Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package httpexpect helps with end-to-end HTTP and REST API testing. See example directory: There are two common ways to test API with httpexpect: The second approach works only if the server is a Go module and its handler can be imported in tests. Concrete behaviour is determined by Client implementation passed to Config struct. If you're using http.Client, set its Transport field (http.RoundTriper) to one of the following: Note that http handler can be usually obtained from http framework you're using. E.g., echo framework provides either http.Handler or fasthttp.RequestHandler. You can also provide your own implementation of RequestFactory (creates http.Request), or Client (gets http.Request and returns http.Response). If you're starting server from tests, it's very handy to use net/http/httptest. Whenever values are checked for equality in httpexpect, they are converted to "canonical form": This is equivalent to subsequently json.Marshal() and json.Unmarshal() the value and currently is implemented so. When some check fails, failure is reported. If non-fatal failures are used (see Reporter interface), execution is continued and instance that was checked is marked as failed. If specific instance is marked as failed, all subsequent checks are ignored for this instance and for any child instances retrieved after failure. Example:
Package httpexpect helps with end-to-end HTTP and REST API testing. See example directory: There are two common ways to test API with httpexpect: The second approach works only if the server is a Go module and its handler can be imported in tests. Concrete behaviour is determined by Client implementation passed to Config struct. If you're using http.Client, set its Transport field (http.RoundTriper) to one of the following: Note that http handler can be usually obtained from http framework you're using. E.g., echo framework provides either http.Handler or fasthttp.RequestHandler. You can also provide your own implementation of RequestFactory (creates http.Request), or Client (gets http.Request and returns http.Response). If you're starting server from tests, it's very handy to use net/http/httptest. Whenever values are checked for equality in httpexpect, they are converted to "canonical form": This is equivalent to subsequently json.Marshal() and json.Unmarshal() the value and currently is implemented so. When some check fails, failure is reported. If non-fatal failures are used (see Reporter interface), execution is continued and instance that was checked is marked as failed. If specific instance is marked as failed, all subsequent checks are ignored for this instance and for any child instances retrieved after failure. Example: If you want to be informed about every asserion made, successful or failed, you can use AssertionHandler interface. Default implementation of this interface ignores successful assertions and reports failed assertions using Formatter and Reporter objects. Custom AssertionHandler can handle all assertions (e.g. dump them in JSON format) and is free to use or not to use Formatter and Reporter in its sole discretion.
Package httpexpect helps with end-to-end HTTP and REST API testing. See example directory: There are two common ways to test API with httpexpect: The second approach works only if the server is a Go module and its handler can be imported in tests. Concrete behaviour is determined by Client implementation passed to Config struct. If you're using http.Client, set its Transport field (http.RoundTriper) to one of the following: Note that http handler can be usually obtained from http framework you're using. E.g., echo framework provides either http.Handler or fasthttp.RequestHandler. You can also provide your own implementation of RequestFactory (creates http.Request), or Client (gets http.Request and returns http.Response). If you're starting server from tests, it's very handy to use net/http/httptest. Whenever values are checked for equality in httpexpect, they are converted to "canonical form": This is equivalent to subsequently json.Marshal() and json.Unmarshal() the value and currently is implemented so. When some check fails, failure is reported. If non-fatal failures are used (see Reporter interface), execution is continued and instance that was checked is marked as failed. If specific instance is marked as failed, all subsequent checks are ignored for this instance and for any child instances retrieved after failure. Example:
Package ql implements a pure Go embedded SQL database engine. QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (github.com/cznic/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors github.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. An identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example No identifiers are predeclared, however note that no keyword can be used as an identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Pact Go enables consumer driven contract testing, providing a mock service and DSL for the consumer project, and interaction playback and verification for the service provider project. Consumer side Pact testing is an isolated test that ensures a given component is able to collaborate with another (remote) component. Pact will automatically start a Mock server in the background that will act as the collaborators' test double. This implies that any interactions expected on the Mock server will be validated, meaning a test will fail if all interactions were not completed, or if unexpected interactions were found: A typical consumer-side test would look something like this: If this test completed successfully, a Pact file should have been written to ./pacts/my_consumer-my_provider.json containing all of the interactions expected to occur between the Consumer and Provider. In addition to verbatim value matching, you have 3 useful matching functions in the `dsl` package that can increase expressiveness and reduce brittle test cases. Here is a complex example that shows how all 3 terms can be used together: This example will result in a response body from the mock server that looks like: See the examples in the dsl package and the matcher tests (https://github.com/pact-foundation/pact-go/blob/master/dsl/matcher_test.go) for more matching examples. NOTE: You will need to use valid Ruby regular expressions (http://ruby-doc.org/core-2.1.5/Regexp.html) and double escape backslashes. Read more about flexible matching (https://github.com/pact-foundation/pact-ruby/wiki/Regular-expressions-and-type-matching-with-Pact. Provider side Pact testing, involves verifying that the contract - the Pact file - can be satisfied by the Provider. A typical Provider side test would like something like: The `VerifyProvider` will handle all verifications, treating them as subtests and giving you granular test reporting. If you don't like this behaviour, you may call `VerifyProviderRaw` directly and handle the errors manually. Note that `PactURLs` may be a list of local pact files or remote based urls (possibly from a Pact Broker - http://docs.pact.io/documentation/sharings_pacts.html). Pact reads the specified pact files (from remote or local sources) and replays the interactions against a running Provider. If all of the interactions are met we can say that both sides of the contract are satisfied and the test passes. When validating a Provider, you have 3 options to provide the Pact files: 1. Use "PactURLs" to specify the exact set of pacts to be replayed: Options 2 and 3 are particularly useful when you want to validate that your Provider is able to meet the contracts of what's in Production and also the latest in development. See this [article](http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) for more on this strategy. Each interaction in a pact should be verified in isolation, with no context maintained from the previous interactions. So how do you test a request that requires data to exist on the provider? Provider states are how you achieve this using Pact. Provider states also allow the consumer to make the same request with different expected responses (e.g. different response codes, or the same resource with a different subset of data). States are configured on the consumer side when you issue a dsl.Given() clause with a corresponding request/response pair. Configuring the provider is a little more involved, and (currently) requires running an API endpoint to configure any [provider states](http://docs.pact.io/documentation/provider_states.html) during the verification process. The option you must provide to the dsl.VerifyRequest is: An example route using the standard Go http package might look like this: See the examples or read more at http://docs.pact.io/documentation/provider_states.html. See the Pact Broker (http://docs.pact.io/documentation/sharings_pacts.html) documentation for more details on the Broker and this article (http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) on how to make it work for you. Publishing using Go code: Publishing from the CLI: Use a cURL request like the following to PUT the pact to the right location, specifying your consumer name, provider name and consumer version. The following flags are required to use basic authentication when publishing or retrieving Pact files to/from a Pact Broker: Pact Go uses a simple log utility (logutils - https://github.com/hashicorp/logutils) to filter log messages. The CLI already contains flags to manage this, should you want to control log level in your tests, you can set it like so:
Package sqlite is a sql/database driver using a CGo-free port of the C SQLite3 library. SQLite is an in-process implementation of a self-contained, serverless, zero-configuration, transactional SQL database engine. When you import this package you should use in your go.mod file the exact same version of modernc.org/libc as seen in the go.mod file of this repository. See the discussion at https://gitlab.com/cznic/sqlite/-/issues/177 for more details. This project is sponsored by Schleibinger Geräte Teubert u. Greim GmbH by allowing one of the maintainers to work on it also in office hours. These combinations of GOOS and GOARCH are currently supported Builder results available at: https://modern-c.appspot.com/-/builder/?importpath=modernc.org%2fsqlite 2024-11-16 v1.34.0: Implement ResetSession and IsValid methods in connection 2024-07-22 v1.31.0: Support windows/386. 2024-06-04 v1.30.0: Upgrade to SQLite 3.46.0, release notes at https://sqlite.org/releaselog/3_46_0.html. 2024-02-13 v1.29.0: Upgrade to SQLite 3.45.1, release notes at https://sqlite.org/releaselog/3_45_1.html. 2023-12-14: v1.28.0: Add (*Driver).RegisterConnectionHook, ConnectionHookFn, ExecQuerierContext, RegisterConnectionHook. 2023-08-03 v1.25.0: enable SQLITE_ENABLE_DBSTAT_VTAB. 2023-07-11 v1.24.0: Add (*conn).{Serialize,Deserialize,NewBackup,NewRestore} methods, add Backup type. 2023-06-01 v1.23.0: Allow registering aggregate functions. 2023-04-22 v1.22.0: Support linux/s390x. 2023-02-23 v1.21.0: Upgrade to SQLite 3.41.0, release notes at https://sqlite.org/releaselog/3_41_0.html. 2022-11-28 v1.20.0: Support linux/ppc64le. 2022-09-16 v1.19.0: Support frebsd/arm64. 2022-07-26 v1.18.0: Add support for Go fs.FS based SQLite virtual filesystems, see function New in modernc.org/sqlite/vfs and/or TestVFS in all_test.go 2022-04-24 v1.17.0: Support windows/arm64. 2022-04-04 v1.16.0: Support scalar application defined functions written in Go. See https://www.sqlite.org/appfunc.html 2022-03-13 v1.15.0: Support linux/riscv64. 2021-11-13 v1.14.0: Support windows/amd64. This target had previously only experimental status because of a now resolved memory leak. 2021-09-07 v1.13.0: Support freebsd/amd64. 2021-06-23 v1.11.0: Upgrade to use sqlite 3.36.0, release notes at https://www.sqlite.org/releaselog/3_36_0.html. 2021-05-06 v1.10.6: Fixes a memory corruption issue (https://gitlab.com/cznic/sqlite/-/issues/53). Versions since v1.8.6 were affected and should be updated to v1.10.6. 2021-03-14 v1.10.0: Update to use sqlite 3.35.0, release notes at https://www.sqlite.org/releaselog/3_35_0.html. 2021-03-11 v1.9.0: Support darwin/arm64. 2021-01-08 v1.8.0: Support darwin/amd64. 2020-09-13 v1.7.0: Support linux/arm and linux/arm64. 2020-09-08 v1.6.0: Support linux/386. 2020-09-03 v1.5.0: This project is now completely CGo-free, including the Tcl tests. 2020-08-26 v1.4.0: First stable release for linux/amd64. The database/sql driver and its tests are CGo free. Tests of the translated sqlite3.c library still require CGo. 2020-07-26 v1.4.0-beta1: The project has reached beta status while supporting linux/amd64 only at the moment. The 'extraquick' Tcl testsuite reports 2019-12-28 v1.2.0-alpha.3: Third alpha fixes issue #19. 2019-12-26 v1.1.0-alpha.2: Second alpha release adds support for accessing a database concurrently by multiple goroutines and/or processes. v1.1.0 is now considered feature-complete. Next planed release should be a beta with a proper test suite. 2019-12-18 v1.1.0-alpha.1: First alpha release using the new cc/v3, gocc, qbe toolchain. Some primitive tests pass on linux_{amd64,386}. Not yet safe for concurrent access by multiple goroutines. Next alpha release is planed to arrive before the end of this year. 2017-06-10: Windows/Intel no more uses the VM (thanks Steffen Butzer). 2017-06-05 Linux/Intel no more uses the VM (cznic/virtual). To access a Sqlite database do something like A comma separated list of options can be passed to `go generate` via the environment variable GO_GENERATE. Some useful options include for example: To create a debug/development version, issue for example: Note: To run `go generate` you need to have modernc.org/ccgo/v3 installed. This is an example of how to use the debug logs in modernc.org/libc when hunting a bug. The /tmp/libc.log file is created as requested. No useful messages there because none are enabled in libc. Let's try to enable Xwrite as an example. We need to tell the Go build system to use our local, patched/debug libc: And run the test again: See https://sqlite.org/docs.html
go-junit-report converts `go test` output to a JUnit compatible XML report. See README.md for more information and usage examples.
Command pigeon generates parsers in Go from a PEG grammar. From Wikipedia [0]: Its features and syntax are inspired by the PEG.js project [1], while the implementation is loosely based on [2]. Formal presentation of the PEG theory by Bryan Ford is also an important reference [3]. An introductory blog post can be found at [4]. The pigeon tool must be called with PEG input as defined by the accepted PEG syntax below. The grammar may be provided by a file or read from stdin. The generated parser is written to stdout by default. The following options can be specified: If the code blocks in the grammar (see below, section "Code block") are golint- and go vet-compliant, then the resulting generated code will also be golint- and go vet-compliant. The generated code doesn't use any third-party dependency unless code blocks in the grammar require such a dependency. The accepted syntax for the grammar is formally defined in the grammar/pigeon.peg file, using the PEG syntax. What follows is an informal description of this syntax. Identifiers, whitespace, comments and literals follow the same notation as the Go language, as defined in the language specification (http://golang.org/ref/spec#Source_code_representation): The grammar must be Unicode text encoded in UTF-8. New lines are identified by the \n character (U+000A). Space (U+0020), horizontal tabs (U+0009) and carriage returns (U+000D) are considered whitespace and are ignored except to separate tokens. A PEG grammar consists of a set of rules. A rule is an identifier followed by a rule definition operator and an expression. An optional display name - a string literal used in error messages instead of the rule identifier - can be specified after the rule identifier. E.g.: The rule definition operator can be any one of those: A rule is defined by an expression. The following sections describe the various expression types. Expressions can be grouped by using parentheses, and a rule can be referenced by its identifier in place of an expression. The choice expression is a list of expressions that will be tested in the order they are defined. The first one that matches will be used. Expressions are separated by the forward slash character "/". E.g.: Because the first match is used, it is important to think about the order of expressions. For example, in this rule, "<=" would never be used because the "<" expression comes first: The sequence expression is a list of expressions that must all match in that same order for the sequence expression to be considered a match. Expressions are separated by whitespace. E.g.: A labeled expression consists of an identifier followed by a colon ":" and an expression. A labeled expression introduces a variable named with the label that can be referenced in the code blocks in the same scope. The variable will have the value of the expression that follows the colon. E.g.: The variable is typed as an empty interface, and the underlying type depends on the following: For terminals (character and string literals, character classes and the any matcher), the value is []byte. E.g.: For predicates (& and !), the value is always nil. E.g.: For a sequence, the value is a slice of empty interfaces, one for each expression value in the sequence. The underlying types of each value in the slice follow the same rules described here, recursively. E.g.: For a repetition (+ and *), the value is a slice of empty interfaces, one for each repetition. The underlying types of each value in the slice follow the same rules described here, recursively. E.g.: For a choice expression, the value is that of the matching choice. E.g.: For the optional expression (?), the value is nil or the value of the expression. E.g.: Of course, the type of the value can be anything once an action code block is used. E.g.: An expression prefixed with the ampersand "&" is the "and" predicate expression: it is considered a match if the following expression is a match, but it does not consume any input. An expression prefixed with the exclamation point "!" is the "not" predicate expression: it is considered a match if the following expression is not a match, but it does not consume any input. E.g.: The expression following the & and ! operators can be a code block. In that case, the code block must return a bool and an error. The operator's semantic is the same, & is a match if the code block returns true, ! is a match if the code block returns false. The code block has access to any labeled value defined in its scope. E.g.: An expression followed by "*", "?" or "+" is a match if the expression occurs zero or more times ("*"), zero or one time "?" or one or more times ("+") respectively. The match is greedy, it will match as many times as possible. E.g. A literal matcher tries to match the input against a single character or a string literal. The literal may be a single-quoted single character, a double-quoted string or a backtick-quoted raw string. The same rules as in Go apply regarding the allowed characters and escapes. The literal may be followed by a lowercase "i" (outside the ending quote) to indicate that the match is case-insensitive. E.g.: A character class matcher tries to match the input against a class of characters inside square brackets "[...]". Inside the brackets, characters represent themselves and the same escapes as in string literals are available, except that the single- and double-quote escape is not valid, instead the closing square bracket "]" must be escaped to be used. Character ranges can be specified using the "[a-z]" notation. Unicode classes can be specified using the "[\pL]" notation, where L is a single-letter Unicode class of characters, or using the "[\p{Class}]" notation where Class is a valid Unicode class (e.g. "Latin"). As for string literals, a lowercase "i" may follow the matcher (outside the ending square bracket) to indicate that the match is case-insensitive. A "^" as first character inside the square brackets indicates that the match is inverted (it is a match if the input does not match the character class matcher). E.g.: The any matcher is represented by the dot ".". It matches any character except the end of file, thus the "!." expression is used to indicate "match the end of file". E.g.: Code blocks can be added to generate custom Go code. There are three kinds of code blocks: the initializer, the action and the predicate. All code blocks appear inside curly braces "{...}". The initializer must appear first in the grammar, before any rule. It is copied as-is (minus the wrapping curly braces) at the top of the generated parser. It may contain function declarations, types, variables, etc. just like any Go file. Every symbol declared here will be available to all other code blocks. Although the initializer is optional in a valid grammar, it is usually required to generate a valid Go source code file (for the package clause). E.g.: Action code blocks are code blocks declared after an expression in a rule. Those code blocks are turned into a method on the "*current" type in the generated source code. The method receives any labeled expression's value as argument (as any) and must return two values, the first being the value of the expression (an any), and the second an error. If a non-nil error is returned, it is added to the list of errors that the parser will return. E.g.: Predicate code blocks are code blocks declared immediately after the and "&" or the not "!" operators. Like action code blocks, predicate code blocks are turned into a method on the "*current" type in the generated source code. The method receives any labeled expression's value as argument (as any) and must return two opt, the first being a bool and the second an error. If a non-nil error is returned, it is added to the list of errors that the parser will return. E.g.: State change code blocks are code blocks starting with "#". In contrast to action and predicate code blocks, state change code blocks are allowed to modify values in the global "state" store (see below). State change code blocks are turned into a method on the "*current" type in the generated source code. The method is passed any labeled expression's value as an argument (of type any) and must return a value of type error. If a non-nil error is returned, it is added to the list of errors that the parser will return, note that the parser does NOT backtrack if a non-nil error is returned. E.g: The "*current" type is a struct that provides four useful fields that can be accessed in action, state change, and predicate code blocks: "pos", "text", "state" and "globalStore". The "pos" field indicates the current position of the parser in the source input. It is itself a struct with three fields: "line", "col" and "offset". Line is a 1-based line number, col is a 1-based column number that counts runes from the start of the line, and offset is a 0-based byte offset. The "text" field is the slice of bytes of the current match. It is empty in a predicate code block. The "state" field is a global store, with backtrack support, of type "map[string]any". The values in the store are tied to the parser's backtracking, in particular if a rule fails to match then all updates to the state that occurred in the process of matching the rule are rolled back. For a key-value store that is not tied to the parser's backtracking, see the "globalStore". The values in the "state" store are available for read access in action and predicate code blocks, any changes made to the "state" store will be reverted once the action or predicate code block is finished running. To update values in the "state" use state change code blocks ("#{}"). IMPORTANT: The "globalStore" field is a global store of type "map[string]any", which allows to store arbitrary values, which are available in action and predicate code blocks for read as well as write access. It is important to notice, that the global store is completely independent from the backtrack mechanism of PEG and is therefore not set back to its old state during backtrack. The initialization of the global store may be achieved by using the GlobalStore function (http://godoc.org/github.com/mna/pigeon/test/predicates#GlobalStore). Be aware, that all keys starting with "_pigeon" are reserved for internal use of pigeon and should not be used nor modified. Those keys are treated as internal implementation details and therefore there are no guarantees given in regards of API stability. With options -support-left-recursion pigeon supports left recursion. E.g.: Supports indirect recursion: The implementation is based on the [Left-recursive PEG Grammars][9] article that links to [Left Recursion in Parsing Expression Grammars][10] and [Packrat Parsers Can Support Left Recursion][11] papers. References: pigeon supports an extension of the classical PEG syntax called failure labels, proposed by Maidl et al. in their paper "Error Reporting in Parsing Expression Grammars" [7]. The used syntax for the introduced expressions is borrowed from their lpeglabel [8] implementation. This extension allows to signal different kinds of errors and to specify, which recovery pattern should handle a given label. With labeled failures it is possible to distinguish between an ordinary failure and an error. Usually, an ordinary failure is produced when the matching of a character fails, and this failure is caught by ordered choice. An error (a non-ordinary failure), by its turn, is produced by the throw operator and may be caught by the recovery operator. In pigeon, the recovery expression consists of the regular expression, the recovery expression and a set of labels to be matched. First, the regular expression is tried. If this fails with one of the provided labels, the recovery expression is tried. If this fails as well, the error is propagated. E.g.: To signal a failure condition, the throw expression is used. E.g.: For concrete examples, how to use throw and recover, have a look at the examples "labeled_failures" and "thrownrecover" in the "test" folder. The implementation of the throw and recover operators work as follows: The failure recover expression adds the recover expression for every failure label to the recovery stack and runs the regular expression. The throw expression checks the recovery stack in reversed order for the provided failure label. If the label is found, the respective recovery expression is run. If this expression is successful, the parser continues the processing of the input. If the recovery expression is not successful, the parsing fails and the parser starts to backtrack. If throw and recover expressions are used together with global state, it is the responsibility of the author of the grammar to reset the global state to a valid state during the recovery operation. The parser generated by pigeon exports a few symbols so that it can be used as a package with public functions to parse input text. The exported API is: See the godoc page of the generated parser for the test/predicates grammar for an example documentation page of the exported API: http://godoc.org/github.com/mna/pigeon/test/predicates. Like the grammar used to generate the parser, the input text must be UTF-8-encoded Unicode. The start rule of the parser is the first rule in the PEG grammar used to generate the parser. A call to any of the Parse* functions returns the value generated by executing the grammar on the provided input text, and an optional error. Typically, the grammar should generate some kind of abstract syntax tree (AST), but for simple grammars it may evaluate the result immediately, such as in the examples/calculator example. There are no constraints imposed on the author of the grammar, it can return whatever is needed. When the parser returns a non-nil error, the error is always of type errList, which is defined as a slice of errors ([]error). Each error in the list is of type *parserError. This is a struct that has an "Inner" field that can be used to access the original error. So if a code block returns some well-known error like: The original error can be accessed this way: By default the parser will continue after an error is returned and will cumulate all errors found during parsing. If the grammar reaches a point where it shouldn't continue, a panic statement can be used to terminate parsing. The panic will be caught at the top-level of the Parse* call and will be converted into a *parserError like any error, and an errList will still be returned to the caller. The divide by zero error in the examples/calculator grammar leverages this feature (no special code is needed to handle division by zero, if it happens, the runtime panics and it is recovered and returned as a parsing error). Providing good error reporting in a parser is not a trivial task. Part of it is provided by the pigeon tool, by offering features such as filename, position, expected literals and rule name in the error message, but an important part of good error reporting needs to be done by the grammar author. For example, many programming languages use double-quotes for string literals. Usually, if the opening quote is found, the closing quote is expected, and if none is found, there won't be any other rule that will match, there's no need to backtrack and try other choices, an error should be added to the list and the match should be consumed. In order to do this, the grammar can look something like this: This is just one example, but it illustrates the idea that error reporting needs to be thought out when designing the grammar. Because the above mentioned error types (errList and parserError) are not exported, additional steps have to be taken, ff the generated parser is used as library package in other packages (e.g. if the same parser is used in multiple command line tools). One possible implementation for exported errors (based on interfaces) and customized error reporting (caret style formatting of the position, where the parsing failed) is available in the json example and its command line tool: http://godoc.org/github.com/mna/pigeon/examples/json Generated parsers have user-provided code mixed with pigeon code in the same package, so there is no package boundary in the resulting code to prevent access to unexported symbols. What is meant to be implementation details in pigeon is also available to user code - which doesn't mean it should be used. For this reason, it is important to precisely define what is intended to be the supported API of pigeon, the parts that will be stable in future versions. The "stability" of the version 1.0 API attempts to make a similar guarantee as the Go 1 compatibility [5]. The following lists what part of the current pigeon code falls under that guarantee (features may be added in the future): The pigeon command-line flags and arguments: those will not be removed and will maintain the same semantics. The explicitly exported API generated by pigeon. See [6] for the documentation of this API on a generated parser. The PEG syntax, as documented above. The code blocks (except the initializer) will always be generated as methods on the *current type, and this type is guaranteed to have the fields pos (type position) and text (type []byte). There are no guarantees on other fields and methods of this type. The position type will always have the fields line, col and offset, all defined as int. There are no guarantees on other fields and methods of this type. The type of the error value returned by the Parse* functions, when not nil, will always be errList defined as a []error. There are no guarantees on methods of this type, other than the fact it implements the error interface. Individual errors in the errList will always be of type *parserError, and this type is guaranteed to have an Inner field that contains the original error value. There are no guarantees on other fields and methods of this type. The above guarantee is given to the version 1.0 (https://github.com/mna/pigeon/releases/tag/v1.0.0) of pigeon, which has entered maintenance mode (bug fixes only). The current master branch includes the development toward a future version 2.0, which intends to further improve pigeon. While the given API stability should be maintained as far as it makes sense, breaking changes may be necessary to be able to improve pigeon. The new version 2.0 API has not yet stabilized and therefore changes to the API may occur at any time. References:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. If you currently use the $GOPATH scheme, install the package with the following command. To test the installation, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package validate provides methods to validate a swagger specification, as well as tools to validate data against their schema. This package follows Swagger 2.0. specification (aka OpenAPI 2.0). Reference can be found here: https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md. Validates a spec document (from JSON or YAML) against the JSON schema for swagger, then checks a number of extra rules that can't be expressed in JSON schema. Entry points: Reported as errors: Reported as warnings: The schema validation toolkit validates data against JSON-schema-draft 04 schema. It is tested against the full json-schema-testing-suite (https://github.com/json-schema-org/JSON-Schema-Test-Suite), except for the optional part (bignum, ECMA regexp, ...). It supports the complete JSON-schema vocabulary, including keywords not supported by Swagger (e.g. additionalItems, ...) Entry points: With the current version of this package, the following aspects of swagger are not yet supported:
Package httpexpect helps with end-to-end HTTP and REST API testing. See example directory: There are two common ways to test API with httpexpect: The second approach works only if the server is a Go module and its handler can be imported in tests. Concrete behaviour is determined by Client implementation passed to Config struct. If you're using http.Client, set its Transport field (http.RoundTriper) to one of the following: Note that http handler can be usually obtained from http framework you're using. E.g., echo framework provides either http.Handler or fasthttp.RequestHandler. You can also provide your own implementation of RequestFactory (creates http.Request), or Client (gets http.Request and returns http.Response). If you're starting server from tests, it's very handy to use net/http/httptest. Whenever values are checked for equality in httpexpect, they are converted to "canonical form": This is equivalent to subsequently json.Marshal() and json.Unmarshal() the value and currently is implemented so. When some check fails, failure is reported. If non-fatal failures are used (see Reporter interface), execution is continued and instance that was checked is marked as failed. If specific instance is marked as failed, all subsequent checks are ignored for this instance and for any child instances retrieved after failure. Example:
Package pointer implements Andersen's analysis, an inclusion-based pointer analysis algorithm first described in (Andersen, 1994). A pointer analysis relates every pointer expression in a whole program to the set of memory locations to which it might point. This information can be used to construct a call graph of the program that precisely represents the destinations of dynamic function and method calls. It can also be used to determine, for example, which pairs of channel operations operate on the same channel. The package allows the client to request a set of expressions of interest for which the points-to information will be returned once the analysis is complete. In addition, the client may request that a callgraph is constructed. The example program in example_test.go demonstrates both of these features. Clients should not request more information than they need since it may increase the cost of the analysis significantly. Our algorithm is INCLUSION-BASED: the points-to sets for x and y will be related by pts(y) ⊇ pts(x) if the program contains the statement y = x. It is FLOW-INSENSITIVE: it ignores all control flow constructs and the order of statements in a program. It is therefore a "MAY ALIAS" analysis: its facts are of the form "P may/may not point to L", not "P must point to L". It is FIELD-SENSITIVE: it builds separate points-to sets for distinct fields, such as x and y in struct { x, y *int }. It is mostly CONTEXT-INSENSITIVE: most functions are analyzed once, so values can flow in at one call to the function and return out at another. Only some smaller functions are analyzed with consideration of their calling context. It has a CONTEXT-SENSITIVE HEAP: objects are named by both allocation site and context, so the objects returned by two distinct calls to f: are distinguished up to the limits of the calling context. It is a WHOLE PROGRAM analysis: it requires SSA-form IR for the complete Go program and summaries for native code. See the (Hind, PASTE'01) survey paper for an explanation of these terms. The analysis is fully sound when invoked on pure Go programs that do not use reflection or unsafe.Pointer conversions. In other words, if there is any possible execution of the program in which pointer P may point to object O, the analysis will report that fact. By default, the "reflect" library is ignored by the analysis, as if all its functions were no-ops, but if the client enables the Reflection flag, the analysis will make a reasonable attempt to model the effects of calls into this library. However, this comes at a significant performance cost, and not all features of that library are yet implemented. In addition, some simplifying approximations must be made to ensure that the analysis terminates; for example, reflection can be used to construct an infinite set of types and values of those types, but the analysis arbitrarily bounds the depth of such types. Most but not all reflection operations are supported. In particular, addressable reflect.Values are not yet implemented, so operations such as (reflect.Value).Set have no analytic effect. The pointer analysis makes no attempt to understand aliasing between the operand x and result y of an unsafe.Pointer conversion: It is as if the conversion allocated an entirely new object: The analysis cannot model the aliasing effects of functions written in languages other than Go, such as runtime intrinsics in C or assembly, or code accessed via cgo. The result is as if such functions are no-ops. However, various important intrinsics are understood by the analysis, along with built-ins such as append. The analysis currently provides no way for users to specify the aliasing effects of native code. ------------------------------------------------------------------------ The remaining documentation is intended for package maintainers and pointer analysis specialists. Maintainers should have a solid understanding of the referenced papers (especially those by H&L and PKH) before making making significant changes. The implementation is similar to that described in (Pearce et al, PASTE'04). Unlike many algorithms which interleave constraint generation and solving, constructing the callgraph as they go, this implementation for the most part observes a phase ordering (generation before solving), with only simple (copy) constraints being generated during solving. (The exception is reflection, which creates various constraints during solving as new types flow to reflect.Value operations.) This improves the traction of presolver optimisations, but imposes certain restrictions, e.g. potential context sensitivity is limited since all variants must be created a priori. A type is said to be "pointer-like" if it is a reference to an object. Pointer-like types include pointers and also interfaces, maps, channels, functions and slices. We occasionally use C's x->f notation to distinguish the case where x is a struct pointer from x.f where is a struct value. Pointer analysis literature (and our comments) often uses the notation dst=*src+offset to mean something different than what it means in Go. It means: for each node index p in pts(src), the node index p+offset is in pts(dst). Similarly *dst+offset=src is used for store constraints and dst=src+offset for offset-address constraints. Nodes are the key datastructure of the analysis, and have a dual role: they represent both constraint variables (equivalence classes of pointers) and members of points-to sets (things that can be pointed at, i.e. "labels"). Nodes are naturally numbered. The numbering enables compact representations of sets of nodes such as bitvectors (or BDDs); and the ordering enables a very cheap way to group related nodes together. For example, passing n parameters consists of generating n parallel constraints from caller+i to callee+i for 0<=i<n. The zero nodeid means "not a pointer". For simplicity, we generate flow constraints even for non-pointer types such as int. The pointer equivalence (PE) presolver optimization detects which variables cannot point to anything; this includes not only all variables of non-pointer types (such as int) but also variables of pointer-like types if they are always nil, or are parameters to a function that is never called. Each node represents a scalar part of a value or object. Aggregate types (structs, tuples, arrays) are recursively flattened out into a sequential list of scalar component types, and all the elements of an array are represented by a single node. (The flattening of a basic type is a list containing a single node.) Nodes are connected into a graph with various kinds of labelled edges: simple edges (or copy constraints) represent value flow. Complex edges (load, store, etc) trigger the creation of new simple edges during the solving phase. Conceptually, an "object" is a contiguous sequence of nodes denoting an addressable location: something that a pointer can point to. The first node of an object has a non-nil obj field containing information about the allocation: its size, context, and ssa.Value. Objects include: Many objects have no Go types. For example, the func, map and chan type kinds in Go are all varieties of pointers, but their respective objects are actual functions (executable code), maps (hash tables), and channels (synchronized queues). Given the way we model interfaces, they too are pointers to "tagged" objects with no Go type. And an *ssa.Global denotes the address of a global variable, but the object for a Global is the actual data. So, the types of an ssa.Value that creates an object is "off by one indirection": a pointer to the object. The individual nodes of an object are sometimes referred to as "labels". For uniformity, all objects have a non-zero number of fields, even those of the empty type struct{}. (All arrays are treated as if of length 1, so there are no empty arrays. The empty tuple is never address-taken, so is never an object.) An tagged object has the following layout: The T node's typ field is the dynamic type of the "payload": the value v which follows, flattened out. The T node's obj has the otTagged flag. Tagged objects are needed when generalizing across types: interfaces, reflect.Values, reflect.Types. Each of these three types is modelled as a pointer that exclusively points to tagged objects. Tagged objects may be indirect (obj.flags ⊇ {otIndirect}) meaning that the value v is not of type T but *T; this is used only for reflect.Values that represent lvalues. (These are not implemented yet.) Variables of the following "scalar" types may be represented by a single node: basic types, pointers, channels, maps, slices, 'func' pointers, interfaces. Pointers: Nothing to say here, oddly. Basic types (bool, string, numbers, unsafe.Pointer): Currently all fields in the flattening of a type, including non-pointer basic types such as int, are represented in objects and values. Though non-pointer nodes within values are uninteresting, non-pointer nodes in objects may be useful (if address-taken) because they permit the analysis to deduce, in this example, that p points to s.x. If we ignored such object fields, we could only say that p points somewhere within s. All other basic types are ignored. Expressions of these types have zero nodeid, and fields of these types within aggregate other types are omitted. unsafe.Pointers are not modelled as pointers, so a conversion of an unsafe.Pointer to *T is (unsoundly) treated equivalent to new(T). Channels: An expression of type 'chan T' is a kind of pointer that points exclusively to channel objects, i.e. objects created by MakeChan (or reflection). 'chan T' is treated like *T. *ssa.MakeChan is treated as equivalent to new(T). *ssa.Send and receive (*ssa.UnOp(ARROW)) and are equivalent to store Maps: An expression of type 'map[K]V' is a kind of pointer that points exclusively to map objects, i.e. objects created by MakeMap (or reflection). map K[V] is treated like *M where M = struct{k K; v V}. *ssa.MakeMap is equivalent to new(M). *ssa.MapUpdate is equivalent to *y=x where *y and x have type M. *ssa.Lookup is equivalent to y=x.v where x has type *M. Slices: A slice []T, which dynamically resembles a struct{array *T, len, cap int}, is treated as if it were just a *T pointer; the len and cap fields are ignored. *ssa.MakeSlice is treated like new([1]T): an allocation of a *ssa.Index on a slice is equivalent to a load. *ssa.IndexAddr on a slice returns the address of the sole element of the slice, i.e. the same address. *ssa.Slice is treated as a simple copy. Functions: An expression of type 'func...' is a kind of pointer that points exclusively to function objects. A function object has the following layout: There may be multiple function objects for the same *ssa.Function due to context-sensitive treatment of some functions. The first node is the function's identity node. Associated with every callsite is a special "targets" variable, whose pts() contains the identity node of each function to which the call may dispatch. Identity words are not otherwise used during the analysis, but we construct the call graph from the pts() solution for such nodes. The following block of contiguous nodes represents the flattened-out types of the parameters ("P-block") and results ("R-block") of the function object. The treatment of free variables of closures (*ssa.FreeVar) is like that of global variables; it is not context-sensitive. *ssa.MakeClosure instructions create copy edges to Captures. A Go value of type 'func' (i.e. a pointer to one or more functions) is a pointer whose pts() contains function objects. The valueNode() for an *ssa.Function returns a singleton for that function. Interfaces: An expression of type 'interface{...}' is a kind of pointer that points exclusively to tagged objects. All tagged objects pointed to by an interface are direct (the otIndirect flag is clear) and concrete (the tag type T is not itself an interface type). The associated ssa.Value for an interface's tagged objects may be an *ssa.MakeInterface instruction, or nil if the tagged object was created by an instrinsic (e.g. reflection). Constructing an interface value causes generation of constraints for all of the concrete type's methods; we can't tell a priori which ones may be called. TypeAssert y = x.(T) is implemented by a dynamic constraint triggered by each tagged object O added to pts(x): a typeFilter constraint if T is an interface type, or an untag constraint if T is a concrete type. A typeFilter tests whether O.typ implements T; if so, O is added to pts(y). An untagFilter tests whether O.typ is assignable to T,and if so, a copy edge O.v -> y is added. ChangeInterface is a simple copy because the representation of tagged objects is independent of the interface type (in contrast to the "method tables" approach used by the gc runtime). y := Invoke x.m(...) is implemented by allocating contiguous P/R blocks for the callsite and adding a dynamic rule triggered by each tagged object added to pts(x). The rule adds param/results copy edges to/from each discovered concrete method. (Q. Why do we model an interface as a pointer to a pair of type and value, rather than as a pair of a pointer to type and a pointer to value? A. Control-flow joins would merge interfaces ({T1}, {V1}) and ({T2}, {V2}) to make ({T1,T2}, {V1,V2}), leading to the infeasible and type-unsafe combination (T1,V2). Treating the value and its concrete type as inseparable makes the analysis type-safe.) Type parameters: Type parameters are not directly supported by the analysis. Calls to generic functions will be left as if they had empty bodies. Users of the package are expected to use the ssa.InstantiateGenerics builder mode when building code that uses or depends on code containing generics. reflect.Value: A reflect.Value is modelled very similar to an interface{}, i.e. as a pointer exclusively to tagged objects, but with two generalizations. 1. a reflect.Value that represents an lvalue points to an indirect (obj.flags ⊇ {otIndirect}) tagged object, which has a similar layout to an tagged object except that the value is a pointer to the dynamic type. Indirect tagged objects preserve the correct aliasing so that mutations made by (reflect.Value).Set can be observed. Indirect objects only arise when an lvalue is derived from an rvalue by indirection, e.g. the following code: Whether indirect or not, the concrete type of the tagged object corresponds to the user-visible dynamic type, and the existence of a pointer is an implementation detail. (NB: indirect tagged objects are not yet implemented) 2. The dynamic type tag of a tagged object pointed to by a reflect.Value may be an interface type; it need not be concrete. This arises in code such as this: pts(eface) is a singleton containing an interface{}-tagged object. That tagged object's payload is an interface{} value, i.e. the pts of the payload contains only concrete-tagged objects, although in this example it's the zero interface{} value, so its pts is empty. reflect.Type: Just as in the real "reflect" library, we represent a reflect.Type as an interface whose sole implementation is the concrete type, *reflect.rtype. (This choice is forced on us by go/types: clients cannot fabricate types with arbitrary method sets.) rtype instances are canonical: there is at most one per dynamic type. (rtypes are in fact large structs but since identity is all that matters, we represent them by a single node.) The payload of each *rtype-tagged object is an *rtype pointer that points to exactly one such canonical rtype object. We exploit this by setting the node.typ of the payload to the dynamic type, not '*rtype'. This saves us an indirection in each resolution rule. As an optimisation, *rtype-tagged objects are canonicalized too. Aggregate types: Aggregate types are treated as if all directly contained aggregates are recursively flattened out. Structs: *ssa.Field y = x.f creates a simple edge to y from x's node at f's offset. *ssa.FieldAddr y = &x->f requires a dynamic closure rule to create The nodes of a struct consist of a special 'identity' node (whose type is that of the struct itself), followed by the nodes for all the struct's fields, recursively flattened out. A pointer to the struct is a pointer to its identity node. That node allows us to distinguish a pointer to a struct from a pointer to its first field. Field offsets are logical field offsets (plus one for the identity node), so the sizes of the fields can be ignored by the analysis. (The identity node is non-traditional but enables the distinction described above, which is valuable for code comprehension tools. Typical pointer analyses for C, whose purpose is compiler optimization, must soundly model unsafe.Pointer (void*) conversions, and this requires fidelity to the actual memory layout using physical field offsets.) *ssa.Field y = x.f creates a simple edge to y from x's node at f's offset. *ssa.FieldAddr y = &x->f requires a dynamic closure rule to create Arrays: We model an array by an identity node (whose type is that of the array itself) followed by a node representing all the elements of the array; the analysis does not distinguish elements with different indices. Effectively, an array is treated like struct{elem T}, a load y=x[i] like y=x.elem, and a store x[i]=y like x.elem=y; the index i is ignored. A pointer to an array is pointer to its identity node. (A slice is also a pointer to an array's identity node.) The identity node allows us to distinguish a pointer to an array from a pointer to one of its elements, but it is rather costly because it introduces more offset constraints into the system. Furthermore, sound treatment of unsafe.Pointer would require us to dispense with this node. Arrays may be allocated by Alloc, by make([]T), by calls to append, and via reflection. Tuples (T, ...): Tuples are treated like structs with naturally numbered fields. *ssa.Extract is analogous to *ssa.Field. However, tuples have no identity field since by construction, they cannot be address-taken. There are three kinds of function call: Cases 1 and 2 apply equally to methods and standalone functions. Static calls: A static call consists three steps: A static function call is little more than two struct value copies between the P/R blocks of caller and callee: Context sensitivity: Static calls (alone) may be treated context sensitively, i.e. each callsite may cause a distinct re-analysis of the callee, improving precision. Our current context-sensitivity policy treats all intrinsics and getter/setter methods in this manner since such functions are small and seem like an obvious source of spurious confluences, though this has not yet been evaluated. Dynamic function calls: Dynamic calls work in a similar manner except that the creation of copy edges occurs dynamically, in a similar fashion to a pair of struct copies in which the callee is indirect: (Recall that the function object's P- and R-blocks are contiguous.) Interface method invocation: For invoke-mode calls, we create a params/results block for the callsite and attach a dynamic closure rule to the interface. For each new tagged object that flows to the interface, we look up the concrete method, find its function object, and connect its P/R blocks to the callsite's P/R blocks, adding copy edges to the graph during solving. Recording call targets: The analysis notifies its clients of each callsite it encounters, passing a CallSite interface. Among other things, the CallSite contains a synthetic constraint variable ("targets") whose points-to solution includes the set of all function objects to which the call may dispatch. It is via this mechanism that the callgraph is made available. Clients may also elect to be notified of callgraph edges directly; internally this just iterates all "targets" variables' pts(·)s. We implement Hash-Value Numbering (HVN), a pre-solver constraint optimization described in Hardekopf & Lin, SAS'07. This is documented in more detail in hvn.go. We intend to add its cousins HR and HU in future. The solver is currently a naive Andersen-style implementation; it does not perform online cycle detection, though we plan to add solver optimisations such as Hybrid- and Lazy- Cycle Detection from (Hardekopf & Lin, PLDI'07). It uses difference propagation (Pearce et al, SQC'04) to avoid redundant re-triggering of closure rules for values already seen. Points-to sets are represented using sparse bit vectors (similar to those used in LLVM and gcc), which are more space- and time-efficient than sets based on Go's built-in map type or dense bit vectors. Nodes are permuted prior to solving so that object nodes (which may appear in points-to sets) are lower numbered than non-object (var) nodes. This improves the density of the set over which the PTSs range, and thus the efficiency of the representation. Partly thanks to avoiding map iteration, the execution of the solver is 100% deterministic, a great help during debugging. Andersen, L. O. 1994. Program analysis and specialization for the C programming language. Ph.D. dissertation. DIKU, University of Copenhagen. David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2004. Efficient field-sensitive pointer analysis for C. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering (PASTE '04). ACM, New York, NY, USA, 37-42. http://doi.acm.org/10.1145/996821.996835 David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2004. Online Cycle Detection and Difference Propagation: Applications to Pointer Analysis. Software Quality Control 12, 4 (December 2004), 311-337. http://dx.doi.org/10.1023/B:SQJO.0000039791.93071.a2 David Grove and Craig Chambers. 2001. A framework for call graph construction algorithms. ACM Trans. Program. Lang. Syst. 23, 6 (November 2001), 685-746. http://doi.acm.org/10.1145/506315.506316 Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: fast and accurate pointer analysis for millions of lines of code. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation (PLDI '07). ACM, New York, NY, USA, 290-299. http://doi.acm.org/10.1145/1250734.1250767 Ben Hardekopf and Calvin Lin. 2007. Exploiting pointer and location equivalence to optimize pointer analysis. In Proceedings of the 14th international conference on Static Analysis (SAS'07), Hanne Riis Nielson and Gilberto Filé (Eds.). Springer-Verlag, Berlin, Heidelberg, 265-280. Atanas Rountev and Satish Chandra. 2000. Off-line variable substitution for scaling points-to analysis. In Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and implementation (PLDI '00). ACM, New York, NY, USA, 47-56. DOI=10.1145/349299.349310 http://doi.acm.org/10.1145/349299.349310 This program demonstrates how to use the pointer analysis to obtain a conservative call-graph of a Go program. It also shows how to compute the points-to set of a variable, in this case, (C).f's ch parameter.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package lingua accurately detects the natural language of written text, be it long or short. Its task is simple: It tells you which language some text is written in. This is very useful as a preprocessing step for linguistic data in natural language processing applications such as text classification and spell checking. Other use cases, for instance, might include routing e-mails to the right geographically located customer service department, based on the e-mails' languages. Language detection is often done as part of large machine learning frameworks or natural language processing applications. In cases where you don't need the full-fledged functionality of those systems or don't want to learn the ropes of those, a small flexible library comes in handy. So far, the only other comprehensive open source library in the Go ecosystem for this task is Whatlanggo (https://github.com/abadojack/whatlanggo). Unfortunately, it has two major drawbacks: 1. Detection only works with quite lengthy text fragments. For very short text snippets such as Twitter messages, it does not provide adequate results. 2. The more languages take part in the decision process, the less accurate are the detection results. Lingua aims at eliminating these problems. It nearly does not need any configuration and yields pretty accurate results on both long and short text, even on single words and phrases. It draws on both rule-based and statistical methods but does not use any dictionaries of words. It does not need a connection to any external API or service either. Once the library has been downloaded, it can be used completely offline. Compared to other language detection libraries, Lingua's focus is on quality over quantity, that is, getting detection right for a small set of languages first before adding new ones. Currently, 75 languages are supported. They are listed as variants of type Language. Lingua is able to report accuracy statistics for some bundled test data available for each supported language. The test data for each language is split into three parts: 1. a list of single words with a minimum length of 5 characters 2. a list of word pairs with a minimum length of 10 characters 3. a list of complete grammatical sentences of various lengths Both the language models and the test data have been created from separate documents of the Wortschatz corpora (https://wortschatz.uni-leipzig.de) offered by Leipzig University, Germany. Data crawled from various news websites have been used for training, each corpus comprising one million sentences. For testing, corpora made of arbitrarily chosen websites have been used, each comprising ten thousand sentences. From each test corpus, a random unsorted subset of 1000 single words, 1000 word pairs and 1000 sentences has been extracted, respectively. Given the generated test data, I have compared the detection results of Lingua, and Whatlanggo running over the data of Lingua's supported 75 languages. Additionally, I have added Google's CLD3 (https://github.com/google/cld3/) to the comparison with the help of the gocld3 bindings (https://github.com/jmhodges/gocld3). Languages that are not supported by CLD3 or Whatlanggo are simply ignored during the detection process. Lingua clearly outperforms its contenders. Every language detector uses a probabilistic n-gram (https://en.wikipedia.org/wiki/N-gram) model trained on the character distribution in some training corpus. Most libraries only use n-grams of size 3 (trigrams) which is satisfactory for detecting the language of longer text fragments consisting of multiple sentences. For short phrases or single words, however, trigrams are not enough. The shorter the input text is, the less n-grams are available. The probabilities estimated from such few n-grams are not reliable. This is why Lingua makes use of n-grams of sizes 1 up to 5 which results in much more accurate prediction of the correct language. A second important difference is that Lingua does not only use such a statistical model, but also a rule-based engine. This engine first determines the alphabet of the input text and searches for characters which are unique in one or more languages. If exactly one language can be reliably chosen this way, the statistical model is not necessary anymore. In any case, the rule-based engine filters out languages that do not satisfy the conditions of the input text. Only then, in a second step, the probabilistic n-gram model is taken into consideration. This makes sense because loading less language models means less memory consumption and better runtime performance. In general, it is always a good idea to restrict the set of languages to be considered in the classification process using the respective api methods. If you know beforehand that certain languages are never to occur in an input text, do not let those take part in the classifcation process. The filtering mechanism of the rule-based engine is quite good, however, filtering based on your own knowledge of the input text is always preferable. There might be classification tasks where you know beforehand that your language data is definitely not written in Latin, for instance. The detection accuracy can become better in such cases if you exclude certain languages from the decision process or just explicitly include relevant languages. Knowing about the most likely language is nice but how reliable is the computed likelihood? And how less likely are the other examined languages in comparison to the most likely one? In the example below, a slice of ConfidenceValue is returned containing those languages which the calling instance of LanguageDetector has been built from. The entries are sorted by their confidence value in descending order. Each value is a probability between 0.0 and 1.0. The probabilities of all languages will sum to 1.0. If the language is unambiguously identified by the rule engine, the value 1.0 will always be returned for this language. The other languages will receive a value of 0.0. By default, Lingua uses lazy-loading to load only those language models on demand which are considered relevant by the rule-based filter engine. For web services, for instance, it is rather beneficial to preload all language models into memory to avoid unexpected latency while waiting for the service response. If you want to enable the eager-loading mode, you can do it as seen below. Multiple instances of LanguageDetector share the same language models in memory which are accessed asynchronously by the instances. By default, Lingua returns the most likely language for a given input text. However, there are certain words that are spelled the same in more than one language. The word `prologue`, for instance, is both a valid English and French word. Lingua would output either English or French which might be wrong in the given context. For cases like that, it is possible to specify a minimum relative distance that the logarithmized and summed up probabilities for each possible language have to satisfy. It can be stated as seen below. Be aware that the distance between the language probabilities is dependent on the length of the input text. The longer the input text, the larger the distance between the languages. So if you want to classify very short text phrases, do not set the minimum relative distance too high. Otherwise Unknown will be returned most of the time as in the example below. This is the return value for cases where language detection is not reliably possible.
Package golangNeo4jBoltDriver implements a driver for the Neo4J Bolt Protocol. The driver is compatible with Golang's sql.driver interface, but aims to implement a more complete featureset in line with what Neo4J and Bolt provides. As such, there are multiple interfaces the user can choose from. It's highly recommended that the user use the Neo4J-specific interfaces as they are more flexible and efficient than the provided sql.driver compatible methods. The interface tries to be consistent throughout. The sql.driver interfaces are standard, but the Neo4J-specific ones contain a naming convention of either "Neo" or "Pipeline". The "Neo" ones are the basic interfaces for making queries to Neo4j and it's expected that these would be used the most. The "Pipeline" ones are to support Bolt's pipelining features. Pipelines allow the user to send Neo4j many queries at once and have them executed by the database concurrently. This is useful if you have a bunch of queries that aren't necessarily dependant on one another, and you want to get better performance. The internal APIs will also pipeline statements where it is able to reliably do so, but by manually using the pipelining feature you can maximize your throughput. The API provides connection pooling using the `NewDriverPool` method. This allows you to pass it the maximum number of open connections to be used in the pool. Once this limit is hit, any new clients will have to wait for a connection to become available again. The sql driver is registered as "neo4j-bolt". The sql.driver interface is much more limited than what bolt and neo4j supports. In some cases, concessions were made in order to make that interface work with the neo4j way of doing things. The main instance of this is the marshalling of objects to/from the sql.driver.Value interface. In order to support object types that aren't supported by this interface, the internal encoding package is used to marshal these objects to byte strings. This ultimately makes for a less efficient and more 'clunky' implementation. A glaring instance of this is passing parameters. Neo4j expects named parameters but the driver interface can only really support positional parameters. To get around this, the user must create a map[string]interface{} of their parameters and marshal it to a driver.Value using the encoding.Marshal function. Similarly, the user must unmarshal data returned from the queries using the encoding.Unmarshal function, then use type assertions to retrieve the proper type. In most cases the driver will return the data from neo as the proper go-specific types. For integers they always come back as int64 and floats always come back as float64. This is for the convenience of the user and acts similarly to go's JSON interface. This prevents the user from having to use reflection to get these values. Internally, the types are always transmitted over the wire with as few bytes as possible. There are also cases where no go-specific type matches the returned values, such as when you query for a node, relationship, or path. The driver exposes specific structs which represent this data in the 'structures.graph' package. There are 4 types - Node, Relationship, UnboundRelationship, and Path. The driver returns interface{} objects which must have their types properly asserted to get the data out. There are some limitations to the types of collections the driver supports. Specifically, maps should always be of type map[string]interface{} and lists should always be of type []interface{}. It doesn't seem that the Bolt protocol supports uint64 either, so the biggest number it can send right now is the int64 max. The URL format is: `bolt://(user):(password)@(host):(port)` Schema must be `bolt`. User and password is only necessary if you are authenticating. TLS is supported by using query parameters on the connection string, like so: `bolt://host:port?tls=true&tls_no_verify=false` The supported query params are: * timeout - the number of seconds to set the connection timeout to. Defaults to 60 seconds. * tls - Set to 'true' or '1' if you want to use TLS encryption * tls_no_verify - Set to 'true' or '1' if you want to accept any server certificate (for testing, not secure) * tls_ca_cert_file - path to a custom ca cert for a self-signed TLS cert * tls_cert_file - path to a cert file for this client (need to verify this is processed by Neo4j) * tls_key_file - path to a key file for this client (need to verify this is processed by Neo4j) Errors returned from the API support wrapping, so if you receive an error from the library, it might be wrapping other errors. You can get the innermost error by using the `InnerMost` method. Failure messages from Neo4J are reported, along with their metadata, as an error. In order to get the failure message metadata from a wrapped error, you can do so by calling `err.(*errors.Error).InnerMost().(messages.FailureMessage).Metadata` If there is an error with the database connection, you should get a sql/driver ErrBadConn as per the best practice recommendations of the Golang SQL Driver. However, this error may be wrapped, so you might have to call `InnerMost` to get it, as specified above.
Pact Go enables consumer driven contract testing, providing a mock service and DSL for the consumer project, and interaction playback and verification for the service provider project. Consumer side Pact testing is an isolated test that ensures a given component is able to collaborate with another (remote) component. Pact will automatically start a Mock server in the background that will act as the collaborators' test double. This implies that any interactions expected on the Mock server will be validated, meaning a test will fail if all interactions were not completed, or if unexpected interactions were found: A typical consumer-side test would look something like this: If this test completed successfully, a Pact file should have been written to ./pacts/my_consumer-my_provider.json containing all of the interactions expected to occur between the Consumer and Provider. In addition to verbatim value matching, you have 3 useful matching functions in the `dsl` package that can increase expressiveness and reduce brittle test cases. Here is a complex example that shows how all 3 terms can be used together: This example will result in a response body from the mock server that looks like: See the examples in the dsl package and the matcher tests (https://github.com/pact-foundation/pact-go/v2/blob/master/dsl/matcher_test.go) for more matching examples. NOTE: You will need to use valid Ruby regular expressions (http://ruby-doc.org/core-2.1.5/Regexp.html) and double escape backslashes. Read more about flexible matching (https://github.com/pact-foundation/pact-ruby/wiki/Regular-expressions-and-type-matching-with-Pact. Provider side Pact testing, involves verifying that the contract - the Pact file - can be satisfied by the Provider. A typical Provider side test would like something like: The `VerifyProvider` will handle all verifications, treating them as subtests and giving you granular test reporting. If you don't like this behaviour, you may call `VerifyProviderRaw` directly and handle the errors manually. Note that `PactURLs` may be a list of local pact files or remote based urls (possibly from a Pact Broker - http://docs.pact.io/documentation/sharings_pacts.html). Pact reads the specified pact files (from remote or local sources) and replays the interactions against a running Provider. If all of the interactions are met we can say that both sides of the contract are satisfied and the test passes. When validating a Provider, you have 3 options to provide the Pact files: 1. Use "PactURLs" to specify the exact set of pacts to be replayed: Options 2 and 3 are particularly useful when you want to validate that your Provider is able to meet the contracts of what's in Production and also the latest in development. See this [article](http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) for more on this strategy. Each interaction in a pact should be verified in isolation, with no context maintained from the previous interactions. So how do you test a request that requires data to exist on the provider? Provider states are how you achieve this using Pact. Provider states also allow the consumer to make the same request with different expected responses (e.g. different response codes, or the same resource with a different subset of data). States are configured on the consumer side when you issue a dsl.Given() clause with a corresponding request/response pair. Configuring the provider is a little more involved, and (currently) requires running an API endpoint to configure any [provider states](http://docs.pact.io/documentation/provider_states.html) during the verification process. The option you must provide to the dsl.VerifyRequest is: An example route using the standard Go http package might look like this: See the examples or read more at http://docs.pact.io/documentation/provider_states.html. See the Pact Broker (http://docs.pact.io/documentation/sharings_pacts.html) documentation for more details on the Broker and this article (http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) on how to make it work for you. Publishing using Go code: Publishing from the CLI: Use a cURL request like the following to PUT the pact to the right location, specifying your consumer name, provider name and consumer version. The following flags are required to use basic authentication when publishing or retrieving Pact files to/from a Pact Broker: Pact Go uses a simple log utility (logutils - https://github.com/hashicorp/logutils) to filter log messages. The CLI already contains flags to manage this, should you want to control log level in your tests, you can set it like so:
Package fpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates go-pdf/fpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. go-pdf/fpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the go-pdf/fpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the go-pdf/fpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.SummaryCompare() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
<h1 align="center">IrisAdmin</h1> [![Build Status](https://app.travis-ci.com/snowlyg/iris-admin.svg?branch=master)](https://app.travis-ci.com/snowlyg/iris-admin) [![LICENSE](https://img.shields.io/github/license/snowlyg/iris-admin)](https://github.com/snowlyg/iris-admin/blob/master/LICENSE) [![go doc](https://godoc.org/github.com/snowlyg/iris-admin?status.svg)](https://godoc.org/github.com/snowlyg/iris-admin) [![go report](https://goreportcard.com/badge/github.com/snowlyg/iris-admin)](https://goreportcard.com/badge/github.com/snowlyg/iris-admin) [![Build Status](https://codecov.io/gh/snowlyg/iris-admin/branch/master/graph/badge.svg)](https://codecov.io/gh/snowlyg/iris-admin) [简体中文](./README.md) | English #### Project url [GITHUB](https://github.com/snowlyg/iris-admin) | [GITEE](https://gitee.com/snowlyg/iris-admin) **** > This project just for learning golang, welcome to give your suggestions! #### Documentation - [IRIS-ADMIN-DOC](https://doc.snowlyg.com) - [IRIS V12 document for chinese](https://github.com/snowlyg/iris/wiki) - [godoc](https://pkg.go.dev/github.com/snowlyg/iris-admin?utm_source=godoc) [![Gitter](https://badges.gitter.im/iris-go-tenancy/community.svg)](https://gitter.im/iris-go-tenancy/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) [![Join the chat at https://gitter.im/iris-go-tenancy/iris-admin](https://badges.gitter.im/iris-go-tenancy/iris-admin.svg)](https://gitter.im/iris-go-tenancy/iris-admin?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) #### BLOG - [REST API with iris-go web framework](https://blog.snowlyg.com/iris-go-api-1/) - [How to user iris-go with casbin](https://blog.snowlyg.com/iris-go-api-2/) --- #### Getting started - Get master package , Notice must use `master` version. ```sh ``` #### Program introduction ##### The project consists of multiple plugins, each with different functions - [viper_server] ```go package cache import ( ) var CONFIG Redis // getViperConfig get initialize config db: ` + db + ` addr: "` + CONFIG.Addr + `" password: "` + CONFIG.Password + `" pool-size: ` + poolSize), ``` - [zap_server] ```go ``` - [database] ```go ``` - [casbin] ```go ``` - [cache] ```go ``` - [operation] - [cron_server] ```go ``` - [web] - ```go // WebFunc web framework // - GetTestClient test client // - GetTestLogin test for login // - AddWebStatic add web static path // - AddUploadStatic add upload static path // - Run start ``` - [mongodb] #### Initialize database ##### Simple - Use gorm's `AutoMigrate()` function to auto migrate database. ```go package main import ( ) ``` ##### Custom migrate tools - Use `gormigrate` third party package. Tt's helpful for database migrate and program development. - Detail is see [iris-admin-cmd](https://github.com/snowlyg/iris-admin-example/blob/main/iris/cmd/main.go). --- - Add main.go file. ```go package main import ( ) ``` #### Run project - When you first run this cmd `go run main.go` , you can see some config files in the `config` directory, - and `rbac_model.conf` will be created in your project root directory. ```sh go run main.go ``` #### Module - You can use [iris-admin-rbac](https://github.com/snowlyg/iris-admin-rbac) package to add rbac function for your project quickly. - Your can use AddModule() to add other modules . ```go package main import ( ) ``` #### Default static file path - A static file access path has been built in by default - Static files will upload to `/static/upload` directory. - You can set this config key `static-path` to change the default directory. ```yaml system: ``` #### Use with front-end framework , e.g. vue - Default,you must build vue to the `dist` directory. - Naturally you can set this config key `web-path` to change the default directory. ```go package main import ( ) ``` #### Example - [iris](https://github.com/snowlyg/iris-admin-example/tree/main/iris) - [gin](https://github.com/snowlyg/iris-admin-example/tree/main/gin) #### RBAC - [iris-admin-rbac](https://github.com/snowlyg/iris-admin-rbac) #### Unit test and documentation - Before start unit tests, you need to set two system environment variables `mysqlPwd` and `mysqlAddr`,that will be used when running the test instance。 - helper/tests(https://github.com/snowlyg/helper/tree/main/tests) package the unit test used, it's simple package base on httpexpect/v2(https://github.com/gavv/httpexpect). - [example for unit test](https://github.com/snowlyg/iris-admin-rbac/tree/main/iris/perm/tests) - [example for unit test](https://github.com/snowlyg/iris-admin-rbac/tree/main/gin/authority/test) Before create a http api unit test , you need create a base test file named `main_test.go` , this file have some unit test step : ***Suggest use docker mysql, otherwise if the test fails, there will be a lot of test data left behind*** - 1.create database before test start and delete database when test finish. - 2.create tables and seed test data at once time. - 3.`PartyFunc` and `SeedFunc` use to custom someting for your test model. 内容如下所示: ***main_test.go*** ```go package test import ( ) var TestServer *web_gin.WebServer var TestClient *httptest.Client ``` ***index_test.go*** ```go package test import ( ) var ( ) ``` ## 🔋 JetBrains OS licenses <a href="https://www.jetbrains.com/?from=iris-admin" target="_blank"><img src="https://raw.githubusercontent.com/panjf2000/illustrations/master/jetbrains/jetbrains-variant-4.png" width="230" align="middle"/></a> ## ☕️ Buy me a coffee > Please be sure to leave your name, GitHub account or other social media accounts when you donate by the following means so that I can add it to the list of donors as a token of my appreciation. - [为爱发电](https://afdian.net/@snowlyg/plan) - [donating](https://paypal.me/snowlyg?country.x=C2&locale.x=zh_XC)
Package ql implements a pure Go embedded SQL database engine. Builder results available at QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2020-12-10: sql/database driver now supports url parameter removeemptywal=N which has the same semantics as passing RemoveEmptyWAL = N != 0 to OpenFile options. 2020-11-09: Add IF NOT EXISTS support for the INSERT INTO statement. Add IsDuplicateUniqueIndexError function. 2018-11-04: Back end file format V2 is now released. To use the new format for newly created databases set the FileFormat field in *Options passed to OpenFile to value 2 or use the driver named "ql2" instead of "ql". - Both the old and new driver will properly open and use, read and write the old (V1) or new file (V2) format of an existing database. - V1 format has a record size limit of ~64 kB. V2 format record size limit is math.MaxInt32. - V1 format uncommitted transaction size is limited by memory resources. V2 format uncommitted transaction is limited by free disk space. - A direct consequence of the previous is that small transactions perform better using V1 format and big transactions perform better using V2 format. - V2 format uses substantially less memory. 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (modernc.org/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors gitlab.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. There are two kinds of identifiers, normal idententifiers and quoted identifiers. An normal identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example A quoted identifier is a string of any charaters between guillmets «». Quoted identifiers allow QL key words or phrases with spaces to be used as identifiers. The guillemets were chosen because QL already uses double quotes, single quotes, and backticks for other quoting purposes. «TRANSACTION» «duration» «lovely stories» No identifiers are predeclared, however note that no keyword can be used as a normal identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. If there exists an unique index that would make the insert statement fail, the optional IF NOT EXISTS turns the insert statement in such case into a no-op. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function coalesce takes at least one argument and returns the first of its arguments which is not NULL. If all arguments are NULL, this function returns NULL. This is useful for providing defaults for NULL values in a select query. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package bender makes it easy to build load testing applications for services using protocols like HTTP, Thrift, Protocol Buffers and many others. Bender provides two different approaches to load testing. The first, LoadTestThroughput, gives the tester control over the throughput (QPS), but not over the concurrency (number of goroutines). The second, LoadTestConcurrency, gives the tester control over the concurrency, but not over the throughput. LoadTestThroughput simulates the load caused by concurrent clients sending requests to a service. It can be used to simulate a target throughput (QPS) and to measure the request latency and error rate at that throughput. The load tester will keep spawning goroutines to send requests, even if the service is sending errors or hanging, making this a good way to test the actual behavior of the service under heavy load. This is the same approach used by Twitter's Iago library, and is nearly always the right place to start when load testing services exposed (directly or indirectly) to the Internet. LoadTestConcurrency simulates a fixed number of clients, each of which sends a request, waits for a response and then repeats. The downside to this approach is that increased latency from the service results in decreased throughput from the load tester, as the simulated clients are all waiting for responses. That makes this a poor way to test services, as real-world traffic doesn't behave this way. The best use for this function is to test services that need to handle a lot of concurrent connections, and for which you need to simulate many connections to test resource limits, latency and other metrics. This approach is used by load testers like the Grinder and JMeter, and has been critiqued well by Gil Tene in his talk "How Not To Measure Latency". The next two sections provide more detail on the implementations of LoadTestThroughput and LoadTestConcurrency. The following sections provide descriptions for the common arguments to the load testing functions, and how they work, including the interval generators, request generators, request executors and event recorders. The LoadTestThroughput function takes four arguments. The first is a function that generates nanosecond intervals which are used as request arrival times. The second is a channel of requests. The third is a function that knows how to send a request and validate the response. The inner loop of LoadTestThroughput looks like this: The fourth argument to LoadTestThroughput is a channel which is used to output events. There are events for the start and end of the load test, the sending of each request and the receiving of each response and the wait time between sending requests. The wait message includes an "overage" time which is useful for monitoring the health of the load test program and underlying OS and host. The overage time measures the difference between the expected wait time (the interval time) and the actual wait time. On a heavily loaded host, or when there are long GC pauses, that difference can be large. Bender attempts to compensate for the overage by reducing the subsequent wait times, but under heavy load, the overage will continue to increase until it cannot be compensated for. At that point the wait events will report a monotonically increasing overage which means the load test isn't keeping up with the desired throughput. A load test ends when the request channel is closed and all remaining requests in the channel have been executed. The LoadTestConcurrency function takes four arguments. The first is a semaphore that controls the maximum number of concurrently executing requests, and makes it possible to dynamically control that number over the lifetime of the load test. The second, third and fourth arguments are identical to those for LoadTestThroughput. The inner loop of LoadTestConcurrency does something like this: Reducing the semaphore count will reduce the number of running connections as existing connections complete, so there can be some lag between calling workerSem.Wait(n) and the number of running connections actually decreasing by n. The worker semaphore does not protect you from reducing the number of workers below zero, which will cause undefined behavior from the load tester. As with LoadTestThroughput, the load test ends when the request channel is closed and all remaining requests have been executed. An IntervalGenerator is a function that takes the current Unix epoch time (in nanoseconds) and returns a non-negative time (also in nanoseconds) until the next request should be sent. Bender provides functions to create interval generators for uniform and exponential distributions, each of which takes the target throughput (requests per second) and returns an IntervalGenerator. Neither of the included generators makes use of the function argument, but it is there for cases in which the simulated intervals are time dependent (you want to simulate the daily traffice variation of a web site, for example). The request channel decouples creation of requests from execution of requests and allows them to run concurrently. A typical approach to creating a request channel is code like this: Requests can be generated randomly, read from files (like access logs) or generated any other way you like. The important part is that the request generation be done in a separate goroutine that communicates with the load tester via a channel. In addition, the channel must be closed to indicate that the load test is done. The requests channel should almost certainly be buffered, unless you can generate requests much faster than they are sent (and not just on average). The easiest way to miss your target throughput with LoadTestThroughput is to be blocked waiting for requests to be generated, particularly when testing a large throughput. A request executor is a function that takes the current Unix Epoch time (in nanoseconds) and a *Request, sends the request to the service, waits for the response, optionally validates it and returns an error or nil. This function is timed by the load tester, so it should do as little else as possible, and everything it does will be added to the reported service latency. Here, for example, is a very simple request executor for HTTP requests: The http package in Bender provides a function that generates executors that make use of the http packages Transport and Client classes and provide an easy way to validate the body of the http request. RequestExecutors are called concurrently from multiple goroutines, and must be concurrency-safe. The LoadTestThroughput and LoadTestConcurrency functions both take a channel of events (represented as interface{}) as a parameter. This channel is used to output events as they happen during the load test, including the following events: StartEvent: sent once at the start of the load test. EndEvent: sent once at the end of the load test, no more events are sent after this. WaitEvent: sent only for LoadTestThroughput, see below for details. StartRequestEvent: sent before a request is sent to the service, includes the request and the event time. Note that the event time is not the same as the start time for the request for stupid performance reasons. If you need to know the actual start time, see the EndRequestEvent. EndRequestEvent: sent after a request has finished, includes the response, the actual start and end times for the request and any error returned by the RequestExecutor. The WaitEvent includes the time until the next request is sent (in nanoseconds) and an "overage" time. When the inner loop sleeps, it subtracts the total time slept from the time it intended to sleep, and adds that to the overage. The overage, therefore, is a good proxy for how overloaded the load testing host is. If it grows over time, that means the load test is falling behind, and can't start enough goroutines to run all the requests it needs to. In that case you will need a more powerful load testing host, or need to distribute the load test across more hosts. The event channel doesn't need to be buffered, but it may help if you find that Bender isn't sending as much throughput as you expect. In general, this depends a lot on how quickly you are consuming events from the channel, and how quickly the load tester is running. It is a good practice to proactively buffer this channel.
Package sqlite is a sql/database driver using a CGo-free port of the C SQLite3 library. SQLite is an in-process implementation of a self-contained, serverless, zero-configuration, transactional SQL database engine. This project is sponsored by Schleibinger Geräte Teubert u. Greim GmbH by allowing one of the maintainers to work on it also in office hours. These combinations of GOOS and GOARCH are currently supported Builder results available at: https://modern-c.appspot.com/-/builder/?importpath=modernc.org%2fsqlite Numbers for the pure Go version were produced by Numbers for the pure C version were produced by The results are from Go version 1.20.4 and GCC version 10.2.1 on a Linux/amd64 machine, CPU: AMD Ryzen 9 3900X 12-Core Processor × 24, 128GB RAM. Shown are the best of 3 runs. This particular test executes 16.1% faster in the C version. 2023-08-03 v1.25.0: enable SQLITE_ENABLE_DBSTAT_VTAB. 2023-07-11 v1.24.0: Add (*conn).{Serialize,Deserialize,NewBackup,NewRestore} methods, add Backup type. 2023-06-01 v1.23.0: Allow registering aggregate functions. 2023-04-22 v1.22.0: Support linux/s390x. 2023-02-23 v1.21.0: Upgrade to SQLite 3.41.0, release notes at https://sqlite.org/releaselog/3_41_0.html. 2022-11-28 v1.20.0 Support linux/ppc64le. 2022-09-16 v1.19.0: Support frebsd/arm64. 2022-07-26 v1.18.0: Adds support for Go fs.FS based SQLite virtual filesystems, see function New in modernc.org/sqlite/vfs and/or TestVFS in all_test.go 2022-04-24 v1.17.0: Support windows/arm64. 2022-04-04 v1.16.0: Support scalar application defined functions written in Go. 2022-03-13 v1.15.0: Support linux/riscv64. 2021-11-13 v1.14.0: Support windows/amd64. This target had previously only experimental status because of a now resolved memory leak. 2021-09-07 v1.13.0: Support freebsd/amd64. 2021-06-23 v1.11.0: Upgrade to use sqlite 3.36.0, release notes at https://www.sqlite.org/releaselog/3_36_0.html. 2021-05-06 v1.10.6: Fixes a memory corruption issue (https://gitlab.com/cznic/sqlite/-/issues/53). Versions since v1.8.6 were affected and should be updated to v1.10.6. 2021-03-14 v1.10.0: Update to use sqlite 3.35.0, release notes at https://www.sqlite.org/releaselog/3_35_0.html. 2021-03-11 v1.9.0: Support darwin/arm64. 2021-01-08 v1.8.0: Support darwin/amd64. 2020-09-13 v1.7.0: Support linux/arm and linux/arm64. 2020-09-08 v1.6.0: Support linux/386. 2020-09-03 v1.5.0: This project is now completely CGo-free, including the Tcl tests. 2020-08-26 v1.4.0: First stable release for linux/amd64. The database/sql driver and its tests are CGo free. Tests of the translated sqlite3.c library still require CGo. 2020-07-26 v1.4.0-beta1: The project has reached beta status while supporting linux/amd64 only at the moment. The 'extraquick' Tcl testsuite reports and some memory leaks 2019-12-28 v1.2.0-alpha.3: Third alpha fixes issue #19. It also bumps the minor version as the repository was wrongly already tagged with v1.1.0 before. Even though the tag was deleted there are proxies that cached that tag. Thanks /u/garaktailor for detecting the problem and suggesting this solution. 2019-12-26 v1.1.0-alpha.2: Second alpha release adds support for accessing a database concurrently by multiple goroutines and/or processes. v1.1.0 is now considered feature-complete. Next planed release should be a beta with a proper test suite. 2019-12-18 v1.1.0-alpha.1: First alpha release using the new cc/v3, gocc, qbe toolchain. Some primitive tests pass on linux_{amd64,386}. Not yet safe for concurrent access by multiple goroutines. Next alpha release is planed to arrive before the end of this year. 2017-06-10 Windows/Intel no more uses the VM (thanks Steffen Butzer). 2017-06-05 Linux/Intel no more uses the VM (cznic/virtual). To access a Sqlite database do something like A comma separated list of options can be passed to `go generate` via the environment variable GO_GENERATE. Some useful options include for example: To create a debug/development version, issue for example: Note: To run `go generate` you need to have modernc.org/ccgo/v3 installed. This is an example of how to use the debug logs in modernc.org/libc when hunting a bug. The /tmp/libc.log file is created as requested. No useful messages there because none are enabled in libc. Let's try to enable Xwrite as an example. We need to tell the Go build system to use our local, patched/debug libc: And run the test again: See https://sqlite.org/docs.html
testpackage is golang linter that makes you use a separate `_test` package. According to blackbox testing approach, you should not use unexported functions and methods from source code in tests. Go allows to place tests in a separate package with suffix `_test`. For example, tests for `store` package can be in the same package or in the package `store_test`. In the second case, you have to import the source code into tests so only exported things are available. The linter reports if a test is in a package without suffix `_test`. If you really need to test unexported function, then put the test into file `XXX_internal_test.go`. The linter skips such files by default. It also skips the file `export_test.go` by default (see the last article below). More detailed articles on this topic:
Package st, pronounced "ghost", is a tiny test framework for making short, useful assertions in your Go tests. To abort a test immediately with t.Fatal, use Assert(t, have, want) and Refute(t, have, want) To allow a test to continue, reporting failure at the end with t.Error, use Expect(t, have, want) and Reject(t, have, want)
Package testscript provides support for defining filesystem-based tests by creating scripts in a directory. To invoke the tests, call testscript.Run. For example: A testscript directory holds test scripts with extension txtar or txt run during 'go test'. Each script defines a subtest; the exact set of allowable commands in a script are defined by the parameters passed to the Run function. To run a specific script foo.txtar or foo.txt, run where TestName is the name of the test that Run is called from. To define an executable command (or several) that can be run as part of the script, call RunMain with the functions that implement the command's functionality. The command functions will be called in a separate process, so are free to mutate global variables without polluting the top level test binary. In general script files should have short names: a few words, not whole sentences. The first word should be the general category of behavior being tested, often the name of a subcommand to be tested or a concept (vendor, pattern). Each script is a text archive (go doc golang.org/x/tools/txtar). The script begins with an actual command script to run followed by the content of zero or more supporting files to create in the script's temporary file system before it starts executing. As an example: Each script runs in a fresh temporary work directory tree, available to scripts as $WORK. Scripts also have access to these other environment variables: The environment variable $exe (lowercase) is an empty string on most systems, ".exe" on Windows. The script's supporting files are unpacked relative to $WORK and then the script begins execution in that directory as well. Thus the example above runs in $WORK with $WORK/hello.txtar containing the listed contents. The lines at the top of the script are a sequence of commands to be executed by a small script engine in the testscript package (not the system shell). The script stops and the overall test fails if any particular command fails. Each line is parsed into a sequence of space-separated command words, with environment variable expansion and # marking an end-of-line comment. Adding single quotes around text keeps spaces in that text from being treated as word separators and also disables environment variable expansion. Inside a single-quoted block of text, a repeated single quote indicates a literal single quote, as in: A line beginning with # is a comment and conventionally explains what is being done or tested at the start of a new phase in the script. A special form of environment variable syntax can be used to quote regexp metacharacters inside environment variables. The "@R" suffix is special, and indicates that the variable should be quoted. The command prefix ! indicates that the command on the rest of the line (typically go or a matching predicate) must fail, not succeed. Only certain commands support this prefix. They are indicated below by [!] in the synopsis. The command prefix [cond] indicates that the command on the rest of the line should only run when the condition is satisfied. The predefined conditions are: Any known values of GOOS and GOARCH can also be used as conditions. They will be satisfied if the target OS or architecture match the specified value. For example, the condition [darwin] is true if GOOS=darwin, and [amd64] is true if GOARCH=amd64. A condition can be negated: [!short] means to run the rest of the line when testing.Short() is false. Additional conditions can be added by passing a function to Params.Condition. The predefined commands are: cd dir Change to the given directory for future commands. chmod perm path... Change the permissions of the files or directories named by the path arguments to the given octal mode (000 to 777). [!] cmp file1 file2 Check that the named files have (or do not have) the same content. By convention, file1 is the actual data and file2 the expected data. File1 can be "stdout" or "stderr" to use the standard output or standard error from the most recent exec or wait command. (If the files have differing content and the command is not negated, the failure prints a diff.) [!] cmpenv file1 file2 Like cmp, but environment variables in file2 are substituted before the comparison. For example, $GOOS is replaced by the target GOOS. cp src... dst Copy the listed files to the target file or existing directory. src can include "stdout" or "stderr" to use the standard output or standard error from the most recent exec or go command. env [key=value...] With no arguments, print the environment (useful for debugging). Otherwise add the listed key=value pairs to the environment. [!] exec program [args...] [&] Run the given executable program with the arguments. It must (or must not) succeed. Note that 'exec' does not terminate the script (unlike in Unix shells). If the last token is '&', the program executes in the background. The standard output and standard error of the previous command is cleared, but the output of the background process is buffered — and checking of its exit status is delayed — until the next call to 'wait', 'skip', or 'stop' or the end of the test. At the end of the test, any remaining background processes are terminated using os.Interrupt (if supported) or os.Kill. If the last token is '&word&` (where "word" is alphanumeric), the command runs in the background but has a name, and can be waited for specifically by passing the word to 'wait'. Standard input can be provided using the stdin command; this will be cleared after exec has been called. [!] exists [-readonly] file... Each of the listed files or directories must (or must not) exist. If -readonly is given, the files or directories must be unwritable. [!] grep [-count=N] pattern file The file's content must (or must not) match the regular expression pattern. For positive matches, -count=N specifies an exact number of matches to require. mkdir path... Create the listed directories, if they do not already exists. mv path1 path2 Rename path1 to path2. OS-specific restrictions may apply when path1 and path2 are in different directories. rm file... Remove the listed files or directories. skip [message] Mark the test skipped, including the message if given. [!] stderr [-count=N] pattern Apply the grep command (see above) to the standard error from the most recent exec or wait command. stdin file Set the standard input for the next exec command to the contents of the given file. File can be "stdout" or "stderr" to use the standard output or standard error from the most recent exec or wait command. [!] stdout [-count=N] pattern Apply the grep command (see above) to the standard output from the most recent exec or wait command. stop [message] Stop the test early (marking it as passing), including the message if given. symlink file -> target Create file as a symlink to target. The -> (like in ls -l output) is required. wait [command] Wait for all 'exec' and 'go' commands started in the background (with the '&' token) to exit, and display success or failure status for them. After a call to wait, the 'stderr' and 'stdout' commands will apply to the concatenation of the corresponding streams of the background commands, in the order in which those commands were started. If an argument is specified, it waits for just that command. When TestScript runs a script and the script fails, by default TestScript shows the execution of the most recent phase of the script (since the last # comment) and only shows the # comments for earlier phases. For example, here is a multi-phase script with a bug in it (TODO: make this example less go-command specific): The bug is that the final phase installs p11 instead of p1. The test failure looks like: Note that the commands in earlier phases have been hidden, so that the relevant commands are more easily found, and the elapsed time for a completed phase is shown next to the phase heading. To see the entire execution, use "go test -v", which also adds an initial environment dump to the beginning of the log. Note also that in reported output, the actual name of the per-script temporary directory has been consistently replaced with the literal string $WORK. If Params.TestWork is true, it causes each test to log the name of its $WORK directory and other environment variable settings and also to leave that directory behind when it exits, for manual debugging of failing tests:
PrettyTest is a simple testing library for golang. It aims to simplify/prettify testing in golang. It features: * a simple assertion vocabulary for better readability * customizable formatters through interfaces * before/after functions * integrated with the go test command * pretty and colorful output with reports This is the skeleton of a typical prettytest test file: See example/example_test.go and prettytest_test.go for comprehensive usage examples.
Package fault provides standard http middleware for fault injection in go. Use the fault package to inject faults into the http request path of your service. Faults work by modifying and/or delaying your service's http responses. Place the Fault middleware high enough in the chain that it can act quickly, but after any other middlewares that should complete before fault injection (auth, redirects, etc...). The type and severity of injected faults is controlled by options passed to NewFault(Injector, Options). NewFault must be passed an Injector, which is an interface that holds the actual fault injection code in Injector.Handler. The Fault wraps Injector.Handler in another Fault.Handler that applies generic Fault logic (such as what % of requests to run the Injector on) to the Injector. Make sure you use the NewFault() and NewTypeInjector() constructors to create valid Faults and Injectors. There are three main Injectors provided by the fault package: Use fault.RejectInjector to immediately return an empty response. For example, a curl for a rejected response will produce: Use fault.ErrorInjector to immediately return a valid http status code of your choosing along with the standard HTTP response body for that code. For example, you can return a 200, 301, 418, 500, or any other valid status code to test how your clients respond to different statuses. Pass the WithStatusText() option to customize the response text. Use fault.SlowInjector to wait a configured time.Duration before proceeding with the request. For example, you can use the SlowInjector to add a 10ms delay to your requests. Use fault.RandomInjector to randomly choose one of the above faults to inject. Pass a list of Injector to fault.NewRandomInjector and when RandomInjector is evaluated it will randomly run one of the injectors that you passed. It is easy to combine any of the Injectors into a chained action. There are two ways you might want to combine Injectors. First, you can create separate Faults for each Injector that are sequential but independent of each other. For example, you can chain Faults such that 1% of requests will return a 500 error and another 1% of requests will be rejected. Second, you might want to combine Faults such that 1% of requests will be slowed for 10ms and then rejected. You want these Faults to depend on each other. For this use the special ChainInjector, which consolidates any number of Injectors into a single Injector that runs each of the provided Injectors sequentially. When you add the ChainInjector to a Fault the entire chain will always execute together. The NewFault() constructor has WithPathBlocklist() and WithPathAllowlist() options. Any path you include in the PathBlocklist will never have faults run against it. With PathAllowlist, if you provide a non-empty list then faults will not be run against any paths except those specified in PathAllowlist. The PathBlocklist take priority over the PathAllowlist, a path in both lists will never have a fault run against it. The paths that you include must match exactly the path in req.URL.Path, including leading and trailing slashes. Simmilarly, you may also use WithHeaderBlocklist() and WithHeaderAllowlist() to block or allow faults based on a map of header keys to values. These lists behave in the same way as the path allowlists and blocklists except that they operate on headers. Header equality is determined using http.Header.Get(key) which automatically canonicalizes your keys and does not support multi-value headers. Keep these limitations in mind when working with header allowlists and blocklists. Specifying very large lists of paths or headers may cause memory or performance issues. If you're running into these problems you should instead consider using your http router to enable the middleware on only a subset of your routes. The fault package provides an Injector interface and you can satisfy that interface to provide your own Injector. Use custom injectors to add additional logic to the package-provided injectors or to create your own completely new Injector that can still be managed by a Fault. The package provides a Reporter interface that can be added to Faults and Injectors using the WithReporter option. A Reporter will receive events when the state of the Injector changes. For example, Reporter.Report(InjectorName, StateStarted) is run at the beginning of all Injectors. The Reporter is meant to be provided by the consumer of the package and integrate with services like stats and logging. The default Reporter throws away all events. By default all randomness is seeded with defaultRandSeed(1), the same default as math/rand. This helps you reproduce any errors you see when running an Injector. If you prefer, you can also customize the seed passing WithRandSeed() to NewFault and NewRandomInjector. Some Injectors support customizing the functions they use to run their injections. You can take advantage of these options to add your own logic to an existing Injector instead of creating your own. For example, modify the SlowInjector function to slow in a rancom distribution instead of for a fixed duration. Be careful when you use these options that your return values fall within the same range of values expected by the default functions to avoid panics or other undesirable begavior. Customize the function a Fault uses to determine participation (default: rand.Float32) by passing WithRandFloat32Func() to NewFault(). Customize the function a RandomInjector uses to choose which injector to run (default: rand.Intn) by passing WithRandIntFunc() to NewRandomInjector(). Customize the function a SlowInjector uses to wait (default: time.Sleep) by passing WithSlowFunc() to NewSlowInjector(). Configuration for the fault package is done through options passed to NewFault and NewInjector. Once a Fault is created its enabled state and participation percentage can be updated with SetEnabled() and SetParticipation(). There is no other way to manage configuration for the package. It is up to the user of the fault package to manage how the options are generated. Common options are feature flags, environment variables, or code changes in deploys. Example is a package-level documentation example.
Pact Go enables consumer driven contract testing, providing a mock service and DSL for the consumer project, and interaction playback and verification for the service provider project. Consumer side Pact testing is an isolated test that ensures a given component is able to collaborate with another (remote) component. Pact will automatically start a Mock server in the background that will act as the collaborators' test double. This implies that any interactions expected on the Mock server will be validated, meaning a test will fail if all interactions were not completed, or if unexpected interactions were found: A typical consumer-side test would look something like this: If this test completed successfully, a Pact file should have been written to ./pacts/my_consumer-my_provider.json containing all of the interactions expected to occur between the Consumer and Provider. In addition to verbatim value matching, you have 3 useful matching functions in the `dsl` package that can increase expressiveness and reduce brittle test cases. Here is a complex example that shows how all 3 terms can be used together: This example will result in a response body from the mock server that looks like: See the examples in the dsl package and the matcher tests (https://github.com/pact-foundation/pact-go/blob/master/dsl/matcher_test.go) for more matching examples. NOTE: You will need to use valid Ruby regular expressions (http://ruby-doc.org/core-2.1.5/Regexp.html) and double escape backslashes. Read more about flexible matching (https://github.com/pact-foundation/pact-ruby/wiki/Regular-expressions-and-type-matching-with-Pact. Provider side Pact testing, involves verifying that the contract - the Pact file - can be satisfied by the Provider. A typical Provider side test would like something like: The `VerifyProvider` will handle all verifications, treating them as subtests and giving you granular test reporting. If you don't like this behaviour, you may call `VerifyProviderRaw` directly and handle the errors manually. Note that `PactURLs` may be a list of local pact files or remote based urls (possibly from a Pact Broker - http://docs.pact.io/documentation/sharings_pacts.html). Pact reads the specified pact files (from remote or local sources) and replays the interactions against a running Provider. If all of the interactions are met we can say that both sides of the contract are satisfied and the test passes. When validating a Provider, you have 3 options to provide the Pact files: 1. Use "PactURLs" to specify the exact set of pacts to be replayed: Options 2 and 3 are particularly useful when you want to validate that your Provider is able to meet the contracts of what's in Production and also the latest in development. See this [article](http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) for more on this strategy. Each interaction in a pact should be verified in isolation, with no context maintained from the previous interactions. So how do you test a request that requires data to exist on the provider? Provider states are how you achieve this using Pact. Provider states also allow the consumer to make the same request with different expected responses (e.g. different response codes, or the same resource with a different subset of data). States are configured on the consumer side when you issue a dsl.Given() clause with a corresponding request/response pair. Configuring the provider is a little more involved, and (currently) requires running an API endpoint to configure any [provider states](http://docs.pact.io/documentation/provider_states.html) during the verification process. The option you must provide to the dsl.VerifyRequest is: An example route using the standard Go http package might look like this: See the examples or read more at http://docs.pact.io/documentation/provider_states.html. See the Pact Broker (http://docs.pact.io/documentation/sharings_pacts.html) documentation for more details on the Broker and this article (http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) on how to make it work for you. Publishing using Go code: Publishing from the CLI: Use a cURL request like the following to PUT the pact to the right location, specifying your consumer name, provider name and consumer version. The following flags are required to use basic authentication when publishing or retrieving Pact files to/from a Pact Broker: Pact Go uses a simple log utility (logutils - https://github.com/hashicorp/logutils) to filter log messages. The CLI already contains flags to manage this, should you want to control log level in your tests, you can set it like so:
The gotype command does syntactic and semantic analysis of Go files and packages like the front-end of a Go compiler. Errors are reported if the analysis fails; otherwise gotype is quiet (unless -v is set). Without a list of paths, gotype reads from standard input, which must provide a single Go source file defining a complete package. If a single path is specified that is a directory, gotype checks the Go files in that directory; they must all belong to the same package. Otherwise, each path must be the filename of Go file belonging to the same package. Usage: The flags are: Debugging flags: Examples: To check the files a.go, b.go, and c.go: To check an entire package in the directory dir and print the processed files: To check an entire package including tests in the local directory: To verify the output of a pipe:
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/ryanbressler/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/ryanbressler/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
Package cgi implements the common gateway interface (CGI) for Caddy, a modern, full-featured, easy-to-use web server. This plugin lets you generate dynamic content on your website by means of command line scripts. To collect information about the inbound HTTP request, your script examines certain environment variables such as PATH_INFO and QUERY_STRING. Then, to return a dynamically generated web page to the client, your script simply writes content to standard output. In the case of POST requests, your script reads additional inbound content from standard input. The advantage of CGI is that you do not need to fuss with server startup and persistence, long term memory management, sockets, and crash recovery. Your script is called when a request matches one of the patterns that you specify in your Caddyfile. As soon as your script completes its response, it terminates. This simplicity makes CGI a perfect complement to the straightforward operation and configuration of Caddy. The benefits of Caddy, including HTTPS by default, basic access authentication, and lots of middleware options extend easily to your CGI scripts. CGI has some disadvantages. For one, Caddy needs to start a new process for each request. This can adversely impact performance and, if resources are shared between CGI applications, may require the use of some interprocess synchronization mechanism such as a file lock. Your server’s responsiveness could in some circumstances be affected, such as when your web server is hit with very high demand, when your script’s dependencies require a long startup, or when concurrently running scripts take a long time to respond. However, in many cases, such as using a pre-compiled CGI application like fossil or a Lua script, the impact will generally be insignificant. Another restriction of CGI is that scripts will be run with the same permissions as Caddy itself. This can sometimes be less than ideal, for example when your script needs to read or write files associated with a different owner. Serving dynamic content exposes your server to more potential threats than serving static pages. There are a number of considerations of which you should be aware when using CGI applications. CGI SCRIPTS SHOULD BE LOCATED OUTSIDE OF CADDY’S DOCUMENT ROOT. Otherwise, an inadvertent misconfiguration could result in Caddy delivering the script as an ordinary static resource. At best, this could merely confuse the site visitor. At worst, it could expose sensitive internal information that should not leave the server. MISTRUST THE CONTENTS OF PATH_INFO, QUERY_STRING AND STANDARD INPUT. Most of the environment variables available to your CGI program are inherently safe because they originate with Caddy and cannot be modified by external users. This is not the case with PATH_INFO, QUERY_STRING and, in the case of POST actions, the contents of standard input. Be sure to validate and sanitize all inbound content. If you use a CGI library or framework to process your scripts, make sure you understand its limitations. An error in a CGI application is generally handled within the application itself and reported in the headers it returns. Additionally, if the Caddy errors directive is enabled, any content the application writes to its standard error stream will be written to the error log. This can be useful to diagnose problems with the execution of the CGI application. Your CGI application can be executed directly or indirectly. In the direct case, the application can be a compiled native executable or it can be a shell script that contains as its first line a shebang that identifies the interpreter to which the file’s name should be passed. Caddy must have permission to execute the application. On Posix systems this will mean making sure the application’s ownership and permission bits are set appropriately; on Windows, this may involve properly setting up the filename extension association. In the indirect case, the name of the CGI script is passed to an interpreter such as lua, perl or python. The basic cgi directive lets you associate a single pattern with a particular script. The directive can be repeated any reasonable number of times. Here is the basic syntax: For example: When a request such as https://example.com/report or https://example.com/report/weekly arrives, the cgi middleware will detect the match and invoke the script named /usr/local/cgi-bin/report. The current working directory will be the same as Caddy itself. Here, it is assumed that the script is self-contained, for example a pre-compiled CGI application or a shell script. Here is an example of a standalone script, similar to one used in the cgi plugin’s test suite: The environment variables PATH_INFO and QUERY_STRING are populated and passed to the script automatically. There are a number of other standard CGI variables included that are described below. If you need to pass any special environment variables or allow any environment variables that are part of Caddy’s process to pass to your script, you will need to use the advanced directive syntax described below. The values used for the script name and its arguments are subject to placeholder replacement. In addition to the standard Caddy placeholders such as {method} and {host}, the following placeholder substitutions are made: - {.} is replaced with Caddy’s current working directory - {match} is replaced with the portion of the request that satisfies the match directive - {root} is replaced with Caddy’s specified root directory You can include glob wildcards in your matches. Basically, an asterisk represents a sequence of zero or more non-slash characters and a question mark represents a single non-slash character. These wildcards can be used multiple times in a match expression. See the documentation for path/Match in the Go standard library for more details about glob matching. Here is an example directive: In this case, the cgi middleware will match requests such as https://example.com/report/weekly.lua and https://example.com/report/report.lua/weekly but not https://example.com/report.lua. The use of the asterisk expands to any character sequence within a directory. For example, if the request is made, the following command is executed: Note that the portion of the request that follows the match is not included. That information is conveyed to the script by means of environment variables. In this example, the Lua interpreter is invoked directly from Caddy, so the Lua script does not need the shebang that would be needed in a standalone script. This method facilitates the use of CGI on the Windows platform. In order to specify custom environment variables, pass along one or more environment variables known to Caddy, or specify more than one match pattern for a given rule, you will need to use the advanced directive syntax. That looks like this: For example, With the advanced syntax, the exec subdirective must appear exactly once. The match subdirective must appear at least once. The env, pass_env, empty_env, and except subdirectives can appear any reasonable number of times. pass_all_env, dir may appear once. The dir subdirective specifies the CGI executable’s working directory. If it is not specified, Caddy’s current working directory is used. The except subdirective uses the same pattern matching logic that is used with the match subdirective except that the request must match a rule fully; no request path prefix matching is performed. Any request that matches a match pattern is then checked with the patterns in except, if any. If any matches are made with the except pattern, the request is rejected and passed along to subsequent handlers. This is a convenient way to have static file resources served properly rather than being confused as CGI applications. The empty_env subdirective is used to pass one or more empty environment variables. Some CGI scripts may expect the server to pass certain empty variables rather than leaving them unset. This subdirective allows you to deal with those situations. The values associated with environment variable keys are all subject to placeholder substitution, just as with the script name and arguments. If your CGI application runs properly at the command line but fails to run from Caddy it is possible that certain environment variables may be missing. For example, the ruby gem loader evidently requires the HOME environment variable to be set; you can do this with the subdirective pass_env HOME. Another class of problematic applications require the COMPUTERNAME variable. The pass_all_env subdirective instructs Caddy to pass each environment variable it knows about to the CGI excutable. This addresses a common frustration that is caused when an executable requires an environment variable and fails without a descriptive error message when the variable cannot be found. These applications often run fine from the command prompt but fail when invoked with CGI. The risk with this subdirective is that a lot of server information is shared with the CGI executable. Use this subdirective only with CGI applications that you trust not to leak this information. If you protect your CGI application with the Caddy JWT middleware, your program will have access to the token’s payload claims by means of environment variables. For example, the following token claims will be available with the following environment variables All values are conveyed as strings, so some conversion may be necessary in your program. No placeholder substitutions are made on these values. If you run into unexpected results with the CGI plugin, you are able to examine the environment in which your CGI application runs. To enter inspection mode, add the subdirective inspect to your CGI configuration block. This is a development option that should not be used in production. When in inspection mode, the plugin will respond to matching requests with a page that displays variables of interest. In particular, it will show the replacement value of {match} and the environment variables to which your CGI application has access. For example, consider this example CGI block: When you request a matching URL, for example, the Caddy server will deliver a text page similar to the following. The CGI application (in this case, wapptclsh) will not be called. This information can be used to diagnose problems with how a CGI application is called. To return to operation mode, remove or comment out the inspect subdirective. In this example, the Caddyfile looks like this: Note that a request for /show gets mapped to a script named /usr/local/cgi-bin/report/gen. There is no need for any element of the script name to match any element of the match pattern. The contents of /usr/local/cgi-bin/report/gen are: The purpose of this script is to show how request information gets communicated to a CGI script. Note that POST data must be read from standard input. In this particular case, posted data gets stored in the variable POST_DATA. Your script may use a different method to read POST content. Secondly, the SCRIPT_EXEC variable is not a CGI standard. It is provided by this middleware and contains the entire command line, including all arguments, with which the CGI script was executed. When a browser requests the response looks like When a client makes a POST request, such as with the following command the response looks the same except for the following lines: The fossil distributed software management tool is a native executable that supports interaction as a CGI application. In this example, /usr/bin/fossil is the executable and /home/quixote/projects.fossil is the fossil repository. To configure Caddy to serve it, use a cgi directive something like this in your Caddyfile: In your /usr/local/cgi-bin directory, make a file named projects with the following single line: The fossil documentation calls this a command file. When fossil is invoked after a request to /projects, it examines the relevant environment variables and responds as a CGI application. If you protect /projects with basic HTTP authentication, you may wish to enable the ALLOW REMOTE_USER AUTHENTICATION option when setting up fossil. This lets fossil dispense with its own authentication, assuming it has an account for the user. The agedu utility can be used to identify unused files that are taking up space on your storage media. Like fossil, it can be used in different modes including CGI. First, use it from the command line to generate an index of a directory, for example In your Caddyfile, include a directive that references the generated index: You will want to protect the /agedu resource with some sort of access control, for example HTTP Basic Authentication. This small example demonstrates how to write a CGI program in Go. The use of a bytes.Buffer makes it easy to report the content length in the CGI header. When this program is compiled and installed as /usr/local/bin/servertime, the following directive in your Caddy file will make it available: The cgit application provides an attractive and useful web interface to git repositories. Here is how to run it with Caddy. After compiling cgit, you can place the executable somewhere out of Caddy’s document root. In this example, it is located in /usr/local/cgi-bin. A sample configuration file is included in the project’s cgitrc.5.txt file. You can use it as a starting point for your configuration. The default location for this file is /etc/cgitrc but in this example the location /home/quixote/caddy/cgitrc. Note that changing the location of this file from its default will necessitate the inclusion of the environment variable CGIT_CONFIG in the Caddyfile cgi directive. When you edit the repository stanzas in this file, be sure each repo.path item refers to the .git directory within a working checkout. Here is an example stanza: Also, you will likely want to change cgit’s cache directory from its default in /var/cache (generally accessible only to root) to a location writeable by Caddy. In this example, cgitrc contains the line You may need to create the cgit subdirectory. There are some static cgit resources (namely, cgit.css, favicon.ico, and cgit.png) that will be accessed from Caddy’s document tree. For this example, these files are placed in a directory named cgit-resource. The following lines are part of the cgitrc file: Additionally, you will likely need to tweak the various file viewer filters such source-filter and about-filter based on your system. The following Caddyfile directive will allow you to access the cgit application at /cgit: Feeling reckless? You can run PHP in CGI mode. In general, FastCGI is the preferred method to run PHP if your application has many pages or a fair amount of database activity. But for small PHP programs that are seldom used, CGI can work fine. You’ll need the php-cgi interpreter for your platform. This may involve downloading the executable or downloading and then compiling the source code. For this example, assume the interpreter is installed as /usr/local/bin/php-cgi. Additionally, because of the way PHP operates in CGI mode, you will need an intermediate script. This one works in Posix environments: This script can be reused for multiple cgi directives. In this example, it is installed as /usr/local/cgi-bin/phpwrap. The argument following -c is your initialization file for PHP. In this example, it is named /home/quixote/.config/php/php-cgi.ini. Two PHP files will be used for this example. The first, /usr/local/cgi-bin/sample/min.php, looks like this: The second, /usr/local/cgi-bin/sample/action.php, follows: The following directive in your Caddyfile will make the application available at sample/min.php: This examples demonstrates printing a CGI rule
Package anser provides a document transformation and processing tool to support data migrations. The anser.Application is the primary interface in which migrations are defined and executed. Applications are constructed with a list of MigrationGenerators, and relevant operations. Then the Setup method configures the application, with an anser.Environment, which sets up and collects dependency information. Finally, the Run method executes the migrations in two phases: first by generating migration jobs, and finally by running all migration jobs. The ordering of migrations is derived from the dependency information between generators and the jobs that they generate. When possible jobs are executed in parallel, but the execution of migration operations is a property of the queue object configured in the anser.Environment. The anser package provides a custom amboy/dependency.Manager object, which allows migrations to express dependencies to other migrations. The State() method ensures that all migration IDs specified as edges are satisfied before reporting as "ready" for work. Anser provides the Environment interface, with a global instance accessible via the exported GetEnvironment() function to provide access to runtime configuration state: database connections; amboy.Queue objects, and registries for task implementations. The Environment is an interface: you can build a mock, or use one provided for testing purposes by anser (coming soon). Generators create migration operations and are the first step in an anser Migration. They are supersets of amboy.Job interfaces. The current limitation is that the generated jobs must be stored within the implementation of the generator job, which means they must either all fit in memory *or* be serializable independently (e.g. fit in the 16mb document limit if using a MongoDB backed queue.)
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. If you currently use the $GOPATH scheme, install the package with the following command. To test the installation, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. • Choice of measurement unit, page format and margins • Page header and footer management • Automatic page breaks, line breaks, and text justification • Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images • Colors, gradients and alpha channel transparency • Outline bookmarks • Internal and external links • TrueType, Type1 and encoding support • Page compression • Lines, Bézier curves, arcs, and ellipses • Rotation, scaling, skewing, translation, and mirroring • Clipping • Document protection • Layers • Templates • Barcodes gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. Like FPDF version 1.7, from which gofpdf is derived, this package does not yet support UTF-8 fonts. In particular, languages that require more than one code page such as Chinese, Japanese, and Arabic are not currently supported. This is explained in issue 109. However, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running "go test ./..." is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you'll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory. The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). In order to use a different TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run "go build". This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include http://www.google.com/fonts/ and http://dejavu-fonts.org/. The draw2d package (https://github.com/llgcode/draw2d) is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the `contrib` directory. Here are guidelines for making submissions. Your change should • be compatible with the MIT License • be properly documented • be formatted with `go fmt` • include an example in fpdf_test.go if appropriate • conform to the standards of golint (https://github.com/golang/lint) and go vet (https://godoc.org/golang.org/x/tools/cmd/vet), that is, `golint .` and `go vet .` should not generate any warnings • not diminish test coverage (https://blog.golang.org/cover) Pull requests (https://help.github.com/articles/using-pull-requests/) work nicely as a means of contributing your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package's code and documentation are closely derived from the FPDF library (http://www.fpdf.org/) created by Olivier Plathey, and a number of font and image resources are copied directly from it. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image's extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Bruno Michel has provided valuable assistance with the code. • Handle UTF-8 source text natively. Until then, automatic translation of UTF-8 runes to code page bytes is provided. • Improve test coverage as reported by the coverage tool. This example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package iotdeviceadvisor provides the API client, operations, and parameter types for AWS IoT Core Device Advisor. Amazon Web Services IoT Core Device Advisor is a cloud-based, fully managed test capability for validating IoT devices during device software development. Device Advisor provides pre-built tests that you can use to validate IoT devices for reliable and secure connectivity with Amazon Web Services IoT Core before deploying devices to production. By using Device Advisor, you can confirm that your devices can connect to Amazon Web Services IoT Core, follow security best practices and, if applicable, receive software updates from IoT Device Management. You can also download signed qualification reports to submit to the Amazon Web Services Partner Network to get your device qualified for the Amazon Web Services Partner Device Catalog without the need to send your device in and wait for it to be tested.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package testscript provides support for defining filesystem-based tests by creating scripts in a directory. To invoke the tests, call testscript.Run. For example: A testscript directory holds test scripts *.txt run during 'go test'. Each script defines a subtest; the exact set of allowable commands in a script are defined by the parameters passed to the Run function. To run a specific script foo.txt where TestName is the name of the test that Run is called from. To define an executable command (or several) that can be run as part of the script, call RunMain with the functions that implement the command's functionality. The command functions will be called in a separate process, so are free to mutate global variables without polluting the top level test binary. In general script files should have short names: a few words, not whole sentences. The first word should be the general category of behavior being tested, often the name of a subcommand to be tested or a concept (vendor, pattern). Each script is a text archive (go doc github.com/rogpeppe/testscript//txtar). The script begins with an actual command script to run followed by the content of zero or more supporting files to create in the script's temporary file system before it starts executing. As an example: Each script runs in a fresh temporary work directory tree, available to scripts as $WORK. Scripts also have access to these other environment variables: The environment variable $exe (lowercase) is an empty string on most systems, ".exe" on Windows. The script's supporting files are unpacked relative to $WORK and then the script begins execution in that directory as well. Thus the example above runs in $WORK with $WORK/hello.txt containing the listed contents. The lines at the top of the script are a sequence of commands to be executed by a small script engine in the testscript package (not the system shell). The script stops and the overall test fails if any particular command fails. Each line is parsed into a sequence of space-separated command words, with environment variable expansion and # marking an end-of-line comment. Adding single quotes around text keeps spaces in that text from being treated as word separators and also disables environment variable expansion. Inside a single-quoted block of text, a repeated single quote indicates a literal single quote, as in: A line beginning with # is a comment and conventionally explains what is being done or tested at the start of a new phase in the script. A special form of environment variable syntax can be used to quote regexp metacharacters inside environment variables. The "@R" suffix is special, and indicates that the variable should be quoted. The command prefix ! indicates that the command on the rest of the line (typically go or a matching predicate) must fail, not succeed. Only certain commands support this prefix. They are indicated below by [!] in the synopsis. The command prefix [cond] indicates that the command on the rest of the line should only run when the condition is satisfied. The predefined conditions are: A condition can be negated: [!short] means to run the rest of the line when testing.Short() is false. Additional conditions can be added by passing a function to Params.Condition. The predefined commands are: - chmod mode file [!] exec program [args...] [&] Run the given executable program with the arguments. It must (or must not) succeed. Note that 'exec' does not terminate the script (unlike in Unix shells). If the last token is '&', the program executes in the background. The standard output and standard error of the previous command is cleared, but the output of the background process is buffered — and checking of its exit status is delayed — until the next call to 'wait', 'skip', or 'stop' or the end of the test. At the end of the test, any remaining background processes are terminated using os.Interrupt (if supported) or os.Kill. Standard input can be provided using the stdin command; this will be cleared after exec has been called. When TestScript runs a script and the script fails, by default TestScript shows the execution of the most recent phase of the script (since the last # comment) and only shows the # comments for earlier phases. For example, here is a multi-phase script with a bug in it (TODO: make this example less go-command specific): The bug is that the final phase installs p11 instead of p1. The test failure looks like: Note that the commands in earlier phases have been hidden, so that the relevant commands are more easily found, and the elapsed time for a completed phase is shown next to the phase heading. To see the entire execution, use "go test -v", which also adds an initial environment dump to the beginning of the log. Note also that in reported output, the actual name of the per-script temporary directory has been consistently replaced with the literal string $WORK. If Params.TestWork is true, it causes each test to log the name of its $WORK directory and other environment variable settings and also to leave that directory behind when it exits, for manual debugging of failing tests: