@mastra/chroma
Vector store implementation for ChromaDB using the official chromadb client with added dimension validation, collection management, and document storage capabilities.
Installation
npm install @mastra/chroma
Usage
import { ChromaVector } from '@mastra/chroma';
const vectorStore = new ChromaVector({
path: 'http://localhost:8000',
auth: {
provider: 'token',
credentials: 'your-token'
}
});
await vectorStore.createIndex({ indexName: 'myCollection', dimension: 1536, metric: 'cosine' });
const vectors = [[0.1, 0.2, ...], [0.3, 0.4, ...]];
const metadata = [{ text: 'doc1' }, { text: 'doc2' }];
const documents = ['full text 1', 'full text 2'];
const ids = await vectorStore.upsert({
indexName: 'myCollection',
vectors,
metadata,
documents,
});
const results = await vectorStore.query({
indexName: 'myCollection',
queryVector: [0.1, 0.2, ...],
topK: 10,
filter: { text: { $eq: 'doc1' } },
includeVector: false,
documentFilter: { $contains: 'specific text' }
});
Configuration
Required:
path
: URL of your ChromaDB server
Optional:
auth
: Authentication configuration
provider
: Authentication provider
credentials
: Authentication credentials
Features
- Vector similarity search with cosine, euclidean, and dot product metrics
- Document storage and retrieval
- Document content filtering
- Strict vector dimension validation
- Collection-based organization
- Metadata filtering support
- Optional vector inclusion in query results
- Automatic UUID generation for vectors
- Built-in collection caching for performance
- Built on top of chromadb client
Methods
createIndex({ indexName, dimension, metric? })
: Create a new collection
upsert({ indexName, vectors, metadata?, ids?, documents? })
: Add or update vectors with optional document storage
query({ indexName, queryVector, topK?, filter?, includeVector?, documentFilter? })
: Search for similar vectors with optional document filtering
listIndexes()
: List all collections
describeIndex(indexName)
: Get collection statistics
deleteIndex(indexName)
: Delete a collection
Query Response Format
Query results include:
id
: Vector ID
score
: Distance/similarity score
metadata
: Associated metadata
document
: Original document text (if stored)
vector
: Original vector (if includeVector is true)
Related Links