Socket
Book a DemoInstallSign in
Socket

@fatso83/set-operations

Package Overview
Dependencies
Maintainers
1
Versions
4
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@fatso83/set-operations

Javascript Set operations

latest
Source
npmnpm
Version
2.1.2
Version published
Maintainers
1
Created
Source

@fatso83/set-operations

Fork of indrajaala's package with added support for native Sets

npm example workflow

Javascript set operations with Arrays, Objects and Sets.

Installation

npm i set-operations

tests

npm run test

build

npm run build

modules

args

isSubset, isSuperSet: (A, B)

  • A - Array | object | Set
  • B - Array | object | Set

returns boolean

union, intersection, difference, symmetric difference: (A, B)

  • arrA - Array | object | Set
  • arrB - Array | object | Set

returns Array | object | Set

Examples:

isSuperSet

Superset (A ⊇ B) : check if A is superset of B, i.e all elements of B are also elements of A.

import {isSuperSet} from "set-operations";

isSuperSet([1, 8, 3, 5], [3, 8]);
// true

isSuperSet([1, 8, 3, 5], [3, 9]);
// false

isSuperSet(new Set(['apple', 'orange', 'banana']), new Set(['banana']);
// true

isSuperSet({id:'xyz', name:"john doe",age:59, work:"janitor"},{id:'xyz', work:"janitor"});
// true

isSuperSet({id:'xyz', name:"john doe",age:59, work:"janitor"},{id:'xyz', work:"janitor", likes:"football"});

// false


isSubSet

Subset (A ⊆ B) : check if A is subset of B, i.e all elements of A are also elements of B.

import {isSubSet} from "set-operations";

isSubSet([4, 5], [1, 9, 4, 8, 34, 43, 5]);
// true

isSubSet(["red", "blue"], ["violet", "indigo", "blue", "green", "yellow", "orange", "red"]);
// true

isSubSet({id:'xyz', work:"janitor"},{id:'xyz', name:"john doe",age:59, work:"janitor"})
//true

isSubSet({a:1,b:2,c:3},{b:2,c:3});
//false



union

Union (A ∪ B): create a Arr/obj that contains the elements of both A and B.

import {union} from "set-operations";

union(["rio", "delhi", "nairobi"], ["morocco", "algeria", "texas"]);

// [ "rio", "delhi", "nairobi", "morocco", "algeria", "texas" ]

union({firstname:"john", lastname:"doe"},{age:59, hobbies:["fishing", "cycling"]})

// {firstname:"john",lastname:"doe",age:59,hobbies:["fishing", "cycling"]}

note:for objects, union puts the elements of A and elements of B in to a new object - {...A, ...B,}, if the keys of elements in both A and B are same then the elements of B replaces elements of A.

intersection

Intersection (A ∩ B): create a Arr/obj that contains those elements of A that are also in B.

import {intersection} from "set-operations";

intersection([67, 21, 52, 78, 32, 321, 98, 97], [342, 52, 63, 89, 21]);

// [ 21, 52 ]

intersection({a: {a: 1, b: {c: 2,d:3}}, b: 2, c: 3, d: 4, e: 5},
             {e: 5, f: 6, c: 3, a: {a: 1, b: {c: 2, d: 3}}}
            )

//{ a: { a: 1, b: { c: 2, d: 3 } }, c: 3, e: 5 }


difference

Difference (A \ B): create a Arr/obj that contains those elements of A that are not in B.

import {difference} from "set-operations";

difference([43, 562, 52, 223, 652, 1], [43, 42, 524, 542, 100, 52]);

// [ 562, 223, 652, 1 ]

difference({a: {a: 1, b: {c: 2,d:3}}, b: 2, c: 3, d: 4, e: 5},
           {e: 5, f: 6, c: 3, a: {a: 1, b: {c: 2, d: 3}}}
           )
    
// { b: 2, d: 4 }



symmetric difference

Symmetric Difference (A ∆ B): create a Arr/obj of all elements which are in A or B but not both.

import {symmetricDifference} from "set-operations";

symmetricDifference([0, 1, 2, 3, 4], [5, 6, 7, 8, 9]);

// [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]

symmetricDifference(["sun", "rises", "in", "the", "east"], ["sun", "sets", "in", "the", "west"])

// Set [ "rises", "east", "sets", "west" ]

symmetricDifference({a: {a: 1, b: {c: 2,d:3}}, b: 2, c: 3, d: 4, e: 5},
                    {e: 5, f: 6, c: 3, a: {a: 1, b: {c: 2, d: 3}}}
                   )

//{ b: 2, d: 4, f: 6 }

note:for objects, symmetric difference performs difference on A to B and then B to A and puts the elements in to a new object - {...difference(A, B), ...difference(B, A)}, if the keys of elements in both A and B are same then the elements of B replaces elements of A.

symmetricDifference({star:"sun",does:"rises",direction:"east"},
                    {star:"sun", does:"sets",direction:"west"}
                   )

//{does:"sets", direction:"west"});

License

MIT

Keywords

sets

FAQs

Package last updated on 25 Apr 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts