
Product
Secure Your AI-Generated Code with Socket MCP
Socket MCP brings real-time security checks to AI-generated code, helping developers catch risky dependencies before they enter the codebase.
github.com/zamblauskas/scala-csv-parser
CSV parser library for Scala. Easiest way to convert CSV string representation into a case class.
import zamblauskas.csv.parser._
case class Person(name: String, age: Int, city: Option[String])
val csv = """
|name,age,height,city
|Emily,33,169,London
|Thomas,25,,
""".stripMargin
val result = Parser.parse[Person](csv)
result shouldBe Right(List(Person("Emily",33,Some("London")), Person("Thomas",25,None)))
Example above used a macro generated ColumnReads[Person]
.
You can define one manually if the generated one does not fit your use case
(e.g. column names differ from case class parameter names).
This is identical to what the macro generates for a Person
case class:
import zamblauskas.csv.parser._
import zamblauskas.functional._
case class Person(name: String, age: Int, city: Option[String])
implicit val personReads: ColumnReads[Person] = (
column("name").as[String] and
column("age").as[Int] and
column("city").asOpt[String]
)(Person)
val csv = """
|name,age,height,city
|Emily,33,169,London
|Thomas,25,,
""".stripMargin
val result = Parser.parse[Person](csv)
result shouldBe Right(List(Person("Emily",33,Some("London")), Person("Thomas",25,None)))
If columns have two or more alternative names (e.g. in different languages),
you can use an or
combinator.
import zamblauskas.csv.parser._
import zamblauskas.functional._
import Parser.parse
case class Person(age: Int, city: String)
implicit val personReads: ColumnReads[Person] = (
(column("age").as[Int] or column("alter").as[Int]) and
(column("city").as[String] or column("stadt").as[String])
)(Person)
val englishCsv =
"""
|age,city
|33,London
""".stripMargin
val germanCsv =
"""
|alter,stadt
|33,London
""".stripMargin
parse[Person](englishCsv) shouldBe parse[Person](germanCsv)
Example above can be rewritten to use alternative ColumnReads
instead of alternative column names on single ColumnReads
.
import zamblauskas.csv.parser._
import zamblauskas.functional._
import Parser.parse
case class Person(age: Int, city: String)
val englishPersonReads: ColumnReads[Person] = (
column("age").as[Int] and
column("city").as[String]
)(Person)
val germanPersonReads: ColumnReads[Person] = (
column("alter").as[Int] and
column("stadt").as[String]
)(Person)
implicit val personReads = englishPersonReads or germanPersonReads
val englishCsv =
"""
|age,city
|33,London
""".stripMargin
val germanCsv =
"""
|alter,stadt
|33,London
""".stripMargin
parse[Person](englishCsv) shouldBe parse[Person](germanCsv)
Package is available at Bintray.
Check for the latest version and add to your build.sbt
:
resolvers += Resolver.bintrayRepo("zamblauskas", "maven")
libraryDependencies += "zamblauskas" %% "scala-csv-parser" % "<latest_version>"
FAQs
Unknown package
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Socket MCP brings real-time security checks to AI-generated code, helping developers catch risky dependencies before they enter the codebase.
Security News
As vulnerability data bottlenecks grow, the federal government is formally investigating NIST’s handling of the National Vulnerability Database.
Research
Security News
Socket’s Threat Research Team has uncovered 60 npm packages using post-install scripts to silently exfiltrate hostnames, IP addresses, DNS servers, and user directories to a Discord-controlled endpoint.