sizegrip.sizegrip -side bottom -sticky se Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #edeceb disabled #edeceb} -arrowcolor {disabled #a3a3a3} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} -background {pressed #c3c3c3 active #ececec} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled #a3a3a3 selected #ffffff} -background {disabled #edeceb selected #4a6984} Layout: Treeitem.separator -sticky nswe Layout: Sash.vsash -sticky ns Layout: Vertical.Progressbar.trough -sticky nswe -children {Vertical.Progressbar.pbar -side bottom -sticky we} Layout: Vertical.Scale.focus -sticky nswe -children {Vertical.Scale.padding -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.slider -side top -sticky {}}}} Layout: Vertical.Scrollbar.trough -sticky ns -children {Vertical.Scrollbar.uparrow -side top -sticky {} Vertical.Scrollbar.downarrow -side bottom -sticky {} Vertical.Scrollbar.thumb -sticky nswe}PASS "Combobox.background" style element options: "Combobox.border" style element options: "Combobox.rightdownarrow" style element options: "ComboboxPopdownFrame.background" style element options: "Entry.background" style element options: "Entry.field" style element options: "Horizontal.Progressbar.pbar" style element options: "Horizontal.Scale.slider" style element options: "Horizontal.Scrollbar.grip" style element options: "Horizontal.Scrollbar.leftarrow" style element options: "Horizontal.Scrollbar.rightarrow" style element options: "Horizontal.Scrollbar.thumb" style element options: "Horizontal.Scrollbar.trough" style element options: "Menubutton.dropdown" style element options: "Spinbox.background" style element options: "Spinbox.downarrow" style element options: "Spinbox.field" style element options: "Spinbox.innerbg" style element options: "Spinbox.uparrow" style element options: "Vertical.Progressbar.pbar" style element options: "Vertical.Scale.slider" style element options: "Vertical.Scrollbar.downarrow" style element options: "Vertical.Scrollbar.grip" style element options: "Vertical.Scrollbar.thumb" style element options: "Vertical.Scrollbar.trough" style element options: "Vertical.Scrollbar.uparrow" style element options: "vista" theme style list Style map: -foreground {disabled SystemGrayText} Layout: ComboboxPopdownFrame.background -sticky nswe -border 1 -children {ComboboxPopdownFrame.padding -sticky nswe} Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Horizontal.Progressbar.trough -sticky nswe -children {Horizontal.Progressbar.pbar -side left -sticky ns Horizontal.Progressbar.ctext -sticky nswe} Layout: Scale.focus -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.track -sticky we Horizontal.Scale.slider -side left -sticky {}}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.button -sticky nswe -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Layout: Combobox.border -sticky nswe -children {Combobox.rightdownarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.background -sticky nswe -children {Combobox.focus -sticky nswe -children {Combobox.textarea -sticky nswe}}}} Style map: -focusfill {{readonly focus} SystemHighlight} -foreground {disabled SystemGrayText {readonly focus} SystemHighlightText} -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Entry.field -sticky nswe -children {Entry.background -sticky nswe -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.dropdown -side right -sticky ns Menubutton.button -sticky nswe -children {Menubutton.padding -sticky we -children {Menubutton.label -sticky {}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {2 2 2 2}} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} - Layout: Spinbox.field -sticky nswe -children {Spinbox.background -sticky nswe -children {Spinbox.padding -sticky nswe -children {Spinbox.innerbg -sticky nswe -children {Spinbox.textarea -sticky nswe}} Spinbox.uparrow -side top -sticky nse Spinbox.downarrow -side bottom -sticky nse}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled SystemGrayText selected SystemHighlightText} -background {disabled SystemButtonFace selected SystemHighlight} Layout: Treeitem.separator -sticky nswe Layout: Vertical.Progressbar.trough -sticky nswe -children {Vertical.Progressbar.pbar -side bottom -sticky we} Layout: Scale.focus -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.track -sticky ns Vertical.Scale.slider -side top -sticky {}}} "Button.border" style element options: "Checkbutton.indicator" style element options: "Combobox.focus" style element options: "ComboboxPopdownFrame.border" style element options: "Radiobutton.indicator" style element options: "Scrollbar.trough" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "border" style element options: "client" style element options: "downarrow" style element options: "field" style element options: "focus" style element options: "leftarrow" style element options: "rightarrow" style element options: "sizegrip" style element options: "slider" style element options: "tab" style element options: "thumb" style element options: "uparrow" style element options: "winnative" theme style list Style map: -foreground {disabled SystemGrayText} -embossed {disabled 1} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -relief {{!disabled pressed} sunken} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.focus -sticky nswe -children {Combobox.textarea -sticky nswe}}} Style map: -focusfill {{readonly focus} SystemHighlight} -foreground {disabled SystemGrayText {readonly focus} SystemHighlightText} -selectforeground {!focus SystemWindowText} -fieldbackground {readonly SystemButtonFace disabled SystemButtonFace} -selectbackground {!focus SystemWindow} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} -fieldbackground {readonly SystemButtonFace disabled SystemButtonFace} Layout: Labelframe.border -sticky nswe Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {2 2 2 0}} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled SystemGrayText selected SystemHighlightText} -background {disabled SystemButtonFace selected SystemHighlight} Layout: Treeitem.separator -sticky nswe "Button.button" style element options: "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Combobox.field" style element options: "Entry.field" style element options: "Horizontal.Progressbar.pbar" style element options: "Horizontal.Progressbar.trough" style element options: "Horizontal.Scale.slider" style element options: "Horizontal.Scale.track" style element options: "Horizontal.Scrollbar.grip" style element options: "Horizontal.Scrollbar.thumb" style element options: "Horizontal.Scrollbar.trough" style element options: "Labelframe.border" style element options: "Menubutton.button" style element options: "Menubutton.dropdown" style element options: "NotebookPane.background" style element options: "Radiobutton.indicator" style element options: "Scale.trough" style element options: "Scrollbar.downarrow" style element options: "Scrollbar.leftarrow" style element options: "Scrollbar.rightarrow" style element options: "Scrollbar.uparrow" style element options: "Spinbox.downarrow" style element options: "Spinbox.field" style element options: "Spinbox.uparrow" style element options: "Toolbutton.border" style element options: "Treeheading.border" style element options: "Treeitem.indicator" style element options: "Treeview.field" style element options: "Vertical.Progressbar.pbar" style element options: "Vertical.Progressbar.trough" style element options: "Vertical.Scale.slider" style element options: "Vertical.Scale.track" style element options: "Vertical.Scrollbar.grip" style element options: "Vertical.Scrollbar.thumb" style element options: "Vertical.Scrollbar.trough" style element options: "client" style element options: "sizegrip" style element options: "tab" style element options: "xpnative" theme style list Style map: -foreground {disabled SystemGrayText} Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Scale.focus -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.track -sticky we Horizontal.Scale.slider -side left -sticky {}}} Layout: Horizontal.Scrollbar.trough -sticky we -children {Horizontal.Scrollbar.leftarrow -side left -sticky {} Horizontal.Scrollbar.rightarrow -side right -sticky {} Horizontal.Scrollbar.thumb -sticky nswe -unit 1 -children {Horizontal.Scrollbar.grip -sticky {}}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.button -sticky nswe -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.focus -sticky nswe -children {Combobox.textarea -sticky nswe}}} Style map: -focusfill {{readonly focus} SystemHighlight} -foreground {disabled SystemGrayText {readonly focus} SystemHighlightText} -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.dropdown -side right -sticky ns Menubutton.button -sticky nswe -children {Menubutton.padding -sticky we -children {Menubutton.label -sticky {}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {2 2 2 2}} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} - - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled SystemGrayText selected SystemHighlightText} -background {disabled SystemButtonFace selected SystemHighlight} Layout: Treeitem.separator -sticky nswe Layout: Scale.focus -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.track -sticky ns Vertical.Scale.slider -side top -sticky {}}} Layout: Vertical.Scrollbar.trough -sticky ns -children {Vertical.Scrollbar.uparrow -side top -sticky {} Vertical.Scrollbar.downarrow -side bottom -sticky {} Vertical.Scrollbar.thumb -sticky nswe -unit 1 -children {Vertical.Scrollbar.grip -sticky {}}}PASS
Package validate provides methods to validate a swagger specification, as well as tools to validate data against their schema. This package follows Swagger 2.0. specification (aka OpenAPI 2.0). Reference can be found here: https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md. Validates a spec document (from JSON or YAML) against the JSON schema for swagger, then checks a number of extra rules that can't be expressed in JSON schema. Entry points: Reported as errors: Reported as warnings: The schema validation toolkit validates data against JSON-schema-draft 04 schema. It is tested against the full json-schema-testing-suite (https://github.com/json-schema-org/JSON-Schema-Test-Suite), except for the optional part (bignum, ECMA regexp, ...). It supports the complete JSON-schema vocabulary, including keywords not supported by Swagger (e.g. additionalItems, ...) Entry points: With the current version of this package, the following aspects of swagger are not yet supported:
Package assert, for writing checks in unit tests This package provides functions to reduce the amount of code needed to write simple assertions. It implements the best practice pattern where the output of a failure explains what the check "got" and what it wanted. The assert functions are defined such that writing requires less code but still are easy to understand. It works by decorating the standard testing.T type in your test and report (Fatal) the offending asserting call if a check fails. Example which will report Examples: (using the dot import) You can create and use your own checks by implementing the RelationalOperator.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Schob is a client for "shovey", a mechanism for pushing jobs to client nodes. Currently it's specific to goiardi, but a more general implementation is planned. Running schob requires a goiardi server (both to send jobs to the schob client, and for the schob client to send reports to) and serf running with the goiardi server and on every client node that will run shovey jobs. The `knife-shove` plugin from https://github.com/ctdk/knife-shove is required to submit and administer shovey jobs. Schob has the following golang dependencies outside of the standard library: go-flags, toml, logger, the go-chef chef library, serf, go-uuid, and the chefcrypto library from goiardi (only for tests). The easiest way to install these dependencies is to include the `-t` flag when using `go get` to install schob. The easiest way to install schob is with the shovey-jobs cookbook, located at https://github.com/ctdk/shovey-jobs. At the moment it only supports Debian, though, so for now installing on non-Debian platforms will have to install schob by hand. If you already have a binary you can skip to number 2. 0. Set up go and configure go. (http://golang.org/doc/install.html) Alternately, if you downloaded a precompiled binary, put that binary somewhere in your PATH. 3. Make sure goiardi is running on its server, along with serf, and that it's configured to use serf and shovey. You will also need to make the RSA public/private key pair for signing and verifying shovey jobs. 4. Start up serf on the node, making sure that it joins the same serf cluster goairdi's serf is running in. 5. Make sure the shovey signing public RSA key is installed on the node. 6. Create a whitelist.json file for the node, with whitelisted jobs that are allowed to run on the node. See the example whitelist.json file in `test/whitelist.json` for guidance. 7. Run schob. Schob can take a configuration file (an example is provided in `test/schob-example.conf`, or it can use the following command line options: Once schob is running on a node, run jobs on it with the `knife-shove` plugin. The full documentation for that can be found at https://github.com/ctdk/knife-shove, but here's a cheat sheet: 1. Fork the repository on Github 2. Create a named feature branch (like `add_component_x`) 3. Write your change 4. Write tests for your change (if applicable) 5. Run the tests, ensuring they all pass 6. Submit a Pull Request using Github * goiardi (https://github.com/ctdk/goiardi) * knife-shove (https://github.com/ctdk/knife-shove) * shovey-jobs cookbook (https://github.com/ctdk/shovey-jobs) * Goiardi's shovey documentation (https://github.com/ctdk/goiardi/blob/serfing/README.md#shovey) * Shovey API documentation (https://github.com/ctdk/goiardi/blob/serfing/shovey_api.md) Jeremy Bingham (<jbingham@gmail.com>) Schob is licensed under the Apache 2.0 License. See the LICENSE file for details. "Schob" is German for "shoved".
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
The Bolo Monitoring and Analytics Daemon bmad is an agent designed to execute monitoring and analytics checks at periodic configured intervals, submitting results up to a Bolo server. --config, -c FILE --test, -t --match, -m REGEX --noop, -n --help, -h Profiling: --cpuprofile --memprofile --blockprofile bmad configs are YAML config files, describing global configuration, as well as all the checks that should be run. Below is an example configuration with all available directives filled in with their defaults: Any files ending in '.conf' in the include_dir directory will be automatically loaded as additional hashes of check configurations, which are merged in with any found in the main config file. If there are any duplicate check names found, the earliest seen takes precedence. Running checks is the primary purpose of bmad. Checks are scheduled, and run. Once complete, their standard output is captured and sent up to bolo. In addition to this, metadata regarding the check execution will automatically be sent up to bolo, to enable easier monitoring of the monitoring system. If the check is a bulk check, and is configured to do so, its return code will be processed, and a STATE result will be sent up to bolo as well. As you may have surmised by now, checks come in two flavors: regular, and bulk. Regular checks are single events, usually reporting the STATE of a specific thing and perhaps some related COUNTERS or SAMPLES. Bulk checks generally run a whole bunch of tests, and submit a large amount of performance data up to bolo. Bulk checks are always run at their regular interval, and circumvent bmad's retry logic, As mentioned above, they also can be configured to have their success/failure submitted up as a STATE message. Checks share many directives as the main config file, to override the global defaults. Any check-specific settings take precedence over the global values (since that's generally what one would expect of an override). For the case of environment variables, the hash of environment variables is merged together, with any conflicts being chosen in favor of the check-specific value. Below are all the available check configuration directives: For proper retry and status submission, checks must exit with an exit code that indicates its STATE, according to the following values: Here's a real world example of /etc/bmad.conf: And an example /etc/bmad.d/sar.conf NOTE: the /etc/bmad.d/sar.conf file has checks defined at the top level of the file, and does not contain a 'checks' key, like /etc/bmad.conf. Written by Geoff Franks <geoff.franks@gmail.com>
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. However, support is provided to translate UTF-8 runes to code page encodings. This package's code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Bruno Michel has provided valuable assistance with the code. The FPDF website is http://www.fpdf.org/. gofpdf is copyrighted by Kurt Jung and is released under the MIT License. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF. See the tutorials in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test" is the production of the tutorial PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. See tutorial 7 for an example. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool.
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/IlyaLab/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/IlyaLab/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/IlyaLab/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/IlyaLab/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. However, support is provided to translate UTF-8 runes to code page encodings. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Additionally, he augmented the basic HTML functionality with aligned text. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retreived with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. However, support is provided to translate UTF-8 runes to code page encodings. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Additionally, he augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retreived with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Command godedup finds duplicates files and turns them to hardlinks if possible. *Be careful*, godedup is dump. It won't check if the files reside on the same filesystem. You are supposed to run it on folders and files in the same filesystem. Usage, test run, only report what we find: Usage, full run, replace duplicates with hard links:
The gotype command does syntactic and semantic analysis of Go files and packages like the front-end of a Go compiler. Errors are reported if the analysis fails; otherwise gotype is quiet (unless -v is set). Without a list of paths, gotype reads from standard input, which must provide a single Go source file defining a complete package. If a single path is specified that is a directory, gotype checks the Go files in that directory; they must all belong to the same package. Otherwise, each path must be the filename of Go file belonging to the same package. Usage: The flags are: Debugging flags: Examples: To check the files a.go, b.go, and c.go: To check an entire package in the directory dir and print the processed files: To check an entire package including tests in the local directory: To verify the output of a pipe:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. However, support is provided to translate UTF-8 runes to code page encodings. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename and summary. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. Contributions that do not directly pertain to the core functionality of gofpdf should be placed in their own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retreived with the output call where it can be handled by the application.
Package cgi implements the common gateway interface (CGI) for Caddy 2, a modern, full-featured, easy-to-use web server. It has been forked from the fantastic work of Kurt Jung who wrote that plugin for Caddy 1. This plugin lets you generate dynamic content on your website by means of command line scripts. To collect information about the inbound HTTP request, your script examines certain environment variables such as PATH_INFO and QUERY_STRING. Then, to return a dynamically generated web page to the client, your script simply writes content to standard output. In the case of POST requests, your script reads additional inbound content from standard input. The advantage of CGI is that you do not need to fuss with server startup and persistence, long term memory management, sockets, and crash recovery. Your script is called when a request matches one of the patterns that you specify in your Caddyfile. As soon as your script completes its response, it terminates. This simplicity makes CGI a perfect complement to the straightforward operation and configuration of Caddy. The benefits of Caddy, including HTTPS by default, basic access authentication, and lots of middleware options extend easily to your CGI scripts. CGI has some disadvantages. For one, Caddy needs to start a new process for each request. This can adversely impact performance and, if resources are shared between CGI applications, may require the use of some interprocess synchronization mechanism such as a file lock. Your server’s responsiveness could in some circumstances be affected, such as when your web server is hit with very high demand, when your script’s dependencies require a long startup, or when concurrently running scripts take a long time to respond. However, in many cases, such as using a pre-compiled CGI application like fossil or a Lua script, the impact will generally be insignificant. Another restriction of CGI is that scripts will be run with the same permissions as Caddy itself. This can sometimes be less than ideal, for example when your script needs to read or write files associated with a different owner. Serving dynamic content exposes your server to more potential threats than serving static pages. There are a number of considerations of which you should be aware when using CGI applications. CGI scripts should be located outside of Caddy’s document root. Otherwise, an inadvertent misconfiguration could result in Caddy delivering the script as an ordinary static resource. At best, this could merely confuse the site visitor. At worst, it could expose sensitive internal information that should not leave the server. Mistrust the contents of PATH_INFO, QUERY_STRING and standard input. Most of the environment variables available to your CGI program are inherently safe because they originate with Caddy and cannot be modified by external users. This is not the case with PATH_INFO, QUERY_STRING and, in the case of POST actions, the contents of standard input. Be sure to validate and sanitize all inbound content. If you use a CGI library or framework to process your scripts, make sure you understand its limitations. An error in a CGI application is generally handled within the application itself and reported in the headers it returns. Your CGI application can be executed directly or indirectly. In the direct case, the application can be a compiled native executable or it can be a shell script that contains as its first line a shebang that identifies the interpreter to which the file’s name should be passed. Caddy must have permission to execute the application. On Posix systems this will mean making sure the application’s ownership and permission bits are set appropriately; on Windows, this may involve properly setting up the filename extension association. In the indirect case, the name of the CGI script is passed to an interpreter such as lua, perl or python. - This module needs to be installed (obviously). - The directive needs to be registered in the Caddyfile: The basic cgi directive lets you add a handler in the current caddy router location with a given script and optional arguments. The matcher is a default caddy matcher that is used to restrict the scope of this directive. The directive can be repeated any reasonable number of times. Here is the basic syntax: For example: When a request such as https://example.com/report or https://example.com/report/weekly arrives, the cgi middleware will detect the match and invoke the script named /usr/local/cgi-bin/report. The current working directory will be the same as Caddy itself. Here, it is assumed that the script is self-contained, for example a pre-compiled CGI application or a shell script. Here is an example of a standalone script, similar to one used in the cgi plugin’s test suite: The environment variables PATH_INFO and QUERY_STRING are populated and passed to the script automatically. There are a number of other standard CGI variables included that are described below. If you need to pass any special environment variables or allow any environment variables that are part of Caddy’s process to pass to your script, you will need to use the advanced directive syntax described below. Beware that in Caddy v2 it is (currently) not possible to separate the path left of the matcher from the full URL. Therefore if you require your CGI program to know the SCRIPT_NAME, make sure to pass that explicitly: In order to specify custom environment variables, pass along one or more environment variables known to Caddy, or specify more than one match pattern for a given rule, you will need to use the advanced directive syntax. That looks like this: For example, The script_name subdirective helps the cgi module to separate the path to the script from the (virtual) path afterwards (which shall be passed to the script). env can be used to define a list of key=value environment variable pairs that shall be passed to the script. pass_env can be used to define a list of environment variables of the Caddy process that shall be passed to the script. If your CGI application runs properly at the command line but fails to run from Caddy it is possible that certain environment variables may be missing. For example, the ruby gem loader evidently requires the HOME environment variable to be set; you can do this with the subdirective pass_env HOME. Another class of problematic applications require the COMPUTERNAME variable. The pass_all_env subdirective instructs Caddy to pass each environment variable it knows about to the CGI excutable. This addresses a common frustration that is caused when an executable requires an environment variable and fails without a descriptive error message when the variable cannot be found. These applications often run fine from the command prompt but fail when invoked with CGI. The risk with this subdirective is that a lot of server information is shared with the CGI executable. Use this subdirective only with CGI applications that you trust not to leak this information. If you run into unexpected results with the CGI plugin, you are able to examine the environment in which your CGI application runs. To enter inspection mode, add the subdirective inspect to your CGI configuration block. This is a development option that should not be used in production. When in inspection mode, the plugin will respond to matching requests with a page that displays variables of interest. In particular, it will show the replacement value of {match} and the environment variables to which your CGI application has access. For example, consider this example CGI block: When you request a matching URL, for example, the Caddy server will deliver a text page similar to the following. The CGI application (in this case, wapptclsh) will not be called. This information can be used to diagnose problems with how a CGI application is called. To return to operation mode, remove or comment out the inspect subdirective. In this example, the Caddyfile looks like this: Note that a request for /show gets mapped to a script named /usr/local/cgi-bin/report/gen. There is no need for any element of the script name to match any element of the match pattern. The contents of /usr/local/cgi-bin/report/gen are: The purpose of this script is to show how request information gets communicated to a CGI script. Note that POST data must be read from standard input. In this particular case, posted data gets stored in the variable POST_DATA. Your script may use a different method to read POST content. Secondly, the SCRIPT_EXEC variable is not a CGI standard. It is provided by this middleware and contains the entire command line, including all arguments, with which the CGI script was executed. When a browser requests the response looks like When a client makes a POST request, such as with the following command the response looks the same except for the following lines: This small example demonstrates how to write a CGI program in Go. The use of a bytes.Buffer makes it easy to report the content length in the CGI header. When this program is compiled and installed as /usr/local/bin/servertime, the following directive in your Caddy file will make it available:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package bender makes it easy to build load testing applications for services using protocols like HTTP, Thrift, Protocol Buffers and many others. Bender provides two different approaches to load testing. The first, LoadTestThroughput, gives the tester control over the throughput (QPS), but not over the concurrency (number of goroutines). The second, LoadTestConcurrency, gives the tester control over the concurrency, but not over the throughput. LoadTestThroughput simulates the load caused by concurrent clients sending requests to a service. It can be used to simulate a target throughput (QPS) and to measure the request latency and error rate at that throughput. The load tester will keep spawning goroutines to send requests, even if the service is sending errors or hanging, making this a good way to test the actual behavior of the service under heavy load. This is the same approach used by Twitter's Iago library, and is nearly always the right place to start when load testing services exposed (directly or indirectly) to the Internet. LoadTestConcurrency simulates a fixed number of clients, each of which sends a request, waits for a response and then repeats. The downside to this approach is that increased latency from the service results in decreased throughput from the load tester, as the simulated clients are all waiting for responses. That makes this a poor way to test services, as real-world traffic doesn't behave this way. The best use for this function is to test services that need to handle a lot of concurrent connections, and for which you need to simulate many connections to test resource limits, latency and other metrics. This approach is used by load testers like the Grinder and JMeter, and has been critiqued well by Gil Tene in his talk "How Not To Measure Latency". The next two sections provide more detail on the implementations of LoadTestThroughput and LoadTestConcurrency. The following sections provide descriptions for the common arguments to the load testing functions, and how they work, including the interval generators, request generators, request executors and event recorders. The LoadTestThroughput function takes four arguments. The first is a function that generates nanosecond intervals which are used as request arrival times. The second is a channel of requests. The third is a function that knows how to send a request and validate the response. The inner loop of LoadTestThroughput looks like this: The fourth argument to LoadTestThroughput is a channel which is used to output events. There are events for the start and end of the load test, the sending of each request and the receiving of each response and the wait time between sending requests. The wait message includes an "overage" time which is useful for monitoring the health of the load test program and underlying OS and host. The overage time measures the difference between the expected wait time (the interval time) and the actual wait time. On a heavily loaded host, or when there are long GC pauses, that difference can be large. Bender attempts to compensate for the overage by reducing the subsequent wait times, but under heavy load, the overage will continue to increase until it cannot be compensated for. At that point the wait events will report a monotonically increasing overage which means the load test isn't keeping up with the desired throughput. A load test ends when the request channel is closed and all remaining requests in the channel have been executed. The LoadTestConcurrency function takes four arguments. The first is a semaphore that controls the maximum number of concurrently executing requests, and makes it possible to dynamically control that number over the lifetime of the load test. The second, third and fourth arguments are identical to those for LoadTestThroughput. The inner loop of LoadTestConcurrency does something like this: Reducing the semaphore count will reduce the number of running connections as existing connections complete, so there can be some lag between calling workerSem.Wait(n) and the number of running connections actually decreasing by n. The worker semaphore does not protect you from reducing the number of workers below zero, which will cause undefined behavior from the load tester. As with LoadTestThroughput, the load test ends when the request channel is closed and all remaining requests have been executed. An IntervalGenerator is a function that takes the current Unix epoch time (in nanoseconds) and returns a non-negative time (also in nanoseconds) until the next request should be sent. Bender provides functions to create interval generators for uniform and exponential distributions, each of which takes the target throughput (requests per second) and returns an IntervalGenerator. Neither of the included generators makes use of the function argument, but it is there for cases in which the simulated intervals are time dependent (you want to simulate the daily traffice variation of a web site, for example). The request channel decouples creation of requests from execution of requests and allows them to run concurrently. A typical approach to creating a request channel is code like this: Requests can be generated randomly, read from files (like access logs) or generated any other way you like. The important part is that the request generation be done in a separate goroutine that communicates with the load tester via a channel. In addition, the channel must be closed to indicate that the load test is done. The requests channel should almost certainly be buffered, unless you can generate requests much faster than they are sent (and not just on average). The easiest way to miss your target throughput with LoadTestThroughput is to be blocked waiting for requests to be generated, particularly when testing a large throughput. A request executor is a function that takes the current Unix Epoch time (in nanoseconds) and a *Request, sends the request to the service, waits for the response, optionally validates it and returns an error or nil. This function is timed by the load tester, so it should do as little else as possible, and everything it does will be added to the reported service latency. Here, for example, is a very simple request executor for HTTP requests: The http package in Bender provides a function that generates executors that make use of the http packages Transport and Client classes and provide an easy way to validate the body of the http request. RequestExecutors are called concurrently from multiple goroutines, and must be concurrency-safe. The LoadTestThroughput and LoadTestConcurrency functions both take a channel of events (represented as interface{}) as a parameter. This channel is used to output events as they happen during the load test, including the following events: StartEvent: sent once at the start of the load test. EndEvent: sent once at the end of the load test, no more events are sent after this. WaitEvent: sent only for LoadTestThroughput, see below for details. StartRequestEvent: sent before a request is sent to the service, includes the request and the event time. Note that the event time is not the same as the start time for the request for stupid performance reasons. If you need to know the actual start time, see the EndRequestEvent. EndRequestEvent: sent after a request has finished, includes the response, the actual start and end times for the request and any error returned by the RequestExecutor. The WaitEvent includes the time until the next request is sent (in nanoseconds) and an "overage" time. When the inner loop sleeps, it subtracts the total time slept from the time it intended to sleep, and adds that to the overage. The overage, therefore, is a good proxy for how overloaded the load testing host is. If it grows over time, that means the load test is falling behind, and can't start enough goroutines to run all the requests it needs to. In that case you will need a more powerful load testing host, or need to distribute the load test across more hosts. The event channel doesn't need to be buffered, but it may help if you find that Bender isn't sending as much throughput as you expect. In general, this depends a lot on how quickly you are consuming events from the channel, and how quickly the load tester is running. It is a good practice to proactively buffer this channel.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. However, support is provided to translate UTF-8 runes to code page encodings. This package's code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Bruno Michel has provided valuable assistance with the code. The FPDF website is http://www.fpdf.org/. gofpdf is copyrighted by Kurt Jung and is released under the MIT License. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF. See the tutorials in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test" is the production of the tutorial PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. See tutorial 7 for an example. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package bender makes it easy to build load testing applications for services using protocols like HTTP, Thrift, Protocol Buffers and many others. Bender provides two different approaches to load testing. The first, LoadTestThroughput, gives the tester control over the throughput (QPS), but not over the concurrency (number of goroutines). The second, LoadTestConcurrency, gives the tester control over the concurrency, but not over the throughput. LoadTestThroughput simulates the load caused by concurrent clients sending requests to a service. It can be used to simulate a target throughput (QPS) and to measure the request latency and error rate at that throughput. The load tester will keep spawning goroutines to send requests, even if the service is sending errors or hanging, making this a good way to test the actual behavior of the service under heavy load. This is the same approach used by Twitter's Iago library, and is nearly always the right place to start when load testing services exposed (directly or indirectly) to the Internet. LoadTestConcurrency simulates a fixed number of clients, each of which sends a request, waits for a response and then repeats. The downside to this approach is that increased latency from the service results in decreased throughput from the load tester, as the simulated clients are all waiting for responses. That makes this a poor way to test services, as real-world traffic doesn't behave this way. The best use for this function is to test services that need to handle a lot of concurrent connections, and for which you need to simulate many connections to test resource limits, latency and other metrics. This approach is used by load testers like the Grinder and JMeter, and has been critiqued well by Gil Tene in his talk "How Not To Measure Latency". The next two sections provide more detail on the implementations of LoadTestThroughput and LoadTestConcurrency. The following sections provide descriptions for the common arguments to the load testing functions, and how they work, including the interval generators, request generators, request executors and event recorders. The LoadTestThroughput function takes four arguments. The first is a function that generates nanosecond intervals which are used as request arrival times. The second is a channel of requests. The third is a function that knows how to send a request and validate the response. The inner loop of LoadTestThroughput looks like this: The fourth argument to LoadTestThroughput is a channel which is used to output events. There are events for the start and end of the load test, the sending of each request and the receiving of each response and the wait time between sending requests. The wait message includes an "overage" time which is useful for monitoring the health of the load test program and underlying OS and host. The overage time measures the difference between the expected wait time (the interval time) and the actual wait time. On a heavily loaded host, or when there are long GC pauses, that difference can be large. Bender attempts to compensate for the overage by reducing the subsequent wait times, but under heavy load, the overage will continue to increase until it cannot be compensated for. At that point the wait events will report a monotonically increasing overage which means the load test isn't keeping up with the desired throughput. A load test ends when the request channel is closed and all remaining requests in the channel have been executed. The LoadTestConcurrency function takes four arguments. The first is a semaphore that controls the maximum number of concurrently executing requests, and makes it possible to dynamically control that number over the lifetime of the load test. The second, third and fourth arguments are identical to those for LoadTestThroughput. The inner loop of LoadTestConcurrency does something like this: Reducing the semaphore count will reduce the number of running connections as existing connections complete, so there can be some lag between calling workerSem.Wait(n) and the number of running connections actually decreasing by n. The worker semaphore does not protect you from reducing the number of workers below zero, which will cause undefined behavior from the load tester. As with LoadTestThroughput, the load test ends when the request channel is closed and all remaining requests have been executed. An IntervalGenerator is a function that takes the current Unix epoch time (in nanoseconds) and returns a non-negative time (also in nanoseconds) until the next request should be sent. Bender provides functions to create interval generators for uniform and exponential distributions, each of which takes the target throughput (requests per second) and returns an IntervalGenerator. Neither of the included generators makes use of the function argument, but it is there for cases in which the simulated intervals are time dependent (you want to simulate the daily traffice variation of a web site, for example). The request channel decouples creation of requests from execution of requests and allows them to run concurrently. A typical approach to creating a request channel is code like this: Requests can be generated randomly, read from files (like access logs) or generated any other way you like. The important part is that the request generation be done in a separate goroutine that communicates with the load tester via a channel. In addition, the channel must be closed to indicate that the load test is done. The requests channel should almost certainly be buffered, unless you can generate requests much faster than they are sent (and not just on average). The easiest way to miss your target throughput with LoadTestThroughput is to be blocked waiting for requests to be generated, particularly when testing a large throughput. A request executor is a function that takes the current Unix Epoch time (in nanoseconds) and a *Request, sends the request to the service, waits for the response, optionally validates it and returns an error or nil. This function is timed by the load tester, so it should do as little else as possible, and everything it does will be added to the reported service latency. Here, for example, is a very simple request executor for HTTP requests: The http package in Bender provides a function that generates executors that make use of the http packages Transport and Client classes and provide an easy way to validate the body of the http request. RequestExecutors are called concurrently from multiple goroutines, and must be concurrency-safe. The LoadTestThroughput and LoadTestConcurrency functions both take a channel of events (represented as interface{}) as a parameter. This channel is used to output events as they happen during the load test, including the following events: StartEvent: sent once at the start of the load test. EndEvent: sent once at the end of the load test, no more events are sent after this. WaitEvent: sent only for LoadTestThroughput, see below for details. StartRequestEvent: sent before a request is sent to the service, includes the request and the event time. Note that the event time is not the same as the start time for the request for stupid performance reasons. If you need to know the actual start time, see the EndRequestEvent. EndRequestEvent: sent after a request has finished, includes the response, the actual start and end times for the request and any error returned by the RequestExecutor. The WaitEvent includes the time until the next request is sent (in nanoseconds) and an "overage" time. When the inner loop sleeps, it subtracts the total time slept from the time it intended to sleep, and adds that to the overage. The overage, therefore, is a good proxy for how overloaded the load testing host is. If it grows over time, that means the load test is falling behind, and can't start enough goroutines to run all the requests it needs to. In that case you will need a more powerful load testing host, or need to distribute the load test across more hosts. The event channel doesn't need to be buffered, but it may help if you find that Bender isn't sending as much throughput as you expect. In general, this depends a lot on how quickly you are consuming events from the channel, and how quickly the load tester is running. It is a good practice to proactively buffer this channel.
Package golangNeo4jBoltDriver implements a driver for the Neo4J Bolt Protocol. The driver is compatible with Golang's sql.driver interface, but aims to implement a more complete featureset in line with what Neo4J and Bolt provides. As such, there are multiple interfaces the user can choose from. It's highly recommended that the user use the Neo4J-specific interfaces as they are more flexible and efficient than the provided sql.driver compatible methods. The interface tries to be consistent throughout. The sql.driver interfaces are standard, but the Neo4J-specific ones contain a naming convention of either "Neo" or "Pipeline". The "Neo" ones are the basic interfaces for making queries to Neo4j and it's expected that these would be used the most. The "Pipeline" ones are to support Bolt's pipelining features. Pipelines allow the user to send Neo4j many queries at once and have them executed by the database concurrently. This is useful if you have a bunch of queries that aren't necessarily dependant on one another, and you want to get better performance. The internal APIs will also pipeline statements where it is able to reliably do so, but by manually using the pipelining feature you can maximize your throughput. The API provides connection pooling using the `NewDriverPool` method. This allows you to pass it the maximum number of open connections to be used in the pool. Once this limit is hit, any new clients will have to wait for a connection to become available again. The sql driver is registered as "neo4j-bolt". The sql.driver interface is much more limited than what bolt and neo4j supports. In some cases, concessions were made in order to make that interface work with the neo4j way of doing things. The main instance of this is the marshalling of objects to/from the sql.driver.Value interface. In order to support object types that aren't supported by this interface, the internal encoding package is used to marshal these objects to byte strings. This ultimately makes for a less efficient and more 'clunky' implementation. A glaring instance of this is passing parameters. Neo4j expects named parameters but the driver interface can only really support positional parameters. To get around this, the user must create a map[string]interface{} of their parameters and marshal it to a driver.Value using the encoding.Marshal function. Similarly, the user must unmarshal data returned from the queries using the encoding.Unmarshal function, then use type assertions to retrieve the proper type. In most cases the driver will return the data from neo as the proper go-specific types. For integers they always come back as int64 and floats always come back as float64. This is for the convenience of the user and acts similarly to go's JSON interface. This prevents the user from having to use reflection to get these values. Internally, the types are always transmitted over the wire with as few bytes as possible. There are also cases where no go-specific type matches the returned values, such as when you query for a node, relationship, or path. The driver exposes specific structs which represent this data in the 'structures.graph' package. There are 4 types - Node, Relationship, UnboundRelationship, and Path. The driver returns interface{} objects which must have their types properly asserted to get the data out. There are some limitations to the types of collections the driver supports. Specifically, maps should always be of type map[string]interface{} and lists should always be of type []interface{}. It doesn't seem that the Bolt protocol supports uint64 either, so the biggest number it can send right now is the int64 max. The URL format is: `bolt://(user):(password)@(host):(port)` Schema must be `bolt`. User and password is only necessary if you are authenticating. TLS is supported by using query parameters on the connection string, like so: `bolt://host:port?tls=true&tls_no_verify=false` The supported query params are: * timeout - the number of seconds to set the connection timeout to. Defaults to 60 seconds. * tls - Set to 'true' or '1' if you want to use TLS encryption * tls_no_verify - Set to 'true' or '1' if you want to accept any server certificate (for testing, not secure) * tls_ca_cert_file - path to a custom ca cert for a self-signed TLS cert * tls_cert_file - path to a cert file for this client (need to verify this is processed by Neo4j) * tls_key_file - path to a key file for this client (need to verify this is processed by Neo4j) Errors returned from the API support wrapping, so if you receive an error from the library, it might be wrapping other errors. You can get the innermost error by using the `InnerMost` method. Failure messages from Neo4J are reported, along with their metadata, as an error. In order to get the failure message metadata from a wrapped error, you can do so by calling `err.(*errors.Error).InnerMost().(messages.FailureMessage).Metadata` If there is an error with the database connection, you should get a sql/driver ErrBadConn as per the best practice recommendations of the Golang SQL Driver. However, this error may be wrapped, so you might have to call `InnerMost` to get it, as specified above.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/haalcala/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
[](http://godoc.org/github.com/weeyum/saml) [](https://travis-ci.org/crewjam/saml) Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/weeyum/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package bender makes it easy to build load testing applications for services using protocols like HTTP, Thrift, Protocol Buffers and many others. Bender provides two different approaches to load testing. The first, LoadTestThroughput, gives the tester control over the throughput (QPS), but not over the concurrency (number of goroutines). The second, LoadTestConcurrency, gives the tester control over the concurrency, but not over the throughput. LoadTestThroughput simulates the load caused by concurrent clients sending requests to a service. It can be used to simulate a target throughput (QPS) and to measure the request latency and error rate at that throughput. The load tester will keep spawning goroutines to send requests, even if the service is sending errors or hanging, making this a good way to test the actual behavior of the service under heavy load. This is the same approach used by Twitter's Iago library, and is nearly always the right place to start when load testing services exposed (directly or indirectly) to the Internet. LoadTestConcurrency simulates a fixed number of clients, each of which sends a request, waits for a response and then repeats. The downside to this approach is that increased latency from the service results in decreased throughput from the load tester, as the simulated clients are all waiting for responses. That makes this a poor way to test services, as real-world traffic doesn't behave this way. The best use for this function is to test services that need to handle a lot of concurrent connections, and for which you need to simulate many connections to test resource limits, latency and other metrics. This approach is used by load testers like the Grinder and JMeter, and has been critiqued well by Gil Tene in his talk "How Not To Measure Latency". The next two sections provide more detail on the implementations of LoadTestThroughput and LoadTestConcurrency. The following sections provide descriptions for the common arguments to the load testing functions, and how they work, including the interval generators, request generators, request executors and event recorders. The LoadTestThroughput function takes four arguments. The first is a function that generates nanosecond intervals which are used as request arrival times. The second is a channel of requests. The third is a function that knows how to send a request and validate the response. The inner loop of LoadTestThroughput looks like this: The fourth argument to LoadTestThroughput is a channel which is used to output events. There are events for the start and end of the load test, the sending of each request and the receiving of each response and the wait time between sending requests. The wait message includes an "overage" time which is useful for monitoring the health of the load test program and underlying OS and host. The overage time measures the difference between the expected wait time (the interval time) and the actual wait time. On a heavily loaded host, or when there are long GC pauses, that difference can be large. Bender attempts to compensate for the overage by reducing the subsequent wait times, but under heavy load, the overage will continue to increase until it cannot be compensated for. At that point the wait events will report a monotonically increasing overage which means the load test isn't keeping up with the desired throughput. A load test ends when the request channel is closed and all remaining requests in the channel have been executed. The LoadTestConcurrency function takes four arguments. The first is a semaphore that controls the maximum number of concurrently executing requests, and makes it possible to dynamically control that number over the lifetime of the load test. The second, third and fourth arguments are identical to those for LoadTestThroughput. The inner loop of LoadTestConcurrency does something like this: Reducing the semaphore count will reduce the number of running connections as existing connections complete, so there can be some lag between calling workerSem.Wait(n) and the number of running connections actually decreasing by n. The worker semaphore does not protect you from reducing the number of workers below zero, which will cause undefined behavior from the load tester. As with LoadTestThroughput, the load test ends when the request channel is closed and all remaining requests have been executed. An IntervalGenerator is a function that takes the current Unix epoch time (in nanoseconds) and returns a non-negative time (also in nanoseconds) until the next request should be sent. Bender provides functions to create interval generators for uniform and exponential distributions, each of which takes the target throughput (requests per second) and returns an IntervalGenerator. Neither of the included generators makes use of the function argument, but it is there for cases in which the simulated intervals are time dependent (you want to simulate the daily traffice variation of a web site, for example). The request channel decouples creation of requests from execution of requests and allows them to run concurrently. A typical approach to creating a request channel is code like this: Requests can be generated randomly, read from files (like access logs) or generated any other way you like. The important part is that the request generation be done in a separate goroutine that communicates with the load tester via a channel. In addition, the channel must be closed to indicate that the load test is done. The requests channel should almost certainly be buffered, unless you can generate requests much faster than they are sent (and not just on average). The easiest way to miss your target throughput with LoadTestThroughput is to be blocked waiting for requests to be generated, particularly when testing a large throughput. A request executor is a function that takes the current Unix Epoch time (in nanoseconds) and a *Request, sends the request to the service, waits for the response, optionally validates it and returns an error or nil. This function is timed by the load tester, so it should do as little else as possible, and everything it does will be added to the reported service latency. Here, for example, is a very simple request executor for HTTP requests: The http package in Bender provides a function that generates executors that make use of the http packages Transport and Client classes and provide an easy way to validate the body of the http request. RequestExecutors are called concurrently from multiple goroutines, and must be concurrency-safe. The LoadTestThroughput and LoadTestConcurrency functions both take a channel of events (represented as interface{}) as a parameter. This channel is used to output events as they happen during the load test, including the following events: StartEvent: sent once at the start of the load test. EndEvent: sent once at the end of the load test, no more events are sent after this. WaitEvent: sent only for LoadTestThroughput, see below for details. StartRequestEvent: sent before a request is sent to the service, includes the request and the event time. Note that the event time is not the same as the start time for the request for stupid performance reasons. If you need to know the actual start time, see the EndRequestEvent. EndRequestEvent: sent after a request has finished, includes the response, the actual start and end times for the request and any error returned by the RequestExecutor. The WaitEvent includes the time until the next request is sent (in nanoseconds) and an "overage" time. When the inner loop sleeps, it subtracts the total time slept from the time it intended to sleep, and adds that to the overage. The overage, therefore, is a good proxy for how overloaded the load testing host is. If it grows over time, that means the load test is falling behind, and can't start enough goroutines to run all the requests it needs to. In that case you will need a more powerful load testing host, or need to distribute the load test across more hosts. The event channel doesn't need to be buffered, but it may help if you find that Bender isn't sending as much throughput as you expect. In general, this depends a lot on how quickly you are consuming events from the channel, and how quickly the load tester is running. It is a good practice to proactively buffer this channel.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package cfa implements communication with Crystalfontz LCDs such as CFA-631 and CFA-635, without use of CGO. In addition, this package supports keypress events and menus. The following can be found beginning on Pg 34, CFA631_Data_Sheet_Release_2014-11-17.pdf. All packets have the following structure: type is one byte, and identifies the type and function of the packet: data_length specifies the number of bytes that will follow in the data field. The valid range of data_length is 0 to 22. data is the payload of the packet. Each type of packet will have a specified data_length and format for data as well as algorithms for decoding data detailed below. CRC is a standard 16-bit CRC of all the bytes in the packet except the CRC itself. The CRC is sent LSB first. At the port, the CRC immediately follows the last used element of data []. See Sample Algorithms To Calculate The CRC (Pg. 66) for details. The following C definition may be useful for understanding the packet structure. While the documentation can be interpreted as saying the packet size is fixed, it is not; there is never padding between the last valid data byte and the crc, and the packet length is always data_length+4. Crystalfontz claims above that the CRC used is standard, but a bit of googling leads me to the conclusion that there is no such thing. There are myriad variations of 16-bit CRC with different constants, and the sites discussing it tend to disagree on which constants are used by which protocols. Very few standards actually include any test vectors. Crystalfontz' own data sheets for the 631 and 635 include a test vector in one example... but the output listed does not match the value computed by the "crystalfontz linux example", which is able to talk to the LCD. The CFA-631 and XES-635BK-TML-KU work fine, but the XES-635BK-TMF-KU can hang or otherwise lose packets. By far the most effective workaround seems to be to minimize the number of packets sent. Of course, that's not possible beyond a certain point without throwing usability out the window. We have shipped some XES-635BK-TFE-KU. The only difference from the TMF should be the display/backlight color, so those are likely to have the same issues as TMF. Key event reports (and responses to the key poll command) are written to an event channel for async read. Only key releases are considered. Reading key press events or keys being held down (only seen when polling) would not be difficult, but handling them with the menu would complicate things.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package httpexpect helps with end-to-end HTTP and REST API testing. See example directory: There are two common ways to test API with httpexpect: The second approach works only if the server is a Go module and its handler can be imported in tests. Concrete behaviour is determined by Client implementation passed to Config struct. If you're using http.Client, set its Transport field (http.RoundTriper) to one of the following: Note that http handler can be usually obtained from http framework you're using. E.g., echo framework provides either http.Handler or fasthttp.RequestHandler. You can also provide your own implementation of RequestFactory (creates http.Request), or Client (gets http.Request and returns http.Response). If you're starting server from tests, it's very handy to use net/http/httptest. Whenever values are checked for equality in httpexpect, they are converted to "canonical form": This is equivalent to subsequently json.Marshal() and json.Unmarshal() the value and currently is implemented so. When some check fails, failure is reported. If non-fatal failures are used (see Reporter interface), execution is continued and instance that was checked is marked as failed. If specific instance is marked as failed, all subsequent checks are ignored for this instance and for any child instances retrieved after failure. Example:
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).