šŸš€ Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more →
Socket
Sign inDemoInstall
Socket

github.com/adrg/strutil

Package Overview
Dependencies
Alerts
File Explorer
Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

github.com/adrg/strutil

v0.3.1
Source
Go
Version published
Created
Source

strutil

Build status Code coverage pkg.go.dev documentation MIT license Go report card GitHub issues Buy me a coffee

strutil provides a collection of string metrics for calculating string similarity as well as other string utility functions.
Full documentation can be found at https://pkg.go.dev/github.com/adrg/strutil.

Installation

go get github.com/adrg/strutil

String metrics

The package defines the StringMetric interface, which is implemented by all the string metrics. The interface is used with the Similarity function, which calculates the similarity between the specified strings, using the provided string metric.

type StringMetric interface {
    Compare(a, b string) float64
}

func Similarity(a, b string, metric StringMetric) float64 {
}

All defined string metrics can be found in the metrics package.

Hamming

Calculate similarity.

similarity := strutil.Similarity("text", "test", metrics.NewHamming())
fmt.Printf("%.2f\n", similarity) // Output: 0.75

Calculate distance.

ham := metrics.NewHamming()
fmt.Printf("%d\n", ham.Distance("one", "once")) // Output: 2

More information and additional examples can be found on pkg.go.dev.

Levenshtein

Calculate similarity using default options.

similarity := strutil.Similarity("graph", "giraffe", metrics.NewLevenshtein())
fmt.Printf("%.2f\n", similarity) // Output: 0.43

Configure edit operation costs.

lev := metrics.NewLevenshtein()
lev.CaseSensitive = false
lev.InsertCost = 1
lev.ReplaceCost = 2
lev.DeleteCost = 1

similarity := strutil.Similarity("make", "Cake", lev)
fmt.Printf("%.2f\n", similarity) // Output: 0.50

Calculate distance.

lev := metrics.NewLevenshtein()
fmt.Printf("%d\n", lev.Distance("graph", "giraffe")) // Output: 4

More information and additional examples can be found on pkg.go.dev.

Jaro

similarity := strutil.Similarity("think", "tank", metrics.NewJaro())
fmt.Printf("%.2f\n", similarity) // Output: 0.78

More information and additional examples can be found on pkg.go.dev.

Jaro-Winkler

similarity := strutil.Similarity("think", "tank", metrics.NewJaroWinkler())
fmt.Printf("%.2f\n", similarity) // Output: 0.80

More information and additional examples can be found on pkg.go.dev.

Smith-Waterman-Gotoh

Calculate similarity using default options.

swg := metrics.NewSmithWatermanGotoh()
similarity := strutil.Similarity("times roman", "times new roman", swg)
fmt.Printf("%.2f\n", similarity) // Output: 0.82

Customize gap penalty and substitution function.

swg := metrics.NewSmithWatermanGotoh()
swg.CaseSensitive = false
swg.GapPenalty = -0.1
swg.Substitution = metrics.MatchMismatch {
    Match:    1,
    Mismatch: -0.5,
}

similarity := strutil.Similarity("Times Roman", "times new roman", swg)
fmt.Printf("%.2f\n", similarity) // Output: 0.96

More information and additional examples can be found on pkg.go.dev.

Sorensen-Dice

Calculate similarity using default options.

sd := metrics.NewSorensenDice()
similarity := strutil.Similarity("time to make haste", "no time to waste", sd)
fmt.Printf("%.2f\n", similarity) // Output: 0.62

Customize n-gram size.

sd := metrics.NewSorensenDice()
sd.CaseSensitive = false
sd.NgramSize = 3

similarity := strutil.Similarity("Time to make haste", "no time to waste", sd)
fmt.Printf("%.2f\n", similarity) // Output: 0.53

More information and additional examples can be found on pkg.go.dev.

Jaccard

Calculate similarity using default options.

j := metrics.NewJaccard()
similarity := strutil.Similarity("time to make haste", "no time to waste", j)
fmt.Printf("%.2f\n", similarity) // Output: 0.45

Customize n-gram size.

j := metrics.NewJaccard()
j.CaseSensitive = false
j.NgramSize = 3

similarity := strutil.Similarity("Time to make haste", "no time to waste", j)
fmt.Printf("%.2f\n", similarity) // Output: 0.36

The input of the Sorensen-Dice example is the same as the one of Jaccard because the metrics bear a resemblance to each other. In fact, each of the coefficients can be used to calculate the other one.

Sorensen-Dice to Jaccard.

J = SD/(2-SD)

where SD is the Sorensen-Dice coefficient and J is the Jaccard index.

Jaccard to Sorensen-Dice.

SD = 2*J/(1+J)

where SD is the Sorensen-Dice coefficient and J is the Jaccard index.

More information and additional examples can be found on pkg.go.dev.

Overlap Coefficient

Calculate similarity using default options.

oc := metrics.NewOverlapCoefficient()
similarity := strutil.Similarity("time to make haste", "no time to waste", oc)
fmt.Printf("%.2f\n", similarity) // Output: 0.67

Customize n-gram size.

oc := metrics.NewOverlapCoefficient()
oc.CaseSensitive = false
oc.NgramSize = 3

similarity := strutil.Similarity("Time to make haste", "no time to waste", oc)
fmt.Printf("%.2f\n", similarity) // Output: 0.57

More information and additional examples can be found on pkg.go.dev.

References

For more information see:

Stargazers over time

Stargazers over time

Contributing

Contributions in the form of pull requests, issues or just general feedback, are always welcome.
See CONTRIBUTING.MD.

License

Copyright (c) 2019 Adrian-George Bostan.

This project is licensed under the MIT license. See LICENSE for more details.

FAQs

Package last updated on 27 Sep 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts