autohost
Convention-based, opinionated HTTP server library based on express. Lovingly ripped from the guts of Anvil.
Rationale
As more services are introduced to a system, the tedium of fitting together all the same libraries over and over:
- is soul-draining
- encourages copy/pasta
- adds inertia across multiple projects
- increases the surface area for defects and maintenance
I created autohost so we could have a consistent, reliable and extendible way to create HTTP/socket powered sites and services. By introducing conventions and structure to projects, route definitions and handlers aren't scattered throughout the source and mixed with application logic.
Features
- Resource-based: define transport-agnostic resources that interact via HTTP or WebSockets
- Supports server-side websockets and socket.io
- Supports multiple Passport strategies via a pluggable auth provider approach
Note
The dashboard and related APIs are no longer included with autohost. They have been moved to a separate project: autohost-admin.
Quick Start
npm init
npm install autohost autohost-nedb-auth -S
./index.js - the most boring app ever
var autohost = require( 'autohost' );
var auth = require( 'autohost-nedb-auth' )( {} );
var host = autohost( { authProvider: auth } );
host.start();
node index.js
autohost( config )
Refer to the section below for a list of available configuration properties and default values.
Configuration
The object literal follows the format:
{
static: './public',
anonymous: [],
port: 8800,
urlPrefix: undefined,
apiPrefix: '/api',
resources: './resource',
modules: [],
authProvider: undefined,
allowedOrigin: ,
socketIO: false,
websocket: false,
noBody: false,
noCookie: false,
noCrossOrigin: false,
noOptions: false,
noProxy: false,
noSession: false,
session:
cookie:
getUserString:
enableAccessLogs: true,
logging: {},
fount: undefined,
parseAhead: false,
handleRouteErrors: false,
urlStrategy: undefined
}
Socket.io
The configuration options (above) value for socketIO
can be false
(disabled), true
(enabled with basic socket.io defaults) or an object
specifying any option supported by socket.io.
Session Configuration
By default express session is the session provider. To change any settings for how the session is configured, provide a hash with values for any of the properties shown below.
{
name: 'ah.sid',
secret: 'autohostthing',
resave: true,
store: new sessionLib.MemoryStore(),
saveUninitialized: true,
rolling: false
}
This example demonstrates using the redis and connect-redis libraries to create a redis-backed session store.
var autohost = require( 'autohost' );
var auth = require( 'autohost-nedb-auth' )( {} );
var redis = require( 'redis' ).createClient( port, address );
var RedisStore = require( 'connect-redis' )( host.session );
var store = new RedisStore( {
client: redis,
prefix: 'ah:'
} );
host = autohost( {
authProvider: auth,
session: {
name: 'myapp.sid',
secret: 'youdontevenknow',
store: store
}
} );
host.start();
Ending a session
To end a session:
logout
method on the envelope in a resource action handlelogout
on the request in any middleware
Session Cookie Configuration
To change any settings for how the session cookie is configured, provide a hash with values for any of the properties shown below.
{
path: '/',
secure: false,
maxAge: null
}
Static
The static option supports either a path, an options hash, or false
. Currently, the options (except path
) are passed through to express.static
with the path
property being used as the route. (If set to false
, no default static path will be auto-configured):
{
static: {
path: './public',
maxAge: '2d',
setHeaders: function ( res, path, stat ) { ... }
}
}
AuthProvider
There are already two available auth provider libraries available:
Each library supports all optional features and can be managed from the admin add-on.
Note: the authProvider passed in can be an unresolved promise, autohost will handle it
Planned support for:
getUserString
The getUserString
option expects a method that accepts user
as its only parameter, and returns a string (used for logging) to identify the user. The default method provided attempts the following steps:
- return
user.name
if available, otherwise: - return
user.username
if available, otherwise: - return
user.id
if available, otherwise: - return
JSON.stringify( user )
Override this method with custom logic if the default does not match your field names on your user object. For instance:
{
getUserString: function ( user ) {
return user.login;
}
}
fount
fount is a dependency injection library for Node. If the application is using fount, the application's instance can be provided at the end of the init call so that resources will have access to the same fount instance the application is using. The fount instance in use by autohost
is available via host.fount
.
Resources
Resources are expected to be simple modules containing a factory method that return one or more resource definitions. Dependency resolution by argument is supported in these resource factory methods. All arguments after the first (host
) will be checked against autohost's fount instance. This is especially useful when taking a dependency on a promise or asynchronous function. Fount will only invoke the resource's factory once all dependnecies are available, eliminating dependency callbacks or promises in the resource's implementation. See the Asynchronous Module example under the Module section.
Path conventions
All resources must be placed under a top level folder (./resource
by default) and shared static resources under a top level folder (./public
by default). Each resource should have its own sub-folder and contain a resource.js
file that contains a module defining the resource.
####Folder structure
-myProject
-- resource |
-- profile
| | |-- resource.js
| |
| -- otherThing | | |-- resource.js
--public
| --css | | |--main.css |
--js
| | |--jquery.min.js
| | |--youmightnotneed.js
| |--index.html
####Module
Synchronous Module - No Fount Dependencies
module.exports = function( host ) {
return {
name: 'resource-name',
static: '',
apiPrefix: '',
urlPrefix: '',
middleware: [],
actions: {
send: {
method: 'get',
url: '',
topic: 'send',
middleware: [],
authorize: ,
handle: function( envelope ) {
}
}
}
};
};
Asynchronous Module - Fount Dependencies
This example assumes that either:
- the application fount instance was plugged into autohost or
- all defined dependencies were made with autohost's fount instance before calling autohost's
init
call.
var autohost = require( 'autohost' );
var host = autohost( { ... } );
host.fount.register( 'myDependency1', { ... } );
host.fount.register( 'myDependency2', somePromise );
module.exports = function( host, myDependency1, myDependency2 ) {
return {
name: 'resource-name',
static: '',
apiPrefix: '',
urlPrefix: '',
middleware: [],
actions: {
send: {
method: 'get',
url: '',
topic: 'send',
middleware: [],
authorize: ,
handle: function( envelope ) {
}
}
]
};
};
name
The resource name is pre-pended to the action's alias to create a globally unique action name: resource-name.action-alias
. The resource name is also the first part of the action's URL (after the api prefix) and the first part of a socket message's topic:
http://{host}:{port}/api/{resource-name}/{action-alias|action-path}
topic: {resource-name}.{action-topic|action-alias}
Note: If defining resources for use with [hyped](https://github.com/leankit-labs/hyped) - the resource name is not automatically pre-pended to the url.
static
You can host nested static files under a resource using this property. The directory and its contents found at the path will be hosted after the resource name in the URL.
middleware
Provides a mechanism for defining resource-level middleware either in a single function or in a list of functions. These functions are provided with an envelope and are able to make changes to it before it reaches action-specific middleware or the handle call.
Below are several examples of different middleware patterns. This should demonstrate both synchronous and asynchronous patterns for proceding and short-circuiting the stack.
...
middleware: [
function( envelope, next ) {
return next();
},
function( envelope, next ) {
if( envelope.data.example === 1 ) {
return { data: { message: 'This will short circuit the stack and respond immediately' } };
} else if( envelope.data.example === 2 ) {
return somethingPromisey()
.then( function( x ) {
envelope.context.importantThing = x;
return next();
} );
} else if( envelope.data.example === 3 ) {
return anotherPromise()
.then( function( x ) {
return { data: x };
} );
} else {
return next();
}
}
}
...
Actions
The hash of actions are the operations exposed on a resource on the available transports.
[key]
They key of the action in the hash acts as the 'friendly' name for the action. To create a globally unique action name, autohost pre-pends the resource name to the alias: resource-name.action-alias
.
method
Controls the HTTP method an action will be bound to.
topic
This property controls what is appended to the resource name in order to create a socket topic. The topic is what a socket client would publish a message to in order to activate an action.
url - string pattern
The url
property provides the URL assigned to this action. You can put path variables in this following the express convention of a leading :
url: '/thing/:arg1/:arg2'
Path variables are accessible on the envelope's params
property. If a path variable does NOT collide with a property on the request body, the path variable is written to the envelope.data
hash as well:
envelope.data.arg1 === envelope.params.arg1;
url - regular expression
The url
can also be defined as a regular expression that will be evaluated against incoming URLs. Both apiPrefix
and urlPrefix
will be pre-pended to the regular expression automatically - do not include them in the expression provided.
query parameters
Query parameters behave exactly like path variables. They are available on the params
property of the envelope and copied to the envelope.data
hash if they wouldn't collide with an existing property.
custom url strategy
A function can be provided during configuration that will determine the url assigned to an action. The function should take the form:
function myStrategy( resourceName, actionName, action, resourceList ) { ... }
The string returned will be the URL used to route requests to this action. Proceed with extreme caution.
middleware
Provides a mechanism for defining action-level middleware either in a single function or in a list of functions. These functions are provided with an envelope and are able to make changes to it before it reaches the handle call.
IMPORTANT
Middleware must return either the result of the next
call or a promise/data structure to short circuit the stack with a response. They are mutually exclusive. Do not call both. Do not fail to return one or the other.
authorize
The authorize
predicate was added to actions to allow for much more fine grained, explicit control of user authorization. By default, authorization checks are performed after all middleware has run. This allows middleware to provide any necessary data on the envelope's context so that the authorization strategy can use this in determining the user's access level.
To change this, provide the string "authorize" in place of a middleware call in the resource or action middleware property and the check will be performed where the string appeared in the stack. This allows an application to short-circuit the stack and avoid running middleware that performs expensive and unnecessary i/o if the user does not have permission to perform the action.
Note: when present, this overrides rather than augments any authorization check that would have been performed by a configured autohost auth library.
...
authorize: function( envelope ) {
return envelope.user.isAwesome;
}
...
}
handle
The handle is a callback that will be invoked if the caller has adequate permissions. The handle call can return a hash (or a promise that resolve to one) with the following properties:
Note: data
, file
, forward
and redirect
are mutually exclusive. Websockets only supports data
and file
.
{
status: 200,
data: undefined,
cookies: {},
headers: {},
file: {
name: ,
type: ,
stream:
},
forward: {
url: ,
method: ,
headers: ,
body:
},
redirect: {
status: 302,
url:
}
}
Recommendation
Don't include application logic in a resource file. The resource is there as a means to 'plug' application logic into HTTP and websocket transports. Keeping behavior in a separate module will make it easy to test application behavior apart from autohost.
differentiated handlers
In rare cases, you may need the ability to have multiple handler behaviors that change based on some aspect of the request. Autohost allows a hash to specify multiple handlers and conditions for when each should be applied. The list is evaluated in order, keep this in mind when putting conditions in place. If no condition is met, a 400 will be returned - the assumption being that you, the developer intentionally excluded some condition and the caller submitted a malformed request.
Note: this feature exists primarily so our upstream hypermedia library, hyped
can plug in handlers based on version.
{
handle: [
{
when: { version: 1 },
then: function( envelope ) {
...
}
},
{
when: function( envelope ) {
return envelope.version === 2;
},
then: function( envelope ) {
...
}
},
{
when: true,
then: function( envelope ) {
...
}
}
]
}
Controlling Error Responses
Responses sent to the client based on an error returned from an action's handle can be controlled at the config, resource or action level. How to handle a specific error type is determined by first checking the action, then resource, then config (host) levels.
The errors
property can be set at any of these levels and is a set of case-sensitive error names and a literal specifying how to render the error. The literal can contain a status
to control the status code used and a static body
, file
or reply
function that takes the error as an argument and returns the content for the response body.
Note: File is only applicable for the http transport and will be ignored in sockets.
errors: {
Error: {
status: 500,
body: 'oops'
},
NotFoundError: {
status: 404,
file: './404.html'
},
BadRequestError: {
status: 400,
reply: function( err ) {
return 'This is no good: ' + err.message;
}
}
},
Tighter Response Control
Read the section on envelopes for details on data available and alternate ways to produce a response.
Envelope
Envelopes are an abstraction around the incoming message or request. They are intended to help normalize interactions with a client despite the transport being used.
{
context:
cookies:
data:
headers:
logout:
path:
session:
responseStream:
transport:
version:
user:
reply: function( envelope )
replyWithFile: function( contentType, fileName, fileStream )
}
{
params:
files:
forwardTo: function( options )
redirect: function( [statusCode = 302 ,] url)
}
{
replyTo:
socket:
}
reply( envelope )
Sends a reply back to the requestor via HTTP or web socket. Response envelope is expected to always have a data property containing the body/reply. HTTP responses can included the following properties
statusCode
: defaults to 200headers
: a hash of headers to set on the responsecookies
: a hash of cookies to set on the response. The value is an object with a value
and options
property.data
: content of the response body
envelope.reply( { data: { something: 'interesting' }, statusCode: 200 } );
The options property for a cookie can have the following properties: domain
, path
, maxAge
, expires
, httpOnly
, secure
, signed
replyWithFile( contentType, fileName, fileStream )
Sends a file as a response.
forwardTo( opts )
Forwards the request using the request library and returns the resulting stream. Works for simple proxying.
envelope.forwardTo( {
uri: 'http://myProxy/url'
} ).pipe( envelope.responseStream );
External Resources - Loading an NPM Resource Module
A list of NPM modules can be specified that will be loaded as resources. This feature is intended to support packages that supply a resource and static files as a sharable module. Hopefully it will lead to some interesting sharing of common APIs and/or UIs for autohost based services. (example - realtime metrics dashboard)
To enable this, simply add the module names as an array in the modules
property of the configuration hash passed to init.
HTTP Transport
The http transport API has three methods to add middleware, API routes and static content routes. While resources are the preferred means of adding static and API routes, it's very common to add application specific middleware. Custom middleware is added after standard middleware and passport (unless specific middleware was disabled via configuration).
host.http.middleware( mountPath, callback, [middlewareAlias] )
host.http.route( url, callback )
host.http.static( url, filePath or options )
(See static above for details on options)
Note: when custom features are needed, middleware should be the preferred way to add them.
Route prefixes
The config hash provides two optional properties to control how HTTP routes are created.
apiPrefix
By default autohost places all resource action routes behind /api
to prevent any collisions with static routes. You can remove this entirely by providing an empty string or simply change it so something else.
Note: a `urlPrefix` will always precede this if one has been supplied.
This setting can be controlled per-resource via the apiPrefix
setting.
urlPrefix
In the event that a reverse proxy is in front of autohost that routes requests from a path segment to the service, use a urlPrefix to align the leading path from the original url with routes generated by autohost.
Example
You have a public HTTP endpoint that directs traffic to the primary application (http://yourco.io
). You want to reverse proxy any request sent to the path http://yourco.io/special/
to an interal application built with autohost. The challenge is that all static resources (html, css, js) that contain paths would normally use absolute paths when referencing api routes or other static resources. ( examples: /css/style.css
, /js/lib/jquery.min.js
, /api/thingy/10
) The problem is that the browser will make these requests which will be directed to the original application server since instead of the /special
path segment required to route to the autohost app via reverse proxy. This will either activate routes in the original application (which will be incorrect) or get a bunch of 404s back from the front-end application.
While all of the URLs in static resources in the previous example could be prefixed with `/special', this creates a tight coupling to a reverse proxy configured exactly like production. This makes integration testing and local development unecessarily difficult.
The simpler solution is to use a urlPrefix
set to 'special'. The prefix will automatically be applied to all routes in the service so that requests from the proxy align with the routes defined in the application consistently. This results in an application that remains usable outside of the reverse proxy and can even be built and deployed with different path prefixes (or no prefixes).
parseAhead
Normally, middleware can't have access to path variables that aren't defined as part of its mount point. This is because the sequential routing table doesn't know what path will eventually be resolved when it's processing general purpose middleware (e.g. mounted at /
). Setting parseAhead
to true in configuration will add special middleware that does two things:
- add a
preparams
property to the request with parameters from "future" matching routes - redefines the
req.param
function to check preparams
before falling back to default
The upside is that general purpose middleware can access path variables instead of having to write the same kind of middleware for a lot of different paths and then worry about keeping paths synchronized. The downside is that there is obviously some performance penalty for traversing the route stack in advance like this.
Web Socket Transport
There are two socket libraries - socket.io for browser clients and websocket-node for programmatic/server clients.
HTTP Middleware
HTTP middleware runs during socket interactions as well. This ensures predictability in how any client is authenticated and what metadata is available within the context of activating resource actions.
Authentication
The HTTP upgrade request is authenticated before the upgrade is established. This is preferable to the standard practice of allowing a socket connection to upgrade and then checking the request or performing some client-implemented handshake after the fact.
WebSocket-Node library
When establishing a connection to autohost using the WebSocket-Node client, append '/websocket' to the end of the URL.
Uniform API
The differences between each library are normalized with the same set of calls:
socket.publish( topic, message )
- sends a message with the topic and message contents to the sockethost.socket.send( id, topic, message )
- sends message to specific client via websocket (returns true if successful)host.socket.notify( topic, message )
- sends message to all clients connected via socket
Events
These events can be subscribed to via host.on
:
- 'socket.client.connected', { socket: socketConnection } - raised when a client connects
- 'socket.client.identified', { socket: socketConnection, id: id } - raised when client reports unique id
- 'socket.client.closed', { socket: socketConnection, id: id } - raised when client disconnects the websocket connection
Auth - via Auth Provider
Authentication and authorization are supplied by an auth provider library that conforms to autohost's auth specifications. You can read more about that at here.
Programmatic control
The auth library is available by reference via the auth property on the host object: host.auth
. Whatever API methods have been implemented are callable by the application.
Authentication
The auth provider should supply one or more Passport strategies.
Authorization
Roles are assigned to users and actions. If a user has a role that is in an action's list, the user can invoke that action via HTTP or a socket message. If the action has no roles assigned, there is no restriction and any authenticated user (including anonymous users) can activate the action.
The general approach is this:
- every action in the system is made available to the auth provider library on start-up
- an action may be assigned to one or more roles
- a user may be assigned to one or more roles
- when a user attempts to activate an action, the action roles are checked against the user roles
- if a match is found in both lists, the action completes
- if the user has no roles that match any of the action's roles, the action is rejected (403)
- if the action has NO roles assigned to it, the user will be able to activate the action
This basically goes against least-priviledge and is really only in place to prevent services from spinning up and rejecting everything. To prevent access issues, never expose a service publicly before configuring users, roles and actions.
Logging
Logging is provided by whistlepunk and can be controlled by the logging
property of the config provided to the init call.
Access Log
The access log uses the namespace autohost.access
and logs at the info
level. Below is a template and then an example entry:
{timestamp} autohost.access {processTitle}@{hostName} {clientIP} ({duration} ms) [{user}] {method} {requestURL} ({ingress} bytes) {statusCode} ({egress} bytes)
Debugging
A lot of visibility can be gained into what's happening in autohost in real-time by setting the DEBUG environment variable. To filter down to autohost debug entries only, use autohost*
as the DEBUG value.
DEBUG=autohost* node index.js
Metadata
Metadata describing the routes and topic are available via an OPTIONS to api:
OPTIONS http://{host}:{port}/api
The metadata follows this format:
{
"resource-name": {
"routes": {
"action-alias": {
"verb": "get",
"url": "/api/resource-name/action-alias|action-path"
}
},
"path": {
"url": "/_autohost",
"directory": "/git/node/node_modules/autohost/src/_autohost/public"
},
"topics": {
"action-alias": {
"topic": "resource-name.action-alias"
}
}
},
"prefix": "/api"
}
While this is useful, we have developed hyped,a hypermedia library that bolts onto autohost, and halon, a browser/Node hypermedia client for consuming APIs built with hyped
.
Dependencies
autohost would not exist without the following libraries:
- body-parser 1.12.3
- cookie-parser 1.3.4
- express 4.12.3
- express-session 1.11.1
- fount 0.1.0
- lodash 3.7.0
- metronic 0.2.1
- multer 0.1.8
- node-uuid 1.4.3
- parseurl 1.3.0
- passport 0.2.1
- postal 1.0.2
- qs 2.4.1
- request 2.55.0
- socket.io 1.3.5
- websocket 1.0.18
- when 3.7.2
- whistlepunk 0.3.0
TO DO
- Add ability to define message middleware
Contributing
There are a lot of places you can contribute to autohost. Here are just some ideas:
Designers
- Better designs for both the general dashboard and auth dashboard
- Logo
Op/Sec
I would be interested in seeing if particular Passport strategies and how they're being wired in would be subject to any exploits. Knowing this in general would be great, but especially if I'm doing something ignorant with how it's all being handled and introducing new attack vectors, I'd like to find out what those are so they can be addressed.
License
MIT License - http://opensource.org/licenses/MIT