🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

@google-cloud/automl

Package Overview
Dependencies
Maintainers
0
Versions
50
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@google-cloud/automl

Cloud AutoML API client for Node.js

5.0.1
latest
Source
npm
Version published
Weekly downloads
2.2K
0.64%
Maintainers
0
Weekly downloads
 
Created
Source

Google Cloud Platform logo

Cloud AutoML: Node.js Client

release level npm version

Cloud AutoML API client for Node.js

A comprehensive list of changes in each version may be found in the CHANGELOG.

Read more about the client libraries for Cloud APIs, including the older Google APIs Client Libraries, in Client Libraries Explained.

Table of contents:

Quickstart

Before you begin

Installing the client library

npm install @google-cloud/automl

Using the client library

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listDatasets() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    filter: 'translation_dataset_metadata:*',
  };

  const [response] = await client.listDatasets(request);

  console.log('List of datasets:');
  for (const dataset of response) {
    console.log(`Dataset name: ${dataset.name}`);
    console.log(
      `Dataset id: ${
        dataset.name.split('/')[dataset.name.split('/').length - 1]
      }`
    );
    console.log(`Dataset display name: ${dataset.displayName}`);
    console.log('Dataset create time');
    console.log(`\tseconds ${dataset.createTime.seconds}`);
    console.log(`\tnanos ${dataset.createTime.nanos / 1e9}`);
    console.log(
      `Text extraction dataset metadata: ${dataset.textExtractionDatasetMetadata}`
    );

    console.log(
      `Text sentiment dataset metadata: ${dataset.textSentimentDatasetMetadata}`
    );

    console.log(
      `Text classification dataset metadata: ${dataset.textClassificationDatasetMetadata}`
    );

    if (dataset.translationDatasetMetadata !== undefined) {
      console.log('Translation dataset metadata:');
      console.log(
        `\tSource language code: ${dataset.translationDatasetMetadata.sourceLanguageCode}`
      );
      console.log(
        `\tTarget language code: ${dataset.translationDatasetMetadata.targetLanguageCode}`
      );
    }

    console.log(
      `Image classification dataset metadata: ${dataset.imageClassificationDatasetMetadata}`
    );

    console.log(
      `Image object detection dataset metatdata: ${dataset.imageObjectDetectionDatasetMetatdata}`
    );
  }
}

listDatasets();

Samples

Samples are in the samples/ directory. Each sample's README.md has instructions for running its sample.

SampleSource CodeTry it
Auto_ml.create_datasetsource codeOpen in Cloud Shell
Auto_ml.create_modelsource codeOpen in Cloud Shell
Auto_ml.delete_datasetsource codeOpen in Cloud Shell
Auto_ml.delete_modelsource codeOpen in Cloud Shell
Auto_ml.deploy_modelsource codeOpen in Cloud Shell
Auto_ml.export_datasource codeOpen in Cloud Shell
Auto_ml.export_modelsource codeOpen in Cloud Shell
Auto_ml.get_annotation_specsource codeOpen in Cloud Shell
Auto_ml.get_datasetsource codeOpen in Cloud Shell
Auto_ml.get_modelsource codeOpen in Cloud Shell
Auto_ml.get_model_evaluationsource codeOpen in Cloud Shell
Auto_ml.import_datasource codeOpen in Cloud Shell
Auto_ml.list_datasetssource codeOpen in Cloud Shell
Auto_ml.list_model_evaluationssource codeOpen in Cloud Shell
Auto_ml.list_modelssource codeOpen in Cloud Shell
Auto_ml.undeploy_modelsource codeOpen in Cloud Shell
Auto_ml.update_datasetsource codeOpen in Cloud Shell
Auto_ml.update_modelsource codeOpen in Cloud Shell
Prediction_service.batch_predictsource codeOpen in Cloud Shell
Prediction_service.predictsource codeOpen in Cloud Shell
Auto_ml.create_datasetsource codeOpen in Cloud Shell
Auto_ml.create_modelsource codeOpen in Cloud Shell
Auto_ml.delete_datasetsource codeOpen in Cloud Shell
Auto_ml.delete_modelsource codeOpen in Cloud Shell
Auto_ml.deploy_modelsource codeOpen in Cloud Shell
Auto_ml.export_datasource codeOpen in Cloud Shell
Auto_ml.export_evaluated_examplessource codeOpen in Cloud Shell
Auto_ml.export_modelsource codeOpen in Cloud Shell
Auto_ml.get_annotation_specsource codeOpen in Cloud Shell
Auto_ml.get_column_specsource codeOpen in Cloud Shell
Auto_ml.get_datasetsource codeOpen in Cloud Shell
Auto_ml.get_modelsource codeOpen in Cloud Shell
Auto_ml.get_model_evaluationsource codeOpen in Cloud Shell
Auto_ml.get_table_specsource codeOpen in Cloud Shell
Auto_ml.import_datasource codeOpen in Cloud Shell
Auto_ml.list_column_specssource codeOpen in Cloud Shell
Auto_ml.list_datasetssource codeOpen in Cloud Shell
Auto_ml.list_model_evaluationssource codeOpen in Cloud Shell
Auto_ml.list_modelssource codeOpen in Cloud Shell
Auto_ml.list_table_specssource codeOpen in Cloud Shell
Auto_ml.undeploy_modelsource codeOpen in Cloud Shell
Auto_ml.update_column_specsource codeOpen in Cloud Shell
Auto_ml.update_datasetsource codeOpen in Cloud Shell
Auto_ml.update_table_specsource codeOpen in Cloud Shell
Prediction_service.batch_predictsource codeOpen in Cloud Shell
Prediction_service.predictsource codeOpen in Cloud Shell
Quickstartsource codeOpen in Cloud Shell

The Cloud AutoML Node.js Client API Reference documentation also contains samples.

Supported Node.js Versions

Our client libraries follow the Node.js release schedule. Libraries are compatible with all current active and maintenance versions of Node.js. If you are using an end-of-life version of Node.js, we recommend that you update as soon as possible to an actively supported LTS version.

Google's client libraries support legacy versions of Node.js runtimes on a best-efforts basis with the following warnings:

  • Legacy versions are not tested in continuous integration.
  • Some security patches and features cannot be backported.
  • Dependencies cannot be kept up-to-date.

Client libraries targeting some end-of-life versions of Node.js are available, and can be installed through npm dist-tags. The dist-tags follow the naming convention legacy-(version). For example, npm install @google-cloud/automl@legacy-8 installs client libraries for versions compatible with Node.js 8.

Versioning

This library follows Semantic Versioning.

This library is considered to be stable. The code surface will not change in backwards-incompatible ways unless absolutely necessary (e.g. because of critical security issues) or with an extensive deprecation period. Issues and requests against stable libraries are addressed with the highest priority.

More Information: Google Cloud Platform Launch Stages

Contributing

Contributions welcome! See the Contributing Guide.

Please note that this README.md, the samples/README.md, and a variety of configuration files in this repository (including .nycrc and tsconfig.json) are generated from a central template. To edit one of these files, make an edit to its templates in directory.

License

Apache Version 2.0

See LICENSE

Keywords

google apis client

FAQs

Package last updated on 21 Mar 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts