Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

github.com/powturbo/turbopfor-integer-compression

Package Overview
Dependencies
Alerts
File Explorer
Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

github.com/powturbo/turbopfor-integer-compression

  • v0.0.0-20240213113215-06d6aad98b4b
  • Source
  • Go
  • Socket score

Version published
Created
Source

TurboPFor: Fastest Integer Compression

Build ubuntu

  • TurboPFor: The synonym for "integer compression"
    • ALL functions available for AMD/Intel, 64 bits ARMv8 NEON Linux+MacOS/M1 & Power9 Altivec
    • 100% C (C++ headers), as simple as memcpy. OS:Linux amd64, arm64, Power9, MacOs (Amd/intel + Apple M1),
    • :new:(2023.04) Rust Bindings. Access TurboPFor incl. SSE/AVX2/Neon! from Rust
    • :+1: Java Critical Natives/JNI. Access TurboPFor incl. SSE/AVX2/Neon! from Java as fast as calling from C
    • :sparkles: FULL range 8/16/32/64 bits scalar + 16/32/64 bits SIMD functions
    • No other "Integer Compression" compress/decompress faster
    • :sparkles: Direct Access, integrated (SIMD/AVX2) FOR/delta/Delta of Delta/Zigzag for sorted/unsorted arrays
  • For/PFor/PForDelta
    • Novel TurboPFor (PFor/PForDelta) scheme w./ direct access + SIMD/AVX2. +RLE
    • Outstanding compression/speed. More efficient than ANY other fast "integer compression" scheme.
  • Bit Packing
    • Fastest and most efficient "SIMD Bit Packing" >20 Billions integers/sec (80Gb/s!)
    • Extremely fast scalar "Bit Packing"
    • Direct/Random Access : Access any single bit packed entry with zero decompression
  • Variable byte
    • Scalar "Variable Byte" faster and more efficient than ANY other implementation
    • SIMD TurboByte fastest group varint (16+32 bits) incl. integrated delta,zigzag,xor,...
    • :new:(2023.03)TurboBitByte novel hybrid scheme combining the fastest SIMD codecs TurboByte+TurboPack. Compress considerably better and can be 3 times faster than streamvbyte
  • Simple family
    • Novel "Variable Simple" (incl. RLE) faster and more efficient than simple16, simple-8b
  • Elias fano
    • Fastest "Elias Fano" implementation w/ or w/o SIMD/AVX2
  • :new:(2023.03)TurboVLC novel variable length encoding for large integers with exponent + variable bit mantissa
  • :new:(2023.03)Binary interpolative coding : fastest implementation
  • Transform
    • Scalar & SIMD Transform: Delta, Zigzag, Zigzag of delta, XOR,
    • :new:(2023.03) Transpose/Shuffle with integrated Xor and zigzag delta
    • :new:(2023.03) 2D/3D/4D transpose
    • lossy floating point compression with TurboPFor or TurboTranspose+lz77/bwt
  • :new:(2023.03)IC Codecs transpose/rle + general purpose compression with lz4,zstd,turborc (range coder),bwt...
  • Floating Point Compression
    • Delta/Zigzag + improved gorilla style + (Differential) Finite Context Method FCM/DFCM floating point compression
    • Using TurboPFor, unsurpassed compression and more than 8 GB/s throughput
    • Point wise relative error bound lossy floating point compression
    • TurboFloat novel efficient floating point compression using TurboPFor
    • :new:(2023.03)TurboFloat LzXor novel floating point lempel-ziv compression
    • :new:(2023.06) _Float16 16 bits floating point support
    • :new:(2023.06) float 16/32/64 bits quantization with variable quantization bit size.
  • Time Series Compression
    • Fastest Gorilla 16/32/64 bits style compression (zigzag of delta + RLE).
    • can compress timestamps to only 0.01%. Speed > 10 GB/s compression and > 13 GB/s decompress.
  • Inverted Index ...do less, go fast!
    • Direct Access to compressed frequency and position data w/ zero decompression
    • Novel "Intersection w/ skip intervals", decompress the minimum necessary blocks (~10-15%)!.
    • Novel Implicit skips with zero extra overhead
    • Novel Efficient Bidirectional Inverted Index Architecture (forward/backwards traversal) incl. "integer compression".
    • more than 2000! queries per second on GOV2 dataset (25 millions documents) on a SINGLE core
    • :sparkles: Revolutionary Parallel Query Processing on Multicores > 7000!!! queries/sec on a simple quad core PC.
      ...forget Map Reduce, Hadoop, multi-node clusters, ...

Promo video

Integer Compression Benchmark (single thread):

- Synthetic data:
  • Generate and test (zipfian) skewed distribution (100.000.000 integers, Block size=128/256)
    Note: Unlike general purpose compression, a small fixed size (ex. 128 integers) is in general used in "integer compression". Large blocks involved, while processing queries (inverted index, search engines, databases, graphs, in memory computing,...) need to be entirely decoded.

     ./icapp -a1.5 -m0 -M255 -n100M ZIPF
    
C Sizeratio%Bits/IntegerC MB/sD MB/sName 2019.11
62,939,88615.75.04236910950TurboPFor256
63,392,75915.85.0713597803TurboPFor128
63,392,80115.85.071328924TurboPForDA
65,060,50416.35.20602748FP_SIMDOptPFor
65,359,91616.35.23322436PC_OptPFD
73,477,08818.45.884082484PC_Simple16
73,481,09618.45.886248748FP_SimdFastPFor 64Ki *
76,345,13619.16.1110722878VSimple
91,947,53323.07.3628411737QMX 64k *
93,285,86423.37.46156810232FP_GroupSimple 64Ki *
95,915,09624.07.678483832Simple-8b
99,910,93025.07.991729812408TurboByte+TurboPack
99,910,93025.07.991735712363TurboPackV sse
99,910,93025.07.991169410138TurboPack scalar
99,910,93025.07.9984208876TurboFor
100,332,92925.18.031707711170TurboPack256V avx2
101,015,65025.38.081119110333TurboVByte
102,074,66325.58.1766899524MaskedVByte
102,074,66325.58.1722604208PC_Vbyte
102,083,03625.58.1752004268FP_VByte
112,500,00028.19.00152812140VarintG8IU
125,000,00031.210.001303912366TurboByte
125,000,00031.210.001119711984StreamVbyte 2019
400,000,000100.0032.0089608948Copy
N/AN/AEliasFano

(*) codecs inefficient for small block sizes are tested with 64Ki integers/block.

  • MB/s: 1.000.000 bytes/second. 1000 MB/s = 1 GB/s
  • #BOLD = pareto frontier.
  • FP=FastPFor SC:simdcomp PC:Polycom
  • TurboPForDA,TurboForDA: Direct Access is normally used when accessing few individual values.
  • Eliasfano can be directly used only for increasing sequences

- Data files:

Speed/Ratio

SizeRatio %Bits/IntegerC Time MB/sD Time MB/sFunction 2019.11
3,321,663,89313.94.4413206088TurboPFor
3,339,730,55714.04.47322144PC.OptPFD
3,350,717,95914.04.4815367128TurboPFor256
3,501,671,31414.64.68562840VSimple
3,768,146,46715.85.0432283652EliasFanoV
3,822,161,88516.05.115722444PC_Simple16
4,411,714,93618.45.90930410444TurboByte+TurboPack
4,521,326,51818.96.058363296Simple-8b
4,649,671,42719.46.2230843848TurboVbyte
4,955,740,04520.76.63706410268TurboPackV
4,955,740,04520.76.6357248020TurboPack
5,205,324,76021.86.9669529488SC_SIMDPack128
5,393,769,50322.57.211446611902TurboPackV256
6,221,886,39026.08.3266686952TurboFor
6,221,886,39026.08.3266442260TurboForDA
6,699,519,00028.08.9618881980FP_Vbyte
6,700,989,56328.08.9627403384MaskedVByte
7,622,896,87831.910.208364792VarintG8IU
8,060,125,03533.711.5084569476Streamvbyte 2019
8,594,342,21635.911.5052286376libfor
23,918,861,764100.032.0058245924Copy

Block size: 64Ki = 256k bytes. Ki=1024 Integers

SizeRatio %Bits/IntegerC Time MB/sD Time MB/sFunction
3,164,940,56213.24.2313446004TurboPFor 64Ki
3,273,213,46413.74.3814967008TurboPFor256 64Ki
3,965,982,95416.65.3015202452lz4+DT 64Ki
4,234,154,42717.75.664365672qmx 64Ki
6,074,995,11725.48.1319762916blosc_lz4 64Ki
8,773,150,64436.711.7425485204blosc_lz 64Ki

"lz4+DT 64Ki" = Delta+Transpose from TurboPFor + lz4
"blosc_lz4" internal lz4 compressor+vectorized shuffle

- Time Series:
FunctionC MB/ssizeratio%D MB/sText
bvzenc321063245,9090.00812823ZigZag
bvzzenc32891456,7130.01013499ZigZag Delta of delta
vsenc3212294140,4000.02412877Variable Simple
p4nzenc256v321932596,0180.1013326TurboPFor256 ZigZag
p4ndenc256v321961596,0180.1013339TurboPFor256 Delta
bitndpack256v3212564909,1890.1613505TurboPackV256 Delta
p4nzenc3218101,159,6330.208502TurboPFor ZigZag
p4nzenc128v3217951,159,6330.2013338TurboPFor ZigZag
bitnzpack256v3296511,254,7570.2213503TurboPackV256 ZigZag
bitnzpack128v32101551,472,8040.2613380TurboPackV ZigZag
vbddenc32619818,057,2963.1310982TurboVByte Delta of delta
memcpy13397577,141,992100.00
- Transpose/Shuffle (no compression)
    ./icapp -e117,118,119 ZIPF
SizeC Time MB/sD Time MB/sFunction
100,000,00094009132TPbyte 4 TurboPFor Byte Transpose/shuffle AVX2
100,000,00087848860TPbyte 4 TurboPFor Byte Transpose/shuffle SSE
100,000,00076887656Blosc_Shuffle AVX2
100,000,00052047460TPnibble 4 TurboPFor Nibble Transpose/shuffle SSE
100,000,00066206284Blosc shuffle SSE
100,000,00031563372Bitshuffle AVX2
100,000,00021002176Bitshuffle SSE
- (Lossy) Floating point compression:
    ./icapp -Fd file          " 64 bits floating point raw file 
    ./icapp -Ff file          " 32 bits floating point raw file 
    ./icapp -Fcf file         " text file with miltiple entries (ex.  8.657,56.8,4.5 ...)
    ./icapp -Ftf file         " text file (1 entry per line)
    ./icapp -Ftf file -v5     " + display the first entries read
    ./icapp -Ftf file.csv -K3 " but 3th column in a csv file (ex. number,Text,456.5 -> 456.5
    ./icapp -Ftf file -g.001  " lossy compression with allowed pointwise relative error 0.001
- Compressed Inverted Index Intersections with GOV2

GOV2: 426GB, 25 Millions documents, average doc. size=18k.

  • Aol query log: 18.000 queries
    ~1300 queries per second (single core)
    ~5000 queries per second (quad core)
    Ratio = 14.37% Decoded/Total Integers.

  • TREC Million Query Track (1MQT):
    ~1100 queries per second (Single core)
    ~4500 queries per second (Quad core CPU)
    Ratio = 11.59% Decoded/Total Integers.

  • Benchmarking intersections (Single core, AOL query log)
max.docid/qTime sq/sms/q% docid found
1.0007.882283.10.43881
10.00010.541708.50.58584
ALL13.961289.00.776100
q/s: queries/second, ms/q:milliseconds/query
  • Benchmarking Parallel Query Processing (Quad core, AOL query log)
max.docid/qTime sq/sms/q% docids found
1.0002.666772.60.14881
10.0003.395307.50.18884
ALL3.575036.50.199100
Notes:
  • Search engines are spending 90% of the time in intersections when processing queries.
  • Most search engines are using pruning strategies, caching popular queries,... to reduce the time for intersections and query processing.
  • "integer compression" GOV2 experiments On Inverted Index Compression for Search Engine Efficiency using 8-core Xeon PC are reporting 1.2 seconds per query (for 1.000 Top-k docids).

Compile:

    Download or clone TurboPFor
	git clone https://github.com/powturbo/TurboPFor-Integer-Compression.git
	cd TurboPFor-Integer-Compression
	make
    
    To benchmark TurboPFor + general purpose compression codecs (zstd,lz4, Turbo-Range-Coder, bwt, bitshuffle):
    git clone --recursive https://github.com/powturbo/TurboPFor-Integer-Compression.git
	cd TurboPFor-Integer-Compression
    make ICCODEC=1

    To benchmark external libraries: 
	Download the external libraries from github into the current directory
	Activate/deactivate the ext. libs in the makefile 
    make CODEC1=1 CODEC2=1 ICCODEC=1
Windows visual c++
	nmake /f makefile.vs
Windows visual studio c++
    project files under vs/vs2022

Testing:

- Synthetic data (use ZIPF parameter):
  • benchmark groups of "integer compression" functions

    ./icapp -a1.2 -m0 -M255 -n100M ZIPF
    ./icapp -a1.2 -m0 -M255 -n100M ZIPF -e20-50
    

-zipfian distribution alpha = 1.2 (Ex. -a1.0=uniform -a1.5=skewed distribution)
-number of integers = 100.000.000
-integer range from 0 to 255

  • Unsorted lists: individual function test

    ./icapp -a1.5 -m0 -M255 -e1,2,3 ZIPF
    
  • Unsorted lists: Zigzag encoding

     ./icapp -e10,11,12 ZIPF
    
  • Sorted lists: differential coding (increasing/strictly increasing)

    ./icapp -e4,5,6 ZIPF
    ./icapp -e7,8,9 ZIPF
    
  • Transpose/RLE/TurboVByte + General purpose compressor (lz,zstd,turborc,bwt...)

    ./icapp file -e80-95
    ./icapp file -e80-95 -Ezstd,15 
    ./icapp file -e80-95 -Eturborc,1
    ./icapp file -e80-95 -Eturborc,20
    
  • 2D/3D/4D Transpose + General purpose compressor (lz,zstd,turborc,...)

    ./icapp file512x128.f32 R512x128 -Ff  
    ./icapp file512x128.f32 -R512x128 -Ff -e100,101,102 
    ./icapp file1024x512x128.f32 -R1024x512x128 -Ff -e100,101,102
    

    Automatic dimension determination from file name ( option -R0 )

    ./icapp file1024x512x128.f32 -R0 -Ff -e103,104,105
    ./icapp file1024x512x128.f64 -R0 -Fl -e103,104,105
    
  • Lossy floating point compression

    ./icapp file512x128.f32 -R512x128 -Ff -g.0001
    ./icapp file.f32 -Ff -g.001
    ./icapp file.f64 -Fd -g.001
    
- Data files:
  • Raw 32 bits binary data file Test data

    ./icapp file           
    ./icapp -Fs file         "16 bits raw binary file
    ./icapp -Fu file         "32 bits raw binary file
    ./icapp -Fl file         "64 bits raw binary file
    ./icapp -Ff file         "32 bits raw floating point binary file
    ./icapp -Fd file         "64 bits raw floating point binary file
    
  • Text file: 1 entry per line. Test data: ts.txt(sorted) and lat.txt(unsorted))

    ./icapp -Fts data.txt            "text file, one 16 bits integer per line
    ./icapp -Ftu ts.txt              "text file, one 32 bits integer per line
    ./icapp -Ftl ts.txt              "text file, one 64 bits integer per line
    ./icapp -Ftf file                "text file, one 32 bits floating point (ex. 8.32456) per line
    ./icapp -Ftd file                "text file, one 64 bits floating point (ex. 8.324567789) per line
    ./icapp -Ftd file -v5            "like prev., display the first 100 values read
    ./icapp -Ftd file -v5 -g.00001   "like prev., error bound lossy floating point compression
    ./icapp -Ftt file                "text file, timestamp in seconds iso-8601 -> 32 bits integer (ex. 2018-03-12T04:31:06)
    ./icapp -FtT file                "text file, timestamp in milliseconds iso-8601 -> 64 bits integer (ex. 2018-03-12T04:31:06.345)
    ./icapp -Ftl -D2 -H file         "skip 1th line, convert numbers with 2 decimal digits to 64 bits integers (ex. 456.23 -> 45623)
    ./icapp -Ftl -D2 -H -K3 file.csv  "like prev., use the 3th number in the line (ex. label=3245, text=99 usage=456.23 -> 456.23 )
    ./icapp -Ftl -D2 -H -K3 -k| file.csv "like prev., use '|' as separator
    
  • Text file: multiple numbers separated by non-digits (0..9,-,.) characters (ex. 134534,-45678,98788,4345, )

    ./icapp -Fc data.txt         "text file, 32 bits integers (ex. 56789,3245,23,678 ) 
    ./icapp -Fcd data.txt        "text file, 64 bits floting-point numbers (ex. 34.7689,5.20,45.789 )
    
- Intersections:

1 - Download Gov2 (or ClueWeb09) + query files (Ex. "1mq.txt") from DocId data set
8GB RAM required (16GB recommended for benchmarking "clueweb09" files).

2 - Create index file

    ./idxcr gov2.sorted .

create inverted index file "gov2.sorted.i" in the current directory

3 - Test intersections

    ./idxqry gov2.sorted.i 1mq.txt

run queries in file "1mq.txt" over the index of gov2 file

- Parallel Query Processing:

1 - Create partitions

    ./idxseg gov2.sorted . -26m -s8

create 8 (CPU hardware threads) partitions for a total of ~26 millions document ids

2 - Create index file for each partition

  ./idxcr gov2.sorted.s*

create inverted index file for all partitions "gov2.sorted.s00 - gov2.sorted.s07" in the current directory

3 - Intersections:

delete "idxqry.o" file and then type "make para" to compile "idxqry" w. multithreading

  ./idxqry gov2.sorted.s*.i 1mq.txt

run queries in file "1mq.txt" over the index of all gov2 partitions "gov2.sorted.s00.i - gov2.sorted.s07.i".

Function usage:

See benchmark "icapp" program for "integer compression" usage examples. In general encoding/decoding functions are of the form:

char *endptr = encode( unsigned *in, unsigned n, char *out, [unsigned start], [int b])
endptr : set by encode to the next character in "out" after the encoded buffer
in : input integer array
n : number of elements
out : pointer to output buffer
b : number of bits. Only for bit packing functions
start : previous value. Only for integrated delta encoding functions

char *endptr = decode( char *in, unsigned n, unsigned *out, [unsigned start], [int b])
endptr : set by decode to the next character in "in" after the decoded buffer
in : pointer to input buffer
n : number of elements
out : output integer array
b : number of bits. Only for bit unpacking functions
start : previous value. Only for integrated delta decoding functions

Simple high level functions:

size_t compressed_size = encode( unsigned *in, size_t n, char *out)
compressed_size : number of bytes written into compressed output buffer out

size_t compressed_size = decode( char *in, size_t n, unsigned *out)
compressed_size : number of bytes read from compressed input buffer in

Function syntax:

  • {vb | p4 | bit | vs | v8 | bic }[n][d | d1 | f | fm | z ]{enc/dec | pack/unpack}[| 128v | 256v][8 | 16 | 32 | 64]:
    vb: variable byte
    p4: turbopfor
    vs: variable simple
    v8: TurboByte SIMD + Hybrid TurboByte + TurboPack
    bit: bit packing
    fp: Floating Point + Turbo Razor: pointwise relative error rounding algorithm

    n : high level array functions for large arrays.

    '' : encoding for unsorted integer lists
    'd' : delta encoding for increasing integer lists (sorted w/ duplicate)
    'd1': delta encoding for strictly increasing integer lists (sorted unique)
    'f' : FOR encoding for sorted integer lists
    'z' : ZigZag encoding for unsorted integer lists

    'enc' or 'pack' : encode or bitpack
    'dec' or 'unpack': decode or bitunpack
    'NN' : integer size (8/16/32/64)

public header file to use with documentation:
include/ic.h

Note: Some low level functions (like p4enc32) are limited to 128/256 (SSE/AVX2) integers per call.

Environment:

OS/Compiler (64 bits):
  • Windows: MinGW-w64 makefile
  • Windows: Visual c++ (>=VS2008) - makefile.vs (for nmake)
  • Windows: Visual Studio project file - vs/vs2022
  • Linux amd64: GNU GCC (>=4.6)
  • Linux amd64: Clang (>=3.2)
  • Linux arm64: 64 bits aarch64 ARMv8: gcc (>=6.3)
  • Linux arm64: 64 bits aarch64 ARMv8: clang
  • MaxOS: XCode (>=9)
  • MaxOS: Apple M1 (Clang)
  • PowerPC ppc64le (incl. SIMD): gcc (>=8.0)
Multithreading:
  • All TurboPFor integer compression functions are thread safe
Knowns issues
  • Actually (2023.04) there are no known issues or bugs
  • The TurboPFor functions can work with arbitrary inputs
  • TurboPFor does normally not read outside the input (encode/decode) buffers and does not write outside the output buffer at decoding.
  • TurboPFor does not write above a properly sized output buffers at encoding. Use the bound (ex. v8bound,p4bound) functions to allocate a max. memory output buffer.

LICENSE

  • GPL 2.0
  • A commercial license is available. Contact us at powturbo [AT] gmail.com for more information.

References:

Last update: 10 JUN 2023

FAQs

Package last updated on 13 Feb 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc