Introducing Socket Firewall: Free, Proactive Protection for Your Software Supply Chain.Learn More
Socket
Book a DemoInstallSign in
Socket

ru.ivi.opensource:flink-clickhouse-sink

Package Overview
Dependencies
Maintainers
4
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ru.ivi.opensource:flink-clickhouse-sink

Flink sink for ClickHouse database. Powered by Async Http Client. High-performance library for loading data to ClickHouse.

Source
mavenMaven
Version
1.4.0
Version published
Maintainers
4
Source

Java CI Maven Central

Description

Flink sink for ClickHouse database. Powered by Async Http Client.

High-performance library for loading data to ClickHouse.

It has two triggers for loading data: by timeout and by buffer size.

Version map
flinkflink-clickhouse-sink
1.3.*1.0.0
1.9.*1.3.4
1.9.*1.4.*

Install

Maven Central
<dependency>
  <groupId>ru.ivi.opensource</groupId>
  <artifactId>flink-clickhouse-sink</artifactId>
  <version>1.4.0</version>
</dependency>

Usage

Properties

The flink-clickhouse-sink uses two parts of configuration properties: common and for each sink in you operators chain.

The common part (use like global):

clickhouse.sink.num-writers - number of writers, which build and send requests,

clickhouse.sink.queue-max-capacity - max capacity (batches) of blank's queue,

clickhouse.sink.timeout-sec - timeout for loading data,

clickhouse.sink.retries - max number of retries,

clickhouse.sink.failed-records-path- path for failed records,

clickhouse.sink.ignoring-clickhouse-sending-exception-enabled - required boolean parameter responsible for raising (false) or not (true) ClickHouse sending exception in main thread. if ignoring-clickhouse-sending-exception-enabled is true, exception while clickhouse sending is ignored and failed data automatically goes to the disk. if ignoring-clickhouse-sending-exception-enabled is false, clickhouse sending exception thrown in "main" thread (thread which called ClickhHouseSink::invoke) and data also goes to the disk.

The sink part (use in chain):

clickhouse.sink.target-table - target table in ClickHouse,

clickhouse.sink.max-buffer-size- buffer size.

In code

Configuration: global parameters

You have to add global parameters for Flink environment:

StreamExecutionEnvironment environment = StreamExecutionEnvironment.createLocalEnvironment();
Map<String, String> globalParameters = new HashMap<>();

// ClickHouse cluster properties
globalParameters.put(ClickHouseClusterSettings.CLICKHOUSE_HOSTS, ...);
globalParameters.put(ClickHouseClusterSettings.CLICKHOUSE_USER, ...);
globalParameters.put(ClickHouseClusterSettings.CLICKHOUSE_PASSWORD, ...);

// sink common
globalParameters.put(ClickHouseSinkConst.TIMEOUT_SEC, ...);
globalParameters.put(ClickHouseSinkConst.FAILED_RECORDS_PATH, ...);
globalParameters.put(ClickHouseSinkConst.NUM_WRITERS, ...);
globalParameters.put(ClickHouseSinkConst.NUM_RETRIES, ...);
globalParameters.put(ClickHouseSinkConst.QUEUE_MAX_CAPACITY, ...);
globalParameters.put(ClickHouseSinkConst.IGNORING_CLICKHOUSE_SENDING_EXCEPTION_ENABLED, ...);

// set global paramaters
ParameterTool parameters = ParameterTool.fromMap(buildGlobalParameters(config));
environment.getConfig().setGlobalJobParameters(parameters);

Converter

The main thing: the clickhouse-sink works with events in string (ClickHouse insert format, like CSV) format. You have to convert your event to csv format (like usual insert in database).

For example, you have event-pojo:

class A {
   public final String str;
   public final int integer;
   
   public A(String str, int i){
       this.str = str;
       this.integer = i;
   }
}

You have to implement a converter to csv, using


public interface ClickHouseSinkConverter<T> {
 ...
}

Example:

You have to convert this pojo like this:

import ru.ivi.opensource.flinkclickhousesink.ClickHouseSinkConverter;

public class YourEventConverter implements ClickHouseSinkConverter<A>{
    
    @Override
    public String convert(A record){
     StringBuilder builder = new StringBuilder();
     builder.append("(");

     // add a.str
     builder.append("'");
     builder.append(a.str);
     builder.append("', ");

     // add a.integer
     builder.append(String.valueOf(a.integer));
     builder.append(" )");
     return builder.toString();
    }
}

And then add record to sink.

And add your sink like this:


// create table props for sink
Properties props = new Properties();
props.put(ClickHouseSinkConst.TARGET_TABLE_NAME, "your_table");
props.put(ClickHouseSinkConst.MAX_BUFFER_SIZE, "10000");

// converter
YourEventConverter converter = new YourEventConverter();       

// build chain
DataStream<YourEvent> dataStream = ...;
dataStream.addSink(new ClickHouseSink(props, converter))
          .name("your_table ClickHouse sink);

Roadmap

  • reading files from "failed-records-path"
  • migrate to gradle

FAQs

Package last updated on 08 May 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts