Socket
Book a DemoInstallSign in
Socket

@ai-sdk/angular

Package Overview
Dependencies
Maintainers
2
Versions
58
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@ai-sdk/angular

Angular implementation of ai-sdk.

latest
npmnpm
Version
1.0.39
Version published
Weekly downloads
755
-23.66%
Maintainers
2
Weekly downloads
 
Created
Source

AI SDK Angular

Angular UI components for the AI SDK v5.

Overview

The @ai-sdk/angular package provides Angular-specific implementations using Angular signals for reactive state management:

  • Chat - Multi-turn conversations with streaming responses
  • Completion - Single-turn text generation
  • StructuredObject - Type-safe object generation with Zod schemas

Installation

npm install @ai-sdk/angular ai

Peer Dependencies

  • Angular 16+ (@angular/core)
  • Zod v3+ (optional, for structured objects)

Chat

Real-time conversation interface with streaming support.

Basic Usage

import { Component, inject } from '@angular/core';
import { FormBuilder, ReactiveFormsModule, Validators } from '@angular/forms';
import { Chat } from '@ai-sdk/angular';
import { CommonModule } from '@angular/common';

@Component({
  selector: 'app-chat',
  imports: [CommonModule, ReactiveFormsModule],
  template: `
    <div class="chat-container">
      <div class="messages">
        @for (message of chat.messages; track message.id) {
          <div class="message" [ngClass]="message.role">
            @for (part of message.parts; track $index) {
              @switch (part.type) {
                @case ('text') {
                  <div style="white-space: pre-wrap">
                    {{ part.text }}
                    @if (part.state === 'streaming') {
                      <span class="cursor">&#9646;</span>
                    }
                  </div>
                }
                @case ('reasoning') {
                  <details>
                    <summary>Reasoning</summary>
                    <div style="white-space: pre-wrap; opacity: 80%">
                      {{ part.text }}
                    </div>
                  </details>
                }
                @default {
                  <code>{{ part | json }}</code>
                }
              }
            }
          </div>
        }
        @if (chat.status === 'submitted') {
          <div><em>Waiting...</em></div>
        }
      </div>

      <form [formGroup]="chatForm" (ngSubmit)="sendMessage()">
        <input formControlName="userInput" placeholder="Type your message..." />
        @if (chat.status === 'ready') {
          <button type="submit" [disabled]="!chatForm.valid">Send</button>
        } @else {
          <button [disabled]="chat.status === 'error'" (click)="chat.stop()">
            Stop
          </button>
        }
      </form>
    </div>
  `,
})
export class ChatComponent {
  private fb = inject(FormBuilder);

  public chat = new Chat({});

  chatForm = this.fb.group({
    userInput: ['', Validators.required],
  });

  sendMessage() {
    if (this.chatForm.invalid) return;

    const userInput = this.chatForm.value.userInput;
    this.chatForm.reset();

    this.chat.sendMessage(
      { text: userInput },
      {
        body: {
          selectedModel: 'gpt-4o',
        },
      },
    );
  }
}

Constructor Options

interface ChatInit<UI_MESSAGE extends UIMessage = UIMessage> {
  /** Initial messages */
  messages?: UI_MESSAGE[];

  /** Custom ID generator */
  generateId?: () => string;

  /** Maximum conversation steps */
  maxSteps?: number;

  /** Tool call handler */
  onToolCall?: (params: { toolCall: ToolCall }) => Promise<string>;

  /** Completion callback */
  onFinish?: (params: { message: UI_MESSAGE }) => void;

  /** Error handler */
  onError?: (error: Error) => void;

  /** Custom transport */
  transport?: ChatTransport;
}

Properties (Reactive)

  • messages: UIMessage[] - Array of conversation messages
  • status: 'ready' | 'submitted' | 'streaming' | 'error' - Current status
  • error: Error | undefined - Current error state

Methods

// Send a message
await chat.sendMessage(
  message: UIMessageInput,
  options?: {
    body?: Record<string, any>;
    headers?: Record<string, string>;
  }
);

// Regenerate last assistant message
await chat.regenerate(options?: {
  body?: Record<string, any>;
  headers?: Record<string, string>;
});

// Add tool execution result
chat.addToolResult({
  toolCallId: string;
  output: string;
});

// Stop current generation
chat.stop();

File Attachments

// HTML template
<input type="file" multiple (change)="onFileSelect($event)" />

// Component
onFileSelect(event: Event) {
  const files = (event.target as HTMLInputElement).files;
  if (files) {
    this.chat.sendMessage({
      text: "Analyze these files",
      files: files
    });
  }
}

Client-side Tool Calls

const chat = new Chat({
  async onToolCall({ toolCall }) {
    switch (toolCall.toolName) {
      case 'get_weather':
        return await getWeather(toolCall.input.location);
      case 'search':
        return await search(toolCall.input.query);
      default:
        throw new Error(`Unknown tool: ${toolCall.toolName}`);
    }
  },
});

Completion

Single-turn text generation with streaming.

Basic Usage

import { Component } from '@angular/core';
import { Completion } from '@ai-sdk/angular';

@Component({
  selector: 'app-completion',
  template: `
    <div>
      <textarea
        [(ngModel)]="completion.input"
        placeholder="Enter your prompt..."
        rows="4"
      >
      </textarea>

      <button
        (click)="completion.complete(completion.input)"
        [disabled]="completion.loading"
      >
        {{ completion.loading ? 'Generating...' : 'Generate' }}
      </button>

      @if (completion.loading) {
        <button (click)="completion.stop()">Stop</button>
      }

      <div class="result">
        <h3>Result:</h3>
        <pre>{{ completion.completion }}</pre>
      </div>

      @if (completion.error) {
        <div class="error">{{ completion.error.message }}</div>
      }
    </div>
  `,
})
export class CompletionComponent {
  completion = new Completion({
    api: '/api/completion',
    onFinish: (prompt, completion) => {
      console.log('Completed:', { prompt, completion });
    },
  });
}

Constructor Options

interface CompletionOptions {
  /** API endpoint (default: '/api/completion') */
  api?: string;

  /** Unique identifier */
  id?: string;

  /** Initial completion text */
  initialCompletion?: string;

  /** Initial input text */
  initialInput?: string;

  /** Stream protocol: 'data' (default) | 'text' */
  streamProtocol?: 'data' | 'text';

  /** Completion callback */
  onFinish?: (prompt: string, completion: string) => void;

  /** Error handler */
  onError?: (error: Error) => void;

  /** Custom fetch function */
  fetch?: FetchFunction;

  /** Request headers */
  headers?: Record<string, string>;

  /** Request body */
  body?: Record<string, any>;

  /** Request credentials */
  credentials?: RequestCredentials;
}

Properties (Reactive)

  • completion: string - Generated text (writable)
  • input: string - Current input (writable)
  • loading: boolean - Generation state
  • error: Error | undefined - Error state
  • id: string - Completion ID
  • api: string - API endpoint
  • streamProtocol: 'data' | 'text' - Stream type

Methods

// Generate completion
await completion.complete(
  prompt: string,
  options?: {
    headers?: Record<string, string>;
    body?: Record<string, any>;
  }
);

// Form submission handler
await completion.handleSubmit(event?: { preventDefault?: () => void });

// Stop generation
completion.stop();

StructuredObject

Generate structured data with Zod schemas and streaming.

Basic Usage

import { Component } from '@angular/core';
import { StructuredObject } from '@ai-sdk/angular';
import { z } from 'zod';

const schema = z.object({
  title: z.string(),
  summary: z.string(),
  tags: z.array(z.string()),
  sentiment: z.enum(['positive', 'negative', 'neutral']),
});

@Component({
  selector: 'app-structured-object',
  template: `
    <div>
      <textarea
        [(ngModel)]="input"
        placeholder="Enter content to analyze..."
        rows="4"
      >
      </textarea>

      <button (click)="analyze()" [disabled]="structuredObject.loading">
        {{ structuredObject.loading ? 'Analyzing...' : 'Analyze' }}
      </button>

      @if (structuredObject.object) {
        <div class="result">
          <h3>Analysis:</h3>
          <div><strong>Title:</strong> {{ structuredObject.object.title }}</div>
          <div>
            <strong>Summary:</strong> {{ structuredObject.object.summary }}
          </div>
          <div>
            <strong>Tags:</strong>
            {{ structuredObject.object.tags?.join(', ') }}
          </div>
          <div>
            <strong>Sentiment:</strong> {{ structuredObject.object.sentiment }}
          </div>
        </div>
      }

      @if (structuredObject.error) {
        <div class="error">{{ structuredObject.error.message }}</div>
      }
    </div>
  `,
})
export class StructuredObjectComponent {
  input = '';

  structuredObject = new StructuredObject({
    api: '/api/analyze',
    schema,
    onFinish: ({ object, error }) => {
      if (error) {
        console.error('Schema validation failed:', error);
      } else {
        console.log('Generated object:', object);
      }
    },
  });

  async analyze() {
    if (!this.input.trim()) return;
    await this.structuredObject.submit(this.input);
  }
}

Constructor Options

interface StructuredObjectOptions<SCHEMA, RESULT> {
  /** API endpoint */
  api: string;

  /** Zod schema */
  schema: SCHEMA;

  /** Unique identifier */
  id?: string;

  /** Initial object value */
  initialValue?: DeepPartial<RESULT>;

  /** Completion callback */
  onFinish?: (event: {
    object: RESULT | undefined;
    error: Error | undefined;
  }) => void;

  /** Error handler */
  onError?: (error: Error) => void;

  /** Custom fetch function */
  fetch?: FetchFunction;

  /** Request headers */
  headers?: Record<string, string>;

  /** Request credentials */
  credentials?: RequestCredentials;
}

Properties (Reactive)

  • object: DeepPartial<RESULT> | undefined - Generated object
  • loading: boolean - Generation state
  • error: Error | undefined - Error state

Methods

// Submit input for generation
await structuredObject.submit(input: unknown);

// Stop generation
structuredObject.stop();

Server Implementation

Express.js Chat Endpoint

import { openai } from '@ai-sdk/openai';
import { convertToModelMessages, streamText } from 'ai';
import express from 'express';

const app = express();
app.use(express.json());

app.post('/api/chat', async (req, res) => {
  const { messages, selectedModel } = req.body;

  const result = streamText({
    model: openai(selectedModel || 'gpt-4o'),
    messages: convertToModelMessages(messages),
  });

  result.pipeUIMessageStreamToResponse(res);
});

Express.js Completion Endpoint

app.post('/api/completion', async (req, res) => {
  const { prompt } = req.body;

  const result = streamText({
    model: openai('gpt-4o'),
    prompt,
  });

  result.pipeTextStreamToResponse(res);
});

Express.js Structured Object Endpoint

import { streamObject } from 'ai';
import { z } from 'zod';

app.post('/api/analyze', async (req, res) => {
  const input = req.body;

  const result = streamObject({
    model: openai('gpt-4o'),
    schema: z.object({
      title: z.string(),
      summary: z.string(),
      tags: z.array(z.string()),
      sentiment: z.enum(['positive', 'negative', 'neutral']),
    }),
    prompt: `Analyze this content: ${JSON.stringify(input)}`,
  });

  result.pipeTextStreamToResponse(res);
});

Development Setup

Building the Library

# Install dependencies
pnpm install

# Build library
pnpm build

# Watch mode
pnpm build:watch

# Run tests
pnpm test

# Test watch mode
pnpm test:watch

Running the Example

# Navigate to example
cd examples/angular-chat

# Set up environment
echo "OPENAI_API_KEY=your_key_here" > .env

# Start development (Angular + Express)
pnpm start

Starts:

  • Angular dev server: http://localhost:4200
  • Express API server: http://localhost:3000
  • Proxy routes /api/* to Express

Testing

Running Tests

pnpm test              # Run all tests
pnpm test:watch        # Watch mode
pnpm test:update       # Update snapshots

TypeScript Support

Full type safety with automatic type inference:

import { Chat, UIMessage, StructuredObject } from '@ai-sdk/angular';
import { z } from 'zod';

// Custom message types
interface CustomMessage extends UIMessage {
  customData?: string;
}

const chat = new Chat<CustomMessage>({});

// Schema-typed objects
const schema = z.object({
  name: z.string(),
  age: z.number(),
});

const obj = new StructuredObject({
  api: '/api/object',
  schema, // Type automatically inferred
});

// obj.object has type: { name?: string; age?: number } | undefined

Error Handling

All components provide reactive error states:

const chat = new Chat({
  onError: (error) => {
    console.error('Chat error:', error);
  }
});

// Template
@if (chat.error) {
  <div class="error">{{ chat.error.message }}</div>
}

Performance

Stop on-going requests

chat.stop();
completion.stop();
structuredObject.stop();

Change Detection

Uses Angular signals for efficient reactivity:

// These trigger minimal change detection
chat.messages; // Signal<UIMessage[]>
chat.status; // Signal<ChatStatus>
chat.error; // Signal<Error | undefined>

License

Apache-2.0

FAQs

Package last updated on 09 Sep 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.