Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
github.com/JohnSnowLabs/spark-nlp
Spark NLP is a state-of-the-art Natural Language Processing library built on top of Apache Spark. It provides simple, performant & accurate NLP annotations for machine learning pipelines that scale easily in a distributed environment. Spark NLP comes with 21000+ pretrained pipelines and models in more than 200+ languages. It also offers tasks such as Tokenization, Word Segmentation, Part-of-Speech Tagging, Word and Sentence Embeddings, Named Entity Recognition, Dependency Parsing, Spell Checking, Text Classification, Sentiment Analysis, Token Classification, Machine Translation (+180 languages), Summarization, Question Answering, Table Question Answering, Text Generation, Image Classification, Image to Text (captioning), Automatic Speech Recognition, Zero-Shot Learning, and many more NLP tasks.
Spark NLP is the only open-source NLP library in production that offers state-of-the-art transformers such as BERT, CamemBERT, ALBERT, ELECTRA, XLNet, DistilBERT, RoBERTa, DeBERTa, XLM-RoBERTa, Longformer, ELMO, Universal Sentence Encoder, Facebook BART, Instructor, E5, Google T5, MarianMT, OpenAI GPT2, and Vision Transformers (ViT) not only to Python and R, but also to JVM ecosystem (Java, Scala, and Kotlin) at scale by extending Apache Spark natively.
Take a look at our official Spark NLP page: https://sparknlp.org/ for user documentation and examples
To use Spark NLP you need the following requirements:
GPU (optional):
Spark NLP 5.1.3 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:
This is a quick example of how to use Spark NLP pre-trained pipeline in Python and PySpark:
$ java -version
# should be Java 8 or 11 (Oracle or OpenJDK)
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.1.3 pyspark==3.3.1
In Python console or Jupyter Python3
kernel:
# Import Spark NLP
from sparknlp.base import *
from sparknlp.annotator import *
from sparknlp.pretrained import PretrainedPipeline
import sparknlp
# Start SparkSession with Spark NLP
# start() functions has 3 parameters: gpu, apple_silicon, and memory
# sparknlp.start(gpu=True) will start the session with GPU support
# sparknlp.start(apple_silicon=True) will start the session with macOS M1 & M2 support
# sparknlp.start(memory="16G") to change the default driver memory in SparkSession
spark = sparknlp.start()
# Download a pre-trained pipeline
pipeline = PretrainedPipeline('explain_document_dl', lang='en')
# Your testing dataset
text = """
The Mona Lisa is a 16th century oil painting created by Leonardo.
It's held at the Louvre in Paris.
"""
# Annotate your testing dataset
result = pipeline.annotate(text)
# What's in the pipeline
list(result.keys())
Output: ['entities', 'stem', 'checked', 'lemma', 'document',
'pos', 'token', 'ner', 'embeddings', 'sentence']
# Check the results
result['entities']
Output: ['Mona Lisa', 'Leonardo', 'Louvre', 'Paris']
For more examples, you can visit our dedicated examples to showcase all Spark NLP use cases!
Spark NLP 5.1.3 has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x
Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | Apache Spark 3.4.x |
---|---|---|---|---|---|---|---|
5.0.x | NO | NO | YES | YES | YES | YES | YES |
4.4.x | NO | NO | YES | YES | YES | YES | YES |
4.3.x | NO | NO | YES | YES | YES | YES | NO |
4.2.x | NO | NO | YES | YES | YES | YES | NO |
4.1.x | NO | NO | YES | YES | YES | YES | NO |
4.0.x | NO | NO | YES | YES | YES | YES | NO |
3.4.x | YES | YES | YES | YES | Partially | N/A | NO |
3.3.x | YES | YES | YES | YES | NO | NO | NO |
3.2.x | YES | YES | YES | YES | NO | NO | NO |
3.1.x | YES | YES | YES | YES | NO | NO | NO |
3.0.x | YES | YES | YES | YES | NO | NO | NO |
2.7.x | YES | YES | NO | NO | NO | NO | NO |
Find out more about Spark NLP
versions from our release notes.
Spark NLP | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 | Scala 2.11 | Scala 2.12 |
---|---|---|---|---|---|---|---|
5.0.x | NO | YES | YES | YES | YES | NO | YES |
4.4.x | NO | YES | YES | YES | YES | NO | YES |
4.3.x | YES | YES | YES | YES | YES | NO | YES |
4.2.x | YES | YES | YES | YES | YES | NO | YES |
4.1.x | YES | YES | YES | YES | NO | NO | YES |
4.0.x | YES | YES | YES | YES | NO | NO | YES |
3.4.x | YES | YES | YES | YES | NO | YES | YES |
3.3.x | YES | YES | YES | NO | NO | YES | YES |
3.2.x | YES | YES | YES | NO | NO | YES | YES |
3.1.x | YES | YES | YES | NO | NO | YES | YES |
3.0.x | YES | YES | YES | NO | NO | YES | YES |
2.7.x | YES | YES | NO | NO | NO | YES | NO |
Spark NLP 5.1.3 has been tested and is compatible with the following runtimes:
CPU:
GPU:
Spark NLP 5.1.3 has been tested and is compatible with the following EMR releases:
Full list of Amazon EMR 6.x releases
NOTE: The EMR 6.1.0 and 6.1.1 are not supported.
This is a cheatsheet for corresponding Spark NLP Maven package to Apache Spark / PySpark major version:
Apache Spark | Spark NLP on CPU | Spark NLP on GPU | Spark NLP on AArch64 (linux) | Spark NLP on Apple Silicon |
---|---|---|---|---|
3.0/3.1/3.2/3.3/3.4 | spark-nlp | spark-nlp-gpu | spark-nlp-aarch64 | spark-nlp-silicon |
Start Function | sparknlp.start() | sparknlp.start(gpu=True) | sparknlp.start(aarch64=True) | sparknlp.start(apple_silicon=True) |
NOTE: M1/M2
and AArch64
are under experimental
support. Access and support to these architectures are limited by the
community and we had to build most of the dependencies by ourselves to make them compatible. We support these two
architectures, however, they may not work in some environments.
Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x, Apache Spark 3.2.x, Apache Spark 3.3.x, and Apache Spark 3.4.x
# CPU
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
The spark-nlp
has been published to
the Maven Repository.
# GPU
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.3
The spark-nlp-gpu
has been published to
the Maven Repository.
# AArch64
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.3
The spark-nlp-aarch64
has been published to
the Maven Repository.
# M1/M2 (Apple Silicon)
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.3
The spark-nlp-silicon
has been published to
the Maven Repository.
NOTE: In case you are using large pretrained models like UniversalSentenceEncoder, you need to have the following set in your SparkSession:
spark-shell \
--driver-memory 16g \
--conf spark.kryoserializer.buffer.max=2000M \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
Spark NLP supports Scala 2.12.15 if you are using Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x versions. Our packages are deployed to Maven central. To add any of our packages as a dependency in your application you can follow these coordinates:
spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.12</artifactId>
<version>5.1.3</version>
</dependency>
spark-nlp-gpu:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.12</artifactId>
<version>5.1.3</version>
</dependency>
spark-nlp-aarch64:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-aarch64_2.12</artifactId>
<version>5.1.3</version>
</dependency>
spark-nlp-silicon:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-silicon_2.12</artifactId>
<version>5.1.3</version>
</dependency>
spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.3"
spark-nlp-gpu:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.3"
spark-nlp-aarch64:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.3"
spark-nlp-silicon:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.3"
Maven Central: https://mvnrepository.com/artifact/com.johnsnowlabs.nlp
If you are interested, there is a simple SBT project for Spark NLP to guide you on how to use it in your projects Spark NLP SBT Starter
Spark NLP supports Python 3.6.x and above depending on your major PySpark version.
If you installed pyspark through pip/conda, you can install spark-nlp
through the same channel.
Pip:
pip install spark-nlp==5.1.3
Conda:
conda install -c johnsnowlabs spark-nlp
PyPI spark-nlp package / Anaconda spark-nlp package
Then you'll have to create a SparkSession either from Spark NLP:
import sparknlp
spark = sparknlp.start()
or manually:
spark = SparkSession.builder
.appName("Spark NLP")
.master("local[*]")
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3")
.getOrCreate()
If using local jars, you can use spark.jars
instead for comma-delimited jar files. For cluster setups, of course,
you'll have to put the jars in a reachable location for all driver and executor nodes.
Quick example:
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
# create or get Spark Session
spark = sparknlp.start()
sparknlp.version()
spark.version
# download, load and annotate a text by pre-trained pipeline
pipeline = PretrainedPipeline('recognize_entities_dl', 'en')
result = pipeline.annotate('The Mona Lisa is a 16th century oil painting created by Leonardo')
sbt assembly
sbt -Dis_gpu=true assembly
sbt -Dis_silicon=true assembly
If for some reason you need to use the JAR, you can either download the Fat JARs provided here or download it from Maven Central.
To add JARs to spark programs use the --jars
option:
spark-shell --jars spark-nlp.jar
The preferred way to use the library when running spark programs is using the --packages
option as specified in
the spark-packages
section.
Use either one of the following options
com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
Apart from the previous step, install the python module through pip
pip install spark-nlp==5.1.3
Or you can install spark-nlp
from inside Zeppelin by using Conda:
python.conda install -c johnsnowlabs spark-nlp
Configure Zeppelin properly, use cells with %spark.pyspark or any interpreter name you chose.
Finally, in Zeppelin interpreter settings, make sure you set properly zeppelin.python to the python you want to use and
install the pip library with (e.g. python3
).
An alternative option would be to set SPARK_SUBMIT_OPTIONS
(zeppelin-env.sh) and make sure --packages
is there as
shown earlier since it includes both scala and python side installation.
Recommended:
The easiest way to get this done on Linux and macOS is to simply install spark-nlp
and pyspark
PyPI packages and
launch the Jupyter from the same Python environment:
$ conda create -n sparknlp python=3.8 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.1.3 pyspark==3.3.1 jupyter
$ jupyter notebook
Then you can use python3
kernel to run your code with creating SparkSession via spark = sparknlp.start()
.
Optional:
If you are in different operating systems and require to make Jupyter Notebook run by using pyspark, you can follow these steps:
export SPARK_HOME=/path/to/your/spark/folder
export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
Alternatively, you can mix in using --jars
option for pyspark + pip install spark-nlp
If not using pyspark at all, you'll have to run the instructions pointed here
Google Colab is perhaps the easiest way to get started with spark-nlp. It requires no installation or setup other than having a Google account.
Run the following code in Google Colab notebook and start using spark-nlp right away.
# This is only to setup PySpark and Spark NLP on Colab
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash
This script comes with the two options to define pyspark
and spark-nlp
versions via options:
# -p is for pyspark
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.3
Spark NLP quick start on Google Colab is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines.
Run the following code in Kaggle Kernel and start using spark-nlp right away.
# Let's setup Kaggle for Spark NLP and PySpark
!wget https://setup.johnsnowlabs.com/kaggle.sh -O - | bash
This script comes with the two options to define pyspark
and spark-nlp
versions via options:
# -p is for pyspark
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.3
Spark NLP quick start on Kaggle Kernel is a live demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP pretrained pipeline.
Create a cluster if you don't have one already
On a new cluster or existing one you need to add the following to the Advanced Options -> Spark
tab:
spark.kryoserializer.buffer.max 2000M
spark.serializer org.apache.spark.serializer.KryoSerializer
In Libraries
tab inside your cluster you need to follow these steps:
3.1. Install New -> PyPI -> spark-nlp==5.1.3
-> Install
3.2. Install New -> Maven -> Coordinates -> com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
-> Install
Now you can attach your notebook to the cluster and use Spark NLP!
NOTE: Databricks' runtimes support different Apache Spark major releases. Please make sure you choose the correct Spark NLP Maven package name (Maven Coordinate) for your runtime from our Packages Cheatsheet
To launch EMR clusters with Apache Spark/PySpark and Spark NLP correctly you need to have bootstrap and software configuration.
A sample of your bootstrap script
#!/bin/bash
set -x -e
echo -e 'export PYSPARK_PYTHON=/usr/bin/python3
export HADOOP_CONF_DIR=/etc/hadoop/conf
export SPARK_JARS_DIR=/usr/lib/spark/jars
export SPARK_HOME=/usr/lib/spark' >> $HOME/.bashrc && source $HOME/.bashrc
sudo python3 -m pip install awscli boto spark-nlp
set +x
exit 0
A sample of your software configuration in JSON on S3 (must be public access):
[{
"Classification": "spark-env",
"Configurations": [{
"Classification": "export",
"Properties": {
"PYSPARK_PYTHON": "/usr/bin/python3"
}
}]
},
{
"Classification": "spark-defaults",
"Properties": {
"spark.yarn.stagingDir": "hdfs:///tmp",
"spark.yarn.preserve.staging.files": "true",
"spark.kryoserializer.buffer.max": "2000M",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.driver.maxResultSize": "0",
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3"
}
}]
A sample of AWS CLI to launch EMR cluster:
aws emr create-cluster \
--name "Spark NLP 5.1.3" \
--release-label emr-6.2.0 \
--applications Name=Hadoop Name=Spark Name=Hive \
--instance-type m4.4xlarge \
--instance-count 3 \
--use-default-roles \
--log-uri "s3://<S3_BUCKET>/" \
--bootstrap-actions Path=s3://<S3_BUCKET>/emr-bootstrap.sh,Name=custome \
--configurations "https://<public_access>/sparknlp-config.json" \
--ec2-attributes KeyName=<your_ssh_key>,EmrManagedMasterSecurityGroup=<security_group_with_ssh>,EmrManagedSlaveSecurityGroup=<security_group_with_ssh> \
--profile <aws_profile_credentials>
At gcloud shell:
gcloud services enable dataproc.googleapis.com \
compute.googleapis.com \
storage-component.googleapis.com \
bigquery.googleapis.com \
bigquerystorage.googleapis.com
REGION=<region>
BUCKET_NAME=<bucket_name>
gsutil mb -c standard -l ${REGION} gs://${BUCKET_NAME}
REGION=<region>
ZONE=<zone>
CLUSTER_NAME=<cluster_name>
BUCKET_NAME=<bucket_name>
You can set image-version, master-machine-type, worker-machine-type, master-boot-disk-size, worker-boot-disk-size, num-workers as your needs. If you use the previous image-version from 2.0, you should also add ANACONDA to optional-components. And, you should enable gateway. Don't forget to set the maven coordinates for the jar in properties.
gcloud dataproc clusters create ${CLUSTER_NAME} \
--region=${REGION} \
--zone=${ZONE} \
--image-version=2.0 \
--master-machine-type=n1-standard-4 \
--worker-machine-type=n1-standard-2 \
--master-boot-disk-size=128GB \
--worker-boot-disk-size=128GB \
--num-workers=2 \
--bucket=${BUCKET_NAME} \
--optional-components=JUPYTER \
--enable-component-gateway \
--metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
Now, you can attach your notebook to the cluster and use the Spark NLP!
You can change the following Spark NLP configurations via Spark Configuration:
Property Name | Default | Meaning |
---|---|---|
spark.jsl.settings.pretrained.cache_folder | ~/cache_pretrained | The location to download and extract pretrained Models and Pipelines . By default, it will be in User's Home directory under cache_pretrained directory |
spark.jsl.settings.storage.cluster_tmp_dir | hadoop.tmp.dir | The location to use on a cluster for temporarily files such as unpacking indexes for WordEmbeddings. By default, this locations is the location of hadoop.tmp.dir set via Hadoop configuration for Apache Spark. NOTE: S3 is not supported and it must be local, HDFS, or DBFS |
spark.jsl.settings.annotator.log_folder | ~/annotator_logs | The location to save logs from annotators during training such as NerDLApproach , ClassifierDLApproach , SentimentDLApproach , MultiClassifierDLApproach , etc. By default, it will be in User's Home directory under annotator_logs directory |
spark.jsl.settings.aws.credentials.access_key_id | None | Your AWS access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in NerDLApproach |
spark.jsl.settings.aws.credentials.secret_access_key | None | Your AWS secret access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in NerDLApproach |
spark.jsl.settings.aws.credentials.session_token | None | Your AWS MFA session token to use your S3 bucket to store log files of training models or access tensorflow graphs used in NerDLApproach |
spark.jsl.settings.aws.s3_bucket | None | Your AWS S3 bucket to store log files of training models or access tensorflow graphs used in NerDLApproach |
spark.jsl.settings.aws.region | None | Your AWS region to use your S3 bucket to store log files of training models or access tensorflow graphs used in NerDLApproach |
SparkSession:
You can use .config()
during SparkSession creation to set Spark NLP configurations.
from pyspark.sql import SparkSession
spark = SparkSession.builder
.master("local[*]")
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.kryoserializer.buffer.max", "2000m")
.config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
.config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3")
.getOrCreate()
spark-shell:
spark-shell \
--driver-memory 16g \
--conf spark.driver.maxResultSize=0 \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
pyspark:
pyspark \
--driver-memory 16g \
--conf spark.driver.maxResultSize=0 \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.3
Databricks:
On a new cluster or existing one you need to add the following to the Advanced Options -> Spark
tab:
spark.kryoserializer.buffer.max 2000M
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.jsl.settings.pretrained.cache_folder dbfs:/PATH_TO_CACHE
spark.jsl.settings.storage.cluster_tmp_dir dbfs:/PATH_TO_STORAGE
spark.jsl.settings.annotator.log_folder dbfs:/PATH_TO_LOGS
NOTE: If this is an existing cluster, after adding new configs or changing existing properties you need to restart it.
In Spark NLP we can define S3 locations to:
NerDLApproach
Logging:
To configure S3 path for logging while training models. We need to set up AWS credentials as well as an S3 path
spark.conf.set("spark.jsl.settings.annotator.log_folder", "s3://my/s3/path/logs")
spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID")
spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY")
spark.conf.set("spark.jsl.settings.aws.s3_bucket", "my.bucket")
spark.conf.set("spark.jsl.settings.aws.region", "my-region")
Now you can check the log on your S3 path defined in spark.jsl.settings.annotator.log_folder property. Make sure to use the prefix s3://, otherwise it will use the default configuration.
Tensorflow Graphs:
To reference S3 location for downloading graphs. We need to set up AWS credentials
spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID")
spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY")
spark.conf.set("spark.jsl.settings.aws.region", "my-region")
MFA Configuration:
In case your AWS account is configured with MFA. You will need first to get temporal credentials and add session token to the configuration as shown in the examples below For logging:
spark.conf.set("spark.jsl.settings.aws.credentials.session_token", "MY_TOKEN")
An example of a bash script that gets temporal AWS credentials can be found here This script requires three arguments:
./aws_tmp_credentials.sh iam_user duration serial_number
Quick example:
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
import com.johnsnowlabs.nlp.SparkNLP
SparkNLP.version()
val testData = spark.createDataFrame(Seq(
(1, "Google has announced the release of a beta version of the popular TensorFlow machine learning library"),
(2, "Donald John Trump (born June 14, 1946) is the 45th and current president of the United States")
)).toDF("id", "text")
val pipeline = PretrainedPipeline("explain_document_dl", lang = "en")
val annotation = pipeline.transform(testData)
annotation.show()
/*
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
import com.johnsnowlabs.nlp.SparkNLP
2.5.0
testData: org.apache.spark.sql.DataFrame = [id: int, text: string]
pipeline: com.johnsnowlabs.nlp.pretrained.PretrainedPipeline = PretrainedPipeline(explain_document_dl,en,public/models)
annotation: org.apache.spark.sql.DataFrame = [id: int, text: string ... 10 more fields]
+---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
| id| text| document| token| sentence| checked| lemma| stem| pos| embeddings| ner| entities|
+---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
| 1|Google has announ...|[[document, 0, 10...|[[token, 0, 5, Go...|[[document, 0, 10...|[[token, 0, 5, Go...|[[token, 0, 5, Go...|[[token, 0, 5, go...|[[pos, 0, 5, NNP,...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 0, 5, Go...|
| 2|The Paris metro w...|[[document, 0, 11...|[[token, 0, 2, Th...|[[document, 0, 11...|[[token, 0, 2, Th...|[[token, 0, 2, Th...|[[token, 0, 2, th...|[[pos, 0, 2, DT, ...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 4, 8, Pa...|
+---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
*/
annotation.select("entities.result").show(false)
/*
+----------------------------------+
|result |
+----------------------------------+
|[Google, TensorFlow] |
|[Donald John Trump, United States]|
+----------------------------------+
*/
There are functions in Spark NLP that will list all the available Pipelines of a particular language for you:
import com.johnsnowlabs.nlp.pretrained.ResourceDownloader
ResourceDownloader.showPublicPipelines(lang = "en")
/*
+--------------------------------------------+------+---------+
| Pipeline | lang | version |
+--------------------------------------------+------+---------+
| dependency_parse | en | 2.0.2 |
| analyze_sentiment_ml | en | 2.0.2 |
| check_spelling | en | 2.1.0 |
| match_datetime | en | 2.1.0 |
...
| explain_document_ml | en | 3.1.3 |
+--------------------------------------------+------+---------+
*/
Or if we want to check for a particular version:
import com.johnsnowlabs.nlp.pretrained.ResourceDownloader
ResourceDownloader.showPublicPipelines(lang = "en", version = "3.1.0")
/*
+---------------------------------------+------+---------+
| Pipeline | lang | version |
+---------------------------------------+------+---------+
| dependency_parse | en | 2.0.2 |
...
| clean_slang | en | 3.0.0 |
| clean_pattern | en | 3.0.0 |
| check_spelling | en | 3.0.0 |
| dependency_parse | en | 3.0.0 |
+---------------------------------------+------+---------+
*/
**Some selected languages:
** Afrikaans, Arabic, Armenian, Basque, Bengali, Breton, Bulgarian, Catalan, Czech, Dutch, English, Esperanto, Finnish, French, Galician, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Latin, Latvian, Marathi, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Somali, Southern Sotho, Spanish, Swahili, Swedish, Tswana, Turkish, Ukrainian, Zulu
Quick online example:
# load NER model trained by deep learning approach and GloVe word embeddings
ner_dl = NerDLModel.pretrained('ner_dl')
# load NER model trained by deep learning approach and BERT word embeddings
ner_bert = NerDLModel.pretrained('ner_dl_bert')
// load French POS tagger model trained by Universal Dependencies
val french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang = "fr")
// load Italian LemmatizerModel
val italian_lemma = LemmatizerModel.pretrained("lemma_dxc", lang = "it")
Quick offline example:
PerceptronModel
annotator model inside Spark NLP Pipelineval french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/")
.setInputCols("document", "token")
.setOutputCol("pos")
There are functions in Spark NLP that will list all the available Models of a particular Annotator and language for you:
import com.johnsnowlabs.nlp.pretrained.ResourceDownloader
ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en")
/*
+---------------------------------------------+------+---------+
| Model | lang | version |
+---------------------------------------------+------+---------+
| onto_100 | en | 2.1.0 |
| onto_300 | en | 2.1.0 |
| ner_dl_bert | en | 2.2.0 |
| onto_100 | en | 2.4.0 |
| ner_conll_elmo | en | 3.2.2 |
+---------------------------------------------+------+---------+
*/
Or if we want to check for a particular version:
import com.johnsnowlabs.nlp.pretrained.ResourceDownloader
ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en", version = "3.1.0")
/*
+----------------------------+------+---------+
| Model | lang | version |
+----------------------------+------+---------+
| onto_100 | en | 2.1.0 |
| ner_aspect_based_sentiment | en | 2.6.2 |
| ner_weibo_glove_840B_300d | en | 2.6.2 |
| nerdl_atis_840b_300d | en | 2.7.1 |
| nerdl_snips_100d | en | 2.7.3 |
+----------------------------+------+---------+
*/
And to see a list of available annotators, you can use:
import com.johnsnowlabs.nlp.pretrained.ResourceDownloader
ResourceDownloader.showAvailableAnnotators()
/*
AlbertEmbeddings
AlbertForTokenClassification
AssertionDLModel
...
XlmRoBertaSentenceEmbeddings
XlnetEmbeddings
*/
Spark NLP library and all the pre-trained models/pipelines can be used entirely offline with no access to the Internet. If you are behind a proxy or a firewall with no access to the Maven repository (to download packages) or/and no access to S3 (to automatically download models and pipelines), you can simply follow the instructions to have Spark NLP without any limitations offline:
.pretrained()
function to download pretrained
models, you will need to manually download your pipeline/model from Models Hub,
extract it, and load it.Example of SparkSession
with Fat JAR to have Spark NLP offline:
spark = SparkSession.builder
.appName("Spark NLP")
.master("local[*]")
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.1.3.jar")
.getOrCreate()
hdfs:///tmp/spark-nlp-assembly-5.1.3.jar
)Example of using pretrained Models and Pipelines in offline:
# instead of using pretrained() for online:
# french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang="fr")
# you download this model, extract it, and use .load
french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/")
.setInputCols("document", "token")
.setOutputCol("pos")
# example for pipelines
# instead of using PretrainedPipeline
# pipeline = PretrainedPipeline('explain_document_dl', lang='en')
# you download this pipeline, extract it, and use PipelineModel
PipelineModel.load("/tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/")
hdfs:///tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/
)Need more examples? Check out our dedicated Spark NLP Examples repository to showcase all Spark NLP use cases!
Also, don't forget to check Spark NLP in Action built by Streamlit.
Check our Articles and Videos page here
We have published a paper that you can cite for the Spark NLP library:
@article{KOCAMAN2021100058,
title = {Spark NLP: Natural language understanding at scale},
journal = {Software Impacts},
pages = {100058},
year = {2021},
issn = {2665-9638},
doi = {https://doi.org/10.1016/j.simpa.2021.100058},
url = {https://www.sciencedirect.com/science/article/pii/S2665963.2.300063},
author = {Veysel Kocaman and David Talby},
keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster},
abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.}
}
}
We appreciate any sort of contributions:
Clone the repo and submit your pull-requests! Or directly create issues in this repo.
FAQs
Unknown package
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.