Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

binary-parser

Package Overview
Dependencies
Maintainers
1
Versions
35
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

binary-parser

Blazing-fast binary parser builder

  • 1.1.4
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
13K
increased by12.25%
Maintainers
1
Weekly downloads
 
Created
Source

Binary-parser

Build Status

Binary-parser is a binary parser builder library for node, which enables you to write efficient parsers in a simple & declarative way.

It supports all common data types required to analyze a structured binary data. Binary-parser dynamically generates and compiles the parser code on-the-fly, which runs as fast as a hand-written parser (which takes much more time and effort to write). Supported data types are:

  • Integers (supports 8, 16, 32 bit signed- and unsigned integers)
  • Floating point numbers (supports 32 and 64 bit floating point values)
  • Bit fields (supports bit fields with length from 1 to 32 bits)
  • Strings (supports various encodings, fixed-length and variable-length, zero terminated string)
  • Arrays (supports user-defined element type, fixed-length and variable-length)
  • Choices
  • User defined types

This library's features are inspired by BinData , its syntax by binary.

Installation

Binary-parser can be installed with npm:

$ npm install binary-parser

Quick Start

  1. Create an empty Parser object with new Parser().
  2. Chain builder methods to build the desired parser. (See API for detailed document of each methods)
  3. Call Parser.prototype.parse with an Buffer object passed as argument.
  4. Parsed result will be returned as an object.
// Module import
var Parser = require('binary-parser').Parser;

// Build an IP packet header Parser
var ipHeader = new Parser()
    .endianess('big')
    .bit4('version')
    .bit4('headerLength')
    .uint8('tos')
    .uint16('packetLength')
    .uint16('id')
    .bit3('offset')
    .bit13('fragOffset')
    .uint8('ttl')
    .uint8('protocol')
    .uint16('checksum')
    .array('src', {
        type: 'uint8',
        length: 4
    })
    .array('dst', {
        type: 'uint8',
        length: 4
    });

// Prepare buffer to parse.
var buf = new Buffer('450002c5939900002c06ef98adc24f6c850186d1', 'hex');

// Parse buffer and show result
console.log(ipHeader.parse(buf));

API

new Parser()

Constructs a Parser object. Returned object represents a parser which parses nothing.

parse(buffer[, callback])

Parse a Buffer object buffer with this parser and return the resulting object. When parse(buffer) is called for the first time, parser code is compiled on-the-fly and internally cached.

create(constructorFunction)

Set the constructor function that should be called to create the object returned from the parse method.

[u]int{8, 16, 32}{le, be}(name [,options])

Parse bytes as an integer and store it in a variable named name. name should consist only of alphanumeric characters and start with an alphabet. Number of bits can be chosen from 8, 16 and 32. Byte-ordering can be either l for little endian or b for big endian. With no prefix, it parses as a signed number, with u prefixed as an unsigned number.

var parser = new Parser()
	// Signed 32-bit integer (little endian)
    .int32le('a')
    // Unsigned 8-bit integer
    .uint8('b')
    // Signed 16-bit integer (big endian)
    .int16be('c')

bit[1-32](name [,options])

Parse bytes as a bit field and store it in variable name. There are 32 methods from bit1 to bit32 each corresponding to 1-bit-length to 32-bits-length bit field.

{float, double}{le, be}(name [,options])

Parse bytes as an floating-point value and store it in a variable named name. name should consist only of alphanumeric characters and start with an alphabet.

var parser = new Parser()
    // 32-bit floating value (big endian)
    .floatbe('a')
    // 64-bit floating value (little endian)
    .doublele('b')

string(name [,options])

Parse bytes as a string. name should consist only of alpha numeric characters and start with an alphabet. options is an object; following options are available:

  • encoding - (Optional, defaults to utf8) Specify which encoding to use. 'utf8', 'ascii', 'hex' and else are valid. See Buffer.toString for more info.
  • length - (Optional) Length of the string. Can be a number, string or a function. Use number for statically sized arrays, string to reference another variable and function to do some calculation.
  • zeroTerminated - (Optional, defaults to false) If true, then this parser reads until it reaches zero.
  • stripNull - (Optional, must be used with length) If true, then strip null characters from end of the string

buffer(name [,options])

Parse bytes as a buffer. name should consist only of alpha numeric characters and start with an alphabet. options is an object; following options are available:

  • clone - (Optional, defaults to false) By default, buffer(name [,options]) returns a new buffer which references the same memory as the parser input, but offset and cropped by a certain range. If this option is true, input buffer will be cloned and a new buffer referncing another memory is returned.
  • length - (either length or readUntil is required) Length of the buffer. Can be a number, string or a function. Use number for statically sized buffers, string to reference another variable and function to do some calculation.
  • readUntil - (either length or readUntil is required) If 'eof', then this parser will read till it reaches end of the Buffer object.

array(name [,options])

Parse bytes as an array. options is an object; following options are available:

  • type - (Required) Type of the array element. Can be a string or an user defined Parser object. If it's a string, you have to choose from [u]int{8, 16, 32}{le, be}.
  • length - (either length or readUntil is required) Length of the array. Can be a number, string or a function. Use number for statically sized arrays.
  • readUntil - (either length or readUntil is required) If 'eof', then this parser reads until the end of Buffer object. If function it reads until the function returns true.
var parser = new Parser()
	// Statically sized array
	.array('data', {
		type: 'int32',
		length: 8
	})

	// Dynamically sized array (reference another variable)
	.uint8('dataLength')
	.array('data2', {
		type: 'int32',
		length: 'dataLength'
	})

	// Dynamically sized array (with some calculation)
	.array('data3', {
		type: 'int32',
		length: function() { return this.dataLength - 1; } // other fields are available through this
	});

	// Dynamically sized array (with stop-check on parsed item)
	.array('data4', {
		type: 'int32',
		readUntil: function(item, buffer) { return item === 42 } // stop when specific item is parsed. buffer can be used to perform a read-ahead.
	});

	// Use user defined parser object
	.array('data5', {
		type: userDefinedParser,
		length: 'dataLength'
	});

choice(name [,options])

Choose one parser from several choices according to a field value. Combining choice with array is useful for parsing a typical Type-Length-Value styled format.

  • tag - (Required) The value used to determine which parser to use from the choices Can be a string pointing to another field or a function.
  • choices - (Required) An object which key is an integer and value is the parser which is executed when tag equals the key value.
  • defaultChoice - (Optional) In case of the tag value doesn't match any of choices use this parser.
var parser1 = ...;
var parser2 = ...;
var parser3 = ...;

var parser = new Parser()
	.uint8('tagValue')
	.choice('data', {
		tag: 'tagValue',
		choices: {
			1: parser1, // When tagValue == 1, execute parser1
			4: parser2, // When tagValue == 4, execute parser2
			5: parser3  // When tagValue == 5, execute parser3
		}
	});

nest(name [,options])

Nest a parser in this position. Parse result of the nested parser is stored in the variable name.

  • type - (Required) A Parser object.

skip(length)

Skip parsing for length bytes.

endianess(endianess)

Define what endianess to use in this parser. endianess can be either 'little' or 'big'. The default endianess of Parser is set to big-endian.

var parser = new Parser()
    .endianess('le')
	// You can specify endianess explicitly
	.uint16be('a')
    .uint32le('a')
	// Or you can omit endianess (in this case, little-endian is used)
	.uint16('b')
	.int32('c')

compile()

Compile this parser on-the-fly and cache its result. Usually, there is no need to call this method directly, since it's called when parse(buffer) is executed for the first time.

getCode()

Dynamically generates the code for this parser and returns it as a string. Usually used for debugging.

Common options

These are common options that can be specified in all parsers.

  • formatter - Function that transforms the parsed value into a more desired form.
var parser = new Parser()
  .array('ipv4', {
    type: uint8,
    length: '4',
    formatter: function(arr) { return arr.join('.'); }
  });
  • assert - Do assertion on the parsed result (useful for checking magic numbers and so on). If assert is a string or number, the actual parsed result will be compared with it with === (strict equality check), and an exception is thrown if they mismatch. On the other hand, if assert is a function, that function is executed with one argument (parsed result) and if it returns false, an exception is thrown.

    // simple maginc number validation
    var ClassFile =
    	Parser.start()
        .endianess('big')
        .uint32('magic', {assert: 0xcafebabe})
    
    // Doing more complex assertion with a predicate function
    var parser = new Parser()
        .int16le('a')
        .int16le('b')
        .int16le('c', {
            assert: function(x) {
                return this.a + this.b === x;
            }
        });
    

Examples

See example for more complex examples.

Support

Please report issues to the issue tracker if you have any difficulties using this module, found a bug, or request a new feature.

Pull requests with fixes and improvements are welcomed!

License

The MIT License (MIT)

Copyright (c) 2013-2014 Keichi Takahashi keichi.t@me.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Keywords

FAQs

Package last updated on 26 Jan 2015

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc