csvutil
Package csvutil provides fast and idiomatic mapping between CSV and Go values.
This package does not provide a CSV parser itself, it is based on the Reader and Writer
interfaces which are implemented by eg. std csv package. This gives a possibility
of choosing any other CSV writer or reader which may be more performant.
Installation
go get github.com/jszwec/csvutil
Requirements
Index
- Examples
- Unmarshal
- Marshal
- Unmarshal and metadata
- But my CSV file has no header...
- Decoder.Map - data normalization
- Different separator/delimiter
- Decoder and interface values
- Custom time.Time format
- Performance
- Unmarshal
- Marshal
Example
Unmarshal
Nice and easy Unmarshal is using the std csv.Reader with its default options. Use Decoder for streaming and more advanced use cases.
var csvInput = []byte(`
name,age,CreatedAt
jacek,26,2012-04-01T15:00:00Z
john,,0001-01-01T00:00:00Z`,
)
type User struct {
Name string `csv:"name"`
Age int `csv:"age,omitempty"`
CreatedAt time.Time
}
var users []User
if err := csvutil.Unmarshal(csvInput, &users); err != nil {
fmt.Println("error:", err)
}
for _, u := range users {
fmt.Printf("%+v\n", u)
}
Marshal
Marshal is using the std csv.Writer with its default options. Use Encoder for streaming or to use a different Writer.
type Address struct {
City string
Country string
}
type User struct {
Name string
Address
Age int `csv:"age,omitempty"`
CreatedAt time.Time
}
users := []User{
{
Name: "John",
Address: Address{"Boston", "USA"},
Age: 26,
CreatedAt: time.Date(2010, 6, 2, 12, 0, 0, 0, time.UTC),
},
{
Name: "Alice",
Address: Address{"SF", "USA"},
},
}
b, err := csvutil.Marshal(users)
if err != nil {
fmt.Println("error:", err)
}
fmt.Println(string(b))
Unmarshal and metadata
It may happen that your CSV input will not always have the same header. In addition
to your base fields you may get extra metadata that you would still like to store.
Decoder provides
Unused method, which after each call to
Decode can report which header indexes
were not used during decoding. Based on that, it is possible to handle and store all these extra values.
type User struct {
Name string `csv:"name"`
City string `csv:"city"`
Age int `csv:"age"`
OtherData map[string]string `csv:"-"`
}
csvReader := csv.NewReader(strings.NewReader(`
name,age,city,zip
alice,25,la,90005
bob,30,ny,10005`))
dec, err := csvutil.NewDecoder(csvReader)
if err != nil {
log.Fatal(err)
}
header := dec.Header()
var users []User
for {
u := User{OtherData: make(map[string]string)}
if err := dec.Decode(&u); err == io.EOF {
break
} else if err != nil {
log.Fatal(err)
}
for _, i := range dec.Unused() {
u.OtherData[header[i]] = dec.Record()[i]
}
users = append(users, u)
}
fmt.Println(users)
Some CSV files have no header, but if you know how it should look like, it is
possible to define a struct and generate it. All that is left to do, is to pass
it to a decoder.
type User struct {
ID int
Name string
Age int `csv:",omitempty"`
City string
}
csvReader := csv.NewReader(strings.NewReader(`
1,John,27,la
2,Bob,,ny`))
userHeader, err := csvutil.Header(User{}, "csv")
if err != nil {
log.Fatal(err)
}
dec, err := csvutil.NewDecoder(csvReader, userHeader...)
if err != nil {
log.Fatal(err)
}
var users []User
for {
var u User
if err := dec.Decode(&u); err == io.EOF {
break
} else if err != nil {
log.Fatal(err)
}
users = append(users, u)
}
fmt.Printf("%+v", users)
Decoder.Map - data normalization
The Decoder's Map function is a powerful tool that can help clean up or normalize
the incoming data before the actual decoding takes place.
Lets say we want to decode some floats and the csv input contains some NaN values, but these values are represented by the 'n/a' string. An attempt to decode 'n/a' into float will end up with error, because strconv.ParseFloat expects 'NaN'. Knowing that, we can implement a Map function that will normalize our 'n/a' string and turn it to 'NaN' only for float types.
dec, err := NewDecoder(r)
if err != nil {
log.Fatal(err)
}
dec.Map = func(field, column string, v interface{}) string {
if _, ok := v.(float64); ok && field == "n/a" {
return "NaN"
}
return field
}
Now our float64 fields will be decoded properly into NaN. What about float32, float type aliases and other NaN formats? Look at the full example here.
Different separator/delimiter
Some files may use different value separators, for example TSV files would use \t
. The following examples show how to set up a Decoder and Encoder for such use case.
Decoder:
csvReader := csv.NewReader(r)
csvReader.Comma = '\t'
dec, err := NewDecoder(csvReader)
if err != nil {
log.Fatal(err)
}
var users []User
for {
var u User
if err := dec.Decode(&u); err == io.EOF {
break
} else if err != nil {
log.Fatal(err)
}
users = append(users, u)
}
Encoder:
var buf bytes.Buffer
w := csv.NewWriter(&buf)
w.Comma = '\t'
enc := csvutil.NewEncoder(w)
for _, u := range users {
if err != enc.Encode(u); err != nil {
log.Fatal(err)
}
}
w.Flush()
if err := w.Error(); err != nil {
log.Fatal(err)
}
Decoder and interface values
In the case of interface struct fields data is decoded into strings. However, if Decoder finds out that
these fields were initialized with pointer values of a specific type prior to decoding, it will try to decode data into that type.
Why only pointer values? Because these values must be both addressable and settable, otherwise Decoder
will have to initialize these types on its own, which could result in losing some unexported information.
If interface stores a non-pointer value it will be replaced with a string.
This example will show how this feature could be useful:
package main
import (
"bytes"
"encoding/csv"
"fmt"
"io"
"log"
"github.com/jszwec/csvutil"
)
type Value struct {
Type string `csv:"type"`
Value interface{} `csv:"value"`
}
func main() {
data := []byte(`
type,value
string,string_value
int,10
`)
dec, err := csvutil.NewDecoder(csv.NewReader(bytes.NewReader(data)))
if err != nil {
log.Fatal(err)
}
var value Value
dec.Map = func(field, column string, v interface{}) string {
if column == "type" {
switch field {
case "int":
var n int
value.Value = &n
default:
return field
}
}
return field
}
for {
value = Value{}
if err := dec.Decode(&value); err == io.EOF {
break
} else if err != nil {
log.Fatal(err)
}
if value.Type == "int" {
n, ok := value.Value.(*int)
if !ok {
log.Fatal("expected value to be *int")
}
fmt.Printf("value_type: %s; value: (%T) %d\n", value.Type, value.Value, *n)
} else {
fmt.Printf("value_type: %s; value: (%T) %v\n", value.Type, value.Value, value.Value)
}
}
}
Custom time.Time format
Type time.Time can be used as is in the struct fields by both Decoder and Encoder
due to the fact that both have builtin support for encoding.TextUnmarshaler and encoding.TextMarshaler. This means that by default
Time has a specific format; look at MarshalText and UnmarshalText. This example shows how to override it.
type Time struct {
time.Time
}
const format = "2006/01/02 15:04:05"
func (t Time) MarshalCSV() ([]byte, error) {
var b [len(format)]byte
return t.AppendFormat(b[:0], format), nil
}
func (t *Time) UnmarshalCSV(data []byte) error {
tt, err := time.Parse(format, string(data))
if err != nil {
return err
}
*t = Time{Time: tt}
return nil
}
Performance
csvutil provides the best encoding and decoding performance with small memory usage.
Unmarshal
benchmark code
csvutil:
BenchmarkUnmarshal/csvutil.Unmarshal/1_record-8 300000 5852 ns/op 6900 B/op 32 allocs/op
BenchmarkUnmarshal/csvutil.Unmarshal/10_records-8 100000 13946 ns/op 7924 B/op 41 allocs/op
BenchmarkUnmarshal/csvutil.Unmarshal/100_records-8 20000 95234 ns/op 18100 B/op 131 allocs/op
BenchmarkUnmarshal/csvutil.Unmarshal/1000_records-8 2000 903502 ns/op 120652 B/op 1031 allocs/op
BenchmarkUnmarshal/csvutil.Unmarshal/10000_records-8 200 9273741 ns/op 1134694 B/op 10031 allocs/op
BenchmarkUnmarshal/csvutil.Unmarshal/100000_records-8 20 94125839 ns/op 11628908 B/op 100031 allocs/op
gocsv:
BenchmarkUnmarshal/gocsv.Unmarshal/1_record-8 200000 10363 ns/op 7651 B/op 96 allocs/op
BenchmarkUnmarshal/gocsv.Unmarshal/10_records-8 50000 31308 ns/op 13747 B/op 306 allocs/op
BenchmarkUnmarshal/gocsv.Unmarshal/100_records-8 10000 237417 ns/op 72499 B/op 2379 allocs/op
BenchmarkUnmarshal/gocsv.Unmarshal/1000_records-8 500 2264064 ns/op 650135 B/op 23082 allocs/op
BenchmarkUnmarshal/gocsv.Unmarshal/10000_records-8 50 24189980 ns/op 7023592 B/op 230091 allocs/op
BenchmarkUnmarshal/gocsv.Unmarshal/100000_records-8 5 264797120 ns/op 75483184 B/op 2300104 allocs/op
easycsv:
BenchmarkUnmarshal/easycsv.ReadAll/1_record-8 100000 13287 ns/op 8855 B/op 81 allocs/op
BenchmarkUnmarshal/easycsv.ReadAll/10_records-8 20000 66767 ns/op 24072 B/op 391 allocs/op
BenchmarkUnmarshal/easycsv.ReadAll/100_records-8 3000 586222 ns/op 170537 B/op 3454 allocs/op
BenchmarkUnmarshal/easycsv.ReadAll/1000_records-8 300 5630293 ns/op 1595662 B/op 34057 allocs/op
BenchmarkUnmarshal/easycsv.ReadAll/10000_records-8 20 60513920 ns/op 18870410 B/op 340068 allocs/op
BenchmarkUnmarshal/easycsv.ReadAll/100000_records-8 2 623618489 ns/op 190822456 B/op 3400084 allocs/op
Marshal
benchmark code
csvutil:
BenchmarkMarshal/csvutil.Marshal/1_record-8 300000 5501 ns/op 6336 B/op 26 allocs/op
BenchmarkMarshal/csvutil.Marshal/10_records-8 100000 20647 ns/op 7248 B/op 36 allocs/op
BenchmarkMarshal/csvutil.Marshal/100_records-8 10000 174656 ns/op 24656 B/op 127 allocs/op
BenchmarkMarshal/csvutil.Marshal/1000_records-8 1000 1697202 ns/op 164961 B/op 1029 allocs/op
BenchmarkMarshal/csvutil.Marshal/10000_records-8 100 16995940 ns/op 1522412 B/op 10032 allocs/op
BenchmarkMarshal/csvutil.Marshal/100000_records-8 10 172411108 ns/op 22363382 B/op 100036 allocs/op
gocsv:
BenchmarkMarshal/gocsv.Marshal/1_record-8 200000 7202 ns/op 5922 B/op 83 allocs/op
BenchmarkMarshal/gocsv.Marshal/10_records-8 50000 31821 ns/op 9427 B/op 390 allocs/op
BenchmarkMarshal/gocsv.Marshal/100_records-8 5000 285885 ns/op 52773 B/op 3451 allocs/op
BenchmarkMarshal/gocsv.Marshal/1000_records-8 500 2806405 ns/op 452517 B/op 34053 allocs/op
BenchmarkMarshal/gocsv.Marshal/10000_records-8 50 28682052 ns/op 4412157 B/op 340065 allocs/op
BenchmarkMarshal/gocsv.Marshal/100000_records-8 5 286836492 ns/op 51969227 B/op 3400083 allocs/op