
Research
2025 Report: Destructive Malware in Open Source Packages
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.
github.com/zamblauskas/scala-csv-parser
Advanced tools
CSV parser library for Scala. Easiest way to convert CSV string representation into a case class.
import zamblauskas.csv.parser._
case class Person(name: String, age: Int, city: Option[String])
val csv = """
|name,age,height,city
|Emily,33,169,London
|Thomas,25,,
""".stripMargin
val result = Parser.parse[Person](csv)
result shouldBe Right(List(Person("Emily",33,Some("London")), Person("Thomas",25,None)))
Example above used a macro generated ColumnReads[Person].
You can define one manually if the generated one does not fit your use case
(e.g. column names differ from case class parameter names).
This is identical to what the macro generates for a Person case class:
import zamblauskas.csv.parser._
import zamblauskas.functional._
case class Person(name: String, age: Int, city: Option[String])
implicit val personReads: ColumnReads[Person] = (
column("name").as[String] and
column("age").as[Int] and
column("city").asOpt[String]
)(Person)
val csv = """
|name,age,height,city
|Emily,33,169,London
|Thomas,25,,
""".stripMargin
val result = Parser.parse[Person](csv)
result shouldBe Right(List(Person("Emily",33,Some("London")), Person("Thomas",25,None)))
If columns have two or more alternative names (e.g. in different languages),
you can use an or combinator.
import zamblauskas.csv.parser._
import zamblauskas.functional._
import Parser.parse
case class Person(age: Int, city: String)
implicit val personReads: ColumnReads[Person] = (
(column("age").as[Int] or column("alter").as[Int]) and
(column("city").as[String] or column("stadt").as[String])
)(Person)
val englishCsv =
"""
|age,city
|33,London
""".stripMargin
val germanCsv =
"""
|alter,stadt
|33,London
""".stripMargin
parse[Person](englishCsv) shouldBe parse[Person](germanCsv)
Example above can be rewritten to use alternative ColumnReads instead of alternative column names on single ColumnReads.
import zamblauskas.csv.parser._
import zamblauskas.functional._
import Parser.parse
case class Person(age: Int, city: String)
val englishPersonReads: ColumnReads[Person] = (
column("age").as[Int] and
column("city").as[String]
)(Person)
val germanPersonReads: ColumnReads[Person] = (
column("alter").as[Int] and
column("stadt").as[String]
)(Person)
implicit val personReads = englishPersonReads or germanPersonReads
val englishCsv =
"""
|age,city
|33,London
""".stripMargin
val germanCsv =
"""
|alter,stadt
|33,London
""".stripMargin
parse[Person](englishCsv) shouldBe parse[Person](germanCsv)
Package is available at Bintray.
Check for the latest version and add to your build.sbt:
resolvers += Resolver.bintrayRepo("zamblauskas", "maven")
libraryDependencies += "zamblauskas" %% "scala-csv-parser" % "<latest_version>"
FAQs
Unknown package
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Research
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.

Security News
Socket CTO Ahmad Nassri shares practical AI coding techniques, tools, and team workflows, plus what still feels noisy and why shipping remains human-led.

Research
/Security News
A five-month operation turned 27 npm packages into durable hosting for browser-run lures that mimic document-sharing portals and Microsoft sign-in, targeting 25 organizations across manufacturing, industrial automation, plastics, and healthcare for credential theft.