Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@sap-ai-sdk/ai-api

Package Overview
Dependencies
Maintainers
0
Versions
131
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@sap-ai-sdk/ai-api

SAP Cloud SDK for AI is the official Software Development Kit (SDK) for **SAP AI Core**, **SAP Generative AI Hub**, and **Orchestration Service**.

  • 1.5.0
  • latest
  • npm
  • Socket score

Version published
Weekly downloads
1.1K
increased by29.84%
Maintainers
0
Weekly downloads
 
Created
Source

@sap-ai-sdk/ai-api

SAP Cloud SDK for AI is the official Software Development Kit (SDK) for SAP AI Core, SAP Generative AI Hub, and Orchestration Service.

This package provides tools to manage scenarios and workflows in SAP AI Core.

  • Streamline data preprocessing and model training pipelines.
  • Execute batch inference jobs.
  • Deploy inference endpoints for trained models.
  • Register custom Docker registries, sync AI content from Git repositories, and register object storage for training data and model artifacts.

We maintain a list of currently available and tested AI Core APIs

Table of Contents

Installation

$ npm install @sap-ai-sdk/ai-api

Version Management

⚠️ Important: This package contains generated code. Updates to this package may include breaking changes.

To ensure compatibility and manage updates effectively, we strongly recommend using the tilde (~) version range in your project instead of the caret (^). This approach will allow patch-level updates while preventing potentially breaking minor version changes.

"dependencies": {
    "@sap-ai-sdk/ai-api": "~1.0.0"
}

Prerequisites

Accessing the AI Core Service via the SDK

The SDK automatically retrieves the AI Core service credentials and resolves the access token needed for authentication.

  • In Cloud Foundry, it's accessed from the VCAP_SERVICES environment variable.
  • In Kubernetes / Kyma environments, you have to mount the service binding as a secret instead, for more information refer to this documentation.

Usage

The examples below demonstrate the usage of the most commonly used APIs in SAP AI Core. In addition to the examples below, you can find more sample code here.

Create an Artifact

async function createArtifact() {
  const requestBody: ArtifactPostData = {
    name: 'training-test-dataset',
    kind: 'dataset',
    url: 'https://ai.example.com',
    scenarioId: 'foundation-models'
  };

  try {
    const responseData: ArtifactCreationResponse =
      await ArtifactApi.artifactCreate(requestBody, {
        'AI-Resource-Group': 'default'
      }).execute();
    return responseData;
  } catch (errorData) {
    const apiError = errorData.response.data.error as ApiError;
    console.error('Status code:', errorData.response.status);
    throw new Error(`Artifact creation failed: ${apiError.message}`);
  }
}

Create a Configuration

async function createConfiguration() {
  const requestBody: ConfigurationBaseData = {
    name: 'gpt-35-turbo',
    executableId: 'azure-openai',
    scenarioId: 'foundation-models',
    parameterBindings: [
      {
        key: 'modelName',
        value: 'gpt-35-turbo'
      },
      {
        key: 'modelVersion',
        value: 'latest'
      }
    ],
    inputArtifactBindings: []
  };

  try {
    const responseData: ConfigurationCreationResponse =
      await ConfigurationApi.configurationCreate(requestBody, {
        'AI-Resource-Group': 'default'
      }).execute();
    return responseData;
  } catch (errorData) {
    const apiError = errorData.response.data.error as ApiError;
    console.error('Status code:', errorData.response.status);
    throw new Error(`Configuration creation failed: ${apiError.message}`);
  }
}

Create a Deployment

async function createDeployment() {

    const requestBody: DeploymentCreationRequest = {
      configurationId: '0a1b2c3d-4e5f6g7h'
    };

    try{
        const responseData: DeploymentCreationResponse = await DeploymentApi
            .deploymentCreate(requestBody, {'AI-Resource-Group': 'default'})
            .execute();
        return responseData;
    } catch (errorData) {
        const apiError = errorData.response.data.error as ApiError;
        console.error('Status code:', errorData.response.status);
        throw new Error(`Deployment creation failed: ${apiError.message}`);
    }
}

Delete a Deployment

Only deployments with targetStatus: STOPPED can be deleted. Thus, a modification request must be sent before deletion can occur.

async function modifyDeployment() {
  let deploymentId: string = '0a1b2c3d4e5f';

  const deployment: DeploymentResponseWithDetails =
    await DeploymentApi.deploymentGet(
      deploymentId,
      {},
      { 'AI-Resource-Group': 'default' }
    ).execute();

  if (deployment.targetStatus === 'RUNNING') {
    // Only RUNNING deployments can be STOPPED.
    const requestBody: DeploymentModificationRequest = {
      targetStatus: 'STOPPED'
    };

    try {
      await DeploymentApi.deploymentModify(deploymentId, requestBody, {
        'AI-Resource-Group': 'default'
      }).execute();
    } catch (errorData) {
      const apiError = errorData.response.data.error as ApiError;
      console.error('Status code:', errorData.response.status);
      throw new Error(`Deployment modification failed: ${apiError.message}`);
    }
  }
  // Wait a few seconds for the deployment to stop
  try {
    return DeploymentApi.deploymentDelete(deploymentId, {
      'AI-Resource-Group': 'default'
    }).execute();
  } catch (errorData) {
    const apiError = errorData.response.data.error as ApiError;
    console.error('Status code:', errorData.response.status);
    throw new Error(`Deployment deletion failed: ${apiError.message}`);
  }
}

Custom Destination

When calling the execute() method, it is possible to provide a custom destination. For example, when querying deployments targeting a destination with the name my-destination, the following code can be used:

const queryParams = status ? { status } : {};
return DeploymentApi.deploymentQuery(queryParams, {
  'AI-Resource-Group': resourceGroup
}).execute({
  destinationName: 'my-destination'
});

By default, the fetched destination is cached. To disable caching, set the useCache parameter to false together with the destinationName parameter.

Local Testing

For local testing instructions, refer to this section.

Support, Feedback, Contribution

This project is open to feature requests, bug reports and questions via GitHub issues.

Contribution and feedback are encouraged and always welcome. For more information about how to contribute, the project structure, as well as additional contribution information, see our Contribution Guidelines.

License

The SAP Cloud SDK for AI is released under the Apache License Version 2.0..

Keywords

FAQs

Package last updated on 07 Jan 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc