BLASjs (Basic Linear Algebra Subprograms)
This is a 100% Pure Javascript ( TypeScript ) re-write of the reference implementation Basic Linear Algebra SubPrograms
(BLAS) numerical library found here.
This is a full manual re-write, "emscripten" was not used.
summary
BLASjs contains all the functions (Complex, Real) of the reference implementation capable for 32 bit
and 64 bit
floating point arithmatic:
- :ok_hand: 100% code coverage
- 1005 tests
- Output off all tests equal to the BLAS FORTRAN reference implementation.
- Level 1: all vector-vector operations implemented.
- Level 2: all vector-matrix operations implemented.
- Level 3: all matrix-matrix operations implemented.
- Helper functions to ease the porting of FORTRAN BLAS usage to Javascript.
Node and Web
The resulting bundled blasjs
file is an agnostic UMD library, it can be used in a web client
as-well as in a server side node environment.
Installation
node
$ npm i blasjs
Usage:
const blas = require('blasjs');
import * as blas from 'blasjs';
web
The module directory contains a standalone bundle for use in html <script>
insertion. The library assigns window.BLAS
after loading.
<script src="https://unpkg.com/blasjs@latest/dist/lib/blasjs.min.js"></script>
<script>
const blas = window.BLAS;
const {
level3: { zsyrk, ztrmm, ztrsm }
} = blas;
</script>
Table of Contents
- BLASjs (Basic Linear Algebra Subprograms)
- summary
- Node and Web
- Table of Contents
- Language differences with FORTRAN/BLAS
- Helper functions
- A note on numeric precision
- Mimicking FORTRAN OUT Arguments
- Level 1 routines
- Level 2 Routines
- The hermitian rank 2 operation A ⟵ α·x·yᴴ + conjg( α )·y·xᴴ + A
- The symmetric rank 2 operation A ⟵ α·x·yᵀ + α·y·xᵀ + A
- The rank 1 operation A ⟵ α·x·yᴴ + A or A ⟵ α·x·yᵀ + A
- The hermitian rank 1 operation A ⟵ α·x·xᴴ + A
- The symmetric rank 1 operation A ⟵ α·x·xᵀ + A
- The matrix-vector operation, y ⟵ α·A·x + β·y, or y ⟵ α·Aᵀ·x + β·y or y ⟵ α·Aᴴ·x + β·y
- cgbmv/zgbmv, chbmv/zhbmv, ssbmv/dsbmv, sgbmv/dgbmv, stbmv/dtbmv, chemv/zhemv, sgemv/dgemv, cgemv/zgemv, chpmv/zhpmv, sspmv/dspmv, ssymv/dsymv
- The matrix-vector operation, x ⟵ A·x, or x ⟵ Aᵀ·x, or x ⟵ Aᴴ·x
- Solves a systems of equations A·x = b, or Aᵀ·x = b, or Aᴴ·x = b
- stbsv, dtbsv, ctbsv, ztbsv, stpsv, dtpsv, ctpsv, ztpsv, ctrsv, ztrsv, strs, dtrsv
- Level 3 Routines
Language differences with FORTRAN/BLAS
FORTRAN language can instrinsicly work with non-zero based multidimensional arrays and complex numbers. Below are some examples from FORTRAN that have no Javascript counterpart. The reference implementation of BLAS functions expect inputs of these types.
The FORTRAN complex scalar, complex array and complex "Matrix"
! double precision Complex number
COMPLEX*16 alpha
!
! double precision Complex array with offset 2
COMPLEX*16 vector(2,10)
!
! double precision complex MultiDimensional Array (matrix)
! rows 1 to 5 , columns 1 to 10
COMPLEX*16 A(1:5,1:10)
To work with the concept of non-zero based arrays and complex numbers in JS,
these FORTRAN constructs have equivalents in the blasjs
library.
The blasjs
helpers to create complex scalar, complex array and complex "Matrix" objects
const blas = require('blasjs');
const {
helper:{
complex,
fortranArrComplex32,
fortranArrComplex64,
fortranMatrixComplex32,
fortranMatrixComplex64,
}
} = blas;
These functions are extensively documented in the helper functions.
It is recommended you read this introductory part of the documentation first.
before anything else.
Helper functions
blasjs
uses "FORTRAN like" complex number 32/64 bit precision multidimensional complex/real data.
These helper functions have been designed to significantly ease the use of working with these
data types in JavaScript.
Types
Typescript types/interfaces to mimic FORTRAN native (complex) multidimensional arrays.
fpArray
Wraps JS types Float32Array and Float64Array into a single type.
Details (click to show)
decl:
export type fpArray = Float32Array | Float64Array;
FortranArr
Abstraction of a 1 dimensional single/double precision complex/real FORTRAN array.
Used by level 1 and level 2 blasjs
functions.
FortranArr
objects should be created by the fortranArrComplex32
and fortranArrComplex64
helper functions.
Details (click to show)
decl:
export declare type FortranArr = {
base: number;
r: fpArray;
i?: fpArray;
s: (index: number) => (re?: number, im?: number) => number | Complex;
toArr: () => Complex[] | number[];
};
fields:
base
: fortran by default has a 1-value based array. Mimiced by this property.r
: See decl fpArray. The Real part of complex array.i
: (optional). See decl fpArray. The Imaginary part of the complex array.s
: set, get values of the array. Uses FORTRAN style array indexes taking the value of base
into account.toArr
generates an JavaScript array from the r
and i
(optional) data.
Usage:
const blas = require('blasjs');
const { helper: { fortranArrComplex64 } } = blas;
const complexDataArr = [
{ re: 1.8, im: -0.2 },
{ re: 2.3, im: 0.6 }
];
const sp = fortranArrComplex64(complexArr)(2);
let re = sp.r[ 2 - sp.base ];
let im = sp.i[ 2 - sp.base ];
let v = sp.s(2)();
let old = sp.s(3)(0.11, -0.9);
sp.toArr();
Usage TypeScript:
import {
Complex,
fpArray,
FortranArr,
helper
} from 'blasjs';
const { fortranArrComplex64 } = helper;
const complexArr: Complex[] [
{ re: 1.8, im: -0.2 },
{ re: 2.3, im: 0.6 }
];
const sp: FortranArr = fortranArrComplex64(complexArr)(2);
let re = sp.r[ 2 - sp.base ];
let im = sp.i[ 2 - sp.base ];
let v = sp.s(2)();
let old = sp.s(3)(0.11, -0.9);
Type Complex
Typescript definition of a complex scalar.
Details (click to show)
decl:
declare type Complex = {
re: number;
im?: number;
}
Usage:
import { Complex } from 'blasjs';
const complexArr: Complex[] [
{ re: 1.8, im: -0.2 },
{ re: 2.3, im: 0.6 }
];
Matrix
The Matrix
object is the input of many level-2 and level-3 blasjs
functions.
Matrix
is created by the helpers fortranMatrixComplex32 and
fortranMatrixComplex64.
Matrix
encapsulates objects of Float32Array or Float64Array, the blasjs.
In this section the internals of Matrix
are explained in detail and how blasjs
accesses the data in the JS TypesArrays.
Float[32/64]Array Complex number storage for Matrix.
The Matrix
object has 2 properties r
and i
for respectively real and imaginary parts of matrix elements. These are the actual aforementioned JS TypedArrays. The imaginary property part is optional if it is not defined the Matrix represents solely an array of real elements.
Details (click to show)
declare type Matrix = {
.
r: Float64Array|Float32Array;
i: Float64Array|Float32Array;
.
}
Handling FORTRAN matrices (multidimensional Arrays).
Contrary to languages like JavaScript. FORTRAN defines arrays ( aka DIMENSIONS
in FORTRAN lingo ) as 1 based arrays by default.. This can be changed by specifying a different base in the declaration.
Details (click to show)
Some examples:
DOUBLE PRECISION A1(4) ! array indexes 1,2,3,4
DOUBLE PRECISION A2(-1:3) ! array indexes -1,0,2,3
DOUBLE PRECISION A3(0:3) ! Javascript like Array with 4 elements
This expands to 2-dimensional arrays (matrices).
! (default) first index loops from 1 to 4(inclusive), second index loops from 1 to 5(inclusive)
DOUBLE PRECISION A1(4,5)
! first index loops from -2 to 4(inclusive), second index loops from -5 to -7(inclusive)
DOUBLE PRECISION A2(-2:4,-5:-7)
The values of the FORTRAN array basis are preserved as rowBase
(first index) and colBase
(second index).
declare type Matrix = {
.
rowBase: number;
colBase: number;
.
}
JavaScript doesn't have the notion of typed 2-dimensional arrays
. The Matrix
objects handles this by mapping 2 dimensional arrays to single 1-dimensional array, by serializing data on a column-first basis.
For example the elements 2x2 Matrix will be mapped in a TypedArray as:
matrix A =
* *
| a11 a12 |
| a21 a22 |
* *
At = [a11,a21, a12, a22]
In case of complex values for A, the real part will be stored in r
and the imaginary part in i
each in the same column-first manner.
Performance
Direct access to TypedArrays within the Matrix
object is the preferable way to get/set matrix data.
Since BLAS (and therefore blasjs
) functions access matrices mostly to iterate over matrix row's first . It was decided to story 2 dimensional an a column-first basis.
To help with the calculation of finding/setting an element A(i,j) in Matrix
the following helper member functions have been added to Matrix
.
Details (click to show)
declare type Matrix = {
.
rowBase: number;
colBase: number;
nrCols: number;
nrRows: number;
.
colOfEx(number): number;
coord(col): (row) => number;
setCol(col: number, rowStart: number, rowEnd: number, value: number): void;
.
}
Explanation:
nrRows
: The number of rows in the matrix.nrCols
: The number of columns in the matrix.colofEx
: Calculates the physical location of a column offset
within the TypedArray
. Taking int account the column base colBase
and row base colBase
. The index of A(i,j) = (j - colBase)*nrRows + i - rowBase
.coord
: Curried, emulates non-zero based FORTRAN index values for 2 dimensional Arrays. The index that is iterated over the least (usually) is used as the first to create the curried function.setCol
: Uses underlying TypedArray
, fill
method to set multiple column elements to a single value.
See Example
Creating new transformed Matrix instances from existing ones
One can create/transform new Matrix instances form existing onces. A copy of all relevant data is made into the new Matrix
instance.
Matrix.prototype.slice
Slices a rectangular piece of data out of an matrix into a new Matrix
instance. All arguments are FORTRAN-style non-zero based indexes.
Details (click to show)
declare type Matrix = {
.
slice(rowStart: number, rowEnd: number, colStart: number, colEnd: number): Matrix;
.
}
rowStart
: The row in the matrix to begin slicing.rowEnd
: The last row to include in the slice.colStart
: The column in the matrix to begin slicing.colEnd
: The last column to include in the slice.
See Example
Matrix.prototype.setLower
Returns a new Matrix where everything below the matrix diagonal is set to a value
.
Sets the real (and imaginary part, if it exist) to said value.
Details (click to show)
declare type Matrix = {
.
setLower(value = 0): Matrix;
.
}
See Example
Matrix.prototype.setUpper
Returns a new Matrix where everything below the matrix diagonal is set to a value
.
Sets the real (and imaginary part, if it exist) to said value.
Details (click to show)
declare type Matrix = {
.
setUpper(value = 0): Matrix;
.
}
See Example
Matrix.prototype.upperBand
Returns a new Matrix
object where the k
super-diagonals are retained into the new copy.
The efficient storage format of BLAS
band matrices is used.
Details (click to show)
declare type Matrix = {
.
upperBand(k = nrRows - 1): Matrix;
.
}
The default value for k
is the the maximum size possible for the number of super-diagonals: ( nrRows-1
)
See Example
Matrix.prototype.lowerBand
Returns a new Matrix
object where the k
sub-diagonals are retained into the new copy.
The efficient storage format of BLAS
band matrices is used.
Details (click to show)
declare type Matrix = {
.
lowerBand(k = nrRows-1): Matrix;
.
}
The default value for k
is the the maximum size possible for the number of sub-diagonals: ( nrRows-1
)
See Example
Matrix.prototype.real
Returns a new Matrix
object where with only real elements (omits the imaginary part during copy).
Details (click to show)
declare type Matrix = {
.
real(): Matrix;
.
}
See Example
Matrix.prototype.imaginary
Returns a new Matrix
object where with only imaginary part of the element (omits the real part during copy).
If there were now imaginary elements
Details (click to show)
declare type Matrix = {
.
imaginary(): Matrix;
.
}
See Example
Packed Matrices
BLAS ( and therefore blasjs
) can work with upper/lower-matrices and band-matrices in the most compacted form, aka packed matrices
.
With packed matrices
there are no unused elements in the matrix (no zeros). Packed matrices are instances of FortranArr. BLAS reference implementation in FORTRAN uses 1 dimensional arrays as an analog.
Matrix.prototype.packedUpper
Creates a packed array from a normal/upper Matrix only referencing the diagonal and super-diagonals.
Details (click to show)
declare type Matrix = {
.
packedUpper(k = nrRows-1): FortranArr;
.
}
See Example
The default value for k
is the the maximum size possible for the number of super-diagonals: ( nrRows-1
)
Matrix.prototype.packedLower
Creates a packed array from a normal/upper Matrix only referencing the diagonal and sub-diagonals.
Details (click to show)
declare type Matrix = {
.
packedLower(k = nrRows-1): FortranArr;
.
}
See Example
The default value for k
is the the maximum size possible for the number of sub-diagonals: ( nrRows-1
)
declare type Matrix = {
.
packedLower(k = nrRows - 1): FortranArr;
.
}
The default value for k
is the the maximum size possible for the number of sub-diagonals: ( nrRows - 1
)
Convert Matrix object to a JS array
The Matrix
object can convert the underlying TypedArray(s) to real JavaScript arrays.
Matrix.prototype.toArr
Creates a normal JS Array with element of type 'number' or of type Complex
Details (click to show)
declare type Matrix = {
.
toArr(): number[]|Complex[];
.
}
See Example
Summary: Full type declaration of Matrix
Putting it all together, here is the full type declaration of Matrix
:
declare type Matrix = {
rowBase: number;
colBase: number;
nrCols: number;
nrRows: number;
r: fpArray;
i?: fpArray;
colOfEx(column: number): void;
coord(col: number): (row: number): void;
setCol(col: number, rowStart: number, rowEnd: number, value: number): void;
slice(rowStart: number, rowEnd: number, colStart: number, colEnd: number): Matrix;
setLower(value?: number): Matrix;
setUpper(value?: number): Matrix;
upperBand(k: number): Matrix;
lowerBand(k: number): Matrix;
real(): Matrix;
imaginary(): Matrix;
packedUpper(value?: number): FortranArr;
packedLower(value?: number): FortranArr;
toArr(): Complex[] | number[];
}
Matrix Examples
Common usage of the Matrix type.
Details (click to show)
const blas = require('../blasjs');
const { fortranMatrixComplex64 } = blas.helper;
const a11 = { re: .2, im: -.11 };
const a21 = { re: .1, im: -.2 };
const a31 = { re: .3, im: .9 };
const a12 = { re: .4, im: .5 };
const a22 = { re: .9, im: -.34 };
const a32 = { re: -.2, im: .45 };
const a13 = { re: -.1, im: .89 };
const a23 = { re: .43, im: .23 };
const a33 = { re: .23, im: .56 };
const A = fortranMatrixComplex64([
a11, a21, a31, a12, a22, a32, a13, a23, a33
])(3, 3);
const columnj = A.colOfEx(3);
A.r[A.coord(1, 2)] === a12.re
A.slice(1, 2, 2, 3);
A.setLower(0);
A.setUpper(0);
A.upperBand(1);
A.lowerBand(1);
const Areal = A.real();
const Aimag = A.imaginary();
A.packedUpper(1)
A.packedLower(1)
A.toArr();
General Helpers
Collection of helper function to manipulate common JS array and object types in a functional way.
arrayrify
Creates a new function from an existing one, to add the ability to accept vectorized input.
Details (click to show)
Example:
const blas = require('blasjs');
const { helper: { arrayrify } } = blas;
const PI = Math.PI;
const sin = arrayrify(Math.sin)
sin([PI/3, PI/4, PI/6]);
sin(PI/3);
sin( [ PI/3 ] );
sin([])
sin()
complex
Mimics the GNU Fortran extension complex.
Creates a JS object that represents a complex scalar number.
Used by blasjs
for scalar input arguments.
Details (click to show)
Example:
const blas = require('blasjs');
const { helper: { complex } } = blas;
const c1 = complex(0.1,0.3);
const c2 = complex();
const c3 = complex(0.5);
each
Curried functional analog to Array.prototype.forEach
, but takes arbitrary input.
Details (click to show)
Example:
const blas = require('blasjs');
const { helper: { each } } = blas;
const curry1 = each( { hello: 'world', ts: new Date() })
curry1( (val, key) => console.log(`${val} ':' ${key}`)))
each( ['a','b','c','d'])( (v,idx) =>console.log(v,idx, typeof idx))
each()(console.log)
each(null)(console.log)
each([])(console.log)
map
Curried functional analog to Array.prototype.map
, but takes arbitrary input.
:warning: Forces the output to be a an array regardless of the input.
Example (click to show)
Example:
const blas = require('blasjs');
const { helper: { map } } = blas;
map([1,2,3])(v=>v*2);
map({ a:'A', b:'B' })( (val, key) => key+'='+val);
map(null)( v => '/'+v);
map()( v => '/'+v);
map()()
muxCmplx
Creates an array of complex numbers from arrayed input.
The result is always an array type.
Example (click to show)
Example:
const blas = require('blasjs');
const { helper: { muxCmplx } } = blas;
const reals = [ 0.1, -0.2, 0.3, 0.45 ];
const imaginary = [ 0.1, -0.2, 0.3, 0.45 ];
muxCmplx(reals, imaginary)
muxCmplx([1,2], imaginary)
muxCmplx(reals)
muxCmplx()
muxCmplx(1)
muxCmplx(1,-2)
numberPrecision
Enforces significant figure of a number, or on the properties of a JS object (deep search) with numeric values.
Example (click to show)
Example:
const blas = require('blasjs');
const { helper: { numberPrecision } } = blas;
const _4 = numberPrecision(4);
_4(0.123456789);
_4(123456789)
_4( { car: 'Mazda' , aux: { priceUSD: 24.3253E+3, maxWarpSpeed:3.42111E-4 } } );
_4([0.123456, 0.78901234]);
Vector Constructors
These constructors create the FortranArr
object for working with single/double precision complex/real Arrays.
fortranArrComplex32
Constructs a FortranArr object using Float32Array as the underlying array(s) (plural in the case of complex) elements.
Details (click to show)
declare function fortranArrComplex32(
...rest: (number | number[] | Complex | Complex[])[]
): (offset = 1) => FortranArr;
Argument list
:
rest
: takes as input.
- A single numeric value.
- A single
Complex
object. - An array of
Complex
objects. - An array of number values.
offset
: the Fortran dimension offset (defaults to 1)
See Examples
fortranArrComplex64
Constructs a FortranArr object using Float64Array as the underlying array(s) (plural in the case of complex) elements.
Details (click to show)
declare function fortranArrComplex64(
...rest: (number | number[] | Complex | Complex[])[]
): (offset = 1) => FortranArr;
Argument list
:
rest
: takes as input.
- A single numeric value.
- A single
Complex
object. - An array of
Complex
objects. - An array of number values.
offset
: the Fortran dimension offset (defaults to 1)
Vector creation examples
Example (click to show)
const blas = require('blasjs');
const { fortranArrComplex64, fortranArrComplex32 } = blas.helper;
const complexDataArr = [
{ re: 1.8, im: -0.2 },
{ re: 2.3, im: 0.6 }
];
const realData = [ 0.1, 2, 0.34, .56 ];
const sp1 = fortranArrComplex32(complexDataArr)();
const sp2 = fortranArrComplex32(realData)();
const sp3 = fortranArrComplex32({re:0.2, im:-0.3})();
const sp4 = fortranArrComplex32(123)(4);
const sdp1 = fortranArrComplex64(complexDataArr)();
const sdp2 = fortranArrComplex64(realData)();
const sp3 = fortranArrComplex64({re:0.2, im:-0.3})();
const sp4 = fortranArrComplex64(123)(4);
Matrix Constructors
These constructors create the Matrix
object for working with single/double precision complex/real Matrices.
fortranMatrixComplex32
Constructs a Matrix object using Float32Array as the underlying array(s) (plural in the case of complex) elements.
Details (click to show)
declare function fortranMatrixComplex32(...rest: (Complex | Complex[])[]):
(nrRows: number, nrCols: number, rowBase?: number, colBase?: number) => Matrix
Argument list
:
rest
: takes as input.
- A single numeric value.
- A single
Complex
object. - An array of
Complex
objects. - An array of number values.
nrRows
: where nrRows is equal to n
in the matrix A(m,n).nrCols
: where nrCols is equal to m
in the matrix A(m,n).rowBase
: FORTRAN offset for the first dimension (rows) as explained in Language differences.rowBase
: FORTRAN offset for the second dimension (columns) as explained in Language differences.
See Examples
fortranMatrixComplex64
Constructs a Matrix object using Float64Array as the underlying array(s) (plural in the case of complex) elements.
Details (click to show)
declare function fortranMatrixComplex64(...rest: (Complex | Complex[])[]):
(nrRows: number, nrCols: number, rowBase?: number, colBase?: number) => Matrix
Argument list
:
rest
: takes as input.
- A single numeric value.
- A single
Complex
object. - An array of
Complex
objects. - An array of number values.
nrRows
: where rnRows is equal to n
in the matrix A(m,n).nrCols
: where nrCols is equal to m
in the matrix A(m,n).rowBase
: FORTRAN offset for the first dimension (rows) as explained in Language differences.rowBase
: FORTRAN offset for the second dimension (columns) as explained in Language differences.
Matrix Creation Examples
Details (click to show)
const blas = require('blasjs');
const {
fortranMatrixComplex64,
fortranMatrixComplex32
} = blas.helper;
const a11 = { re: .2, im: -.11 };
const a21 = { re: .1, im: -.2 };
const a31 = { re: .3, im: .9 };
const a12 = { re: .4, im: .5 };
const a22 = { re: .9, im: -.34 };
const a32 = { re: -.2, im: .45 };
const a13 = { re: -.1, im: .89 };
const a23 = { re: .43, im: .23 };
const a33 = { re: .23, im: .56 };
const {
fortranMatrixComplex64,
fortranMatrixComplex32
} = blas.helper;
const a11 = { re: .2, im: -.11 };
const a21 = { re: .1, im: -.2 };
const a31 = { re: .3, im: .9 };
const a12 = { re: .4, im: .5 };
const a22 = { re: .9, im: -.34 };
const a32 = { re: -.2, im: .45 };
const a13 = { re: -.1, im: .89 };
const a23 = { re: .43, im: .23 };
const a33 = { re: .23, im: .56 };
const A32 = fortranMatrixComplex64([
a11, a21, a31, a12, a22, a32, a13, a23, a33
]);
const m1 = A32(3, 3);
const m2 = A32(3, 3, -2, -3);
const m3 = A32(3, 3, 1, 1)
const A64 = fortranMatrixComplex64([
a11, a21, a31, a12, a22, a32, a13, a23, a33
]);
const m1 = A64(3, 3);
const m2 = A64(3, 3, -2, -3);
const m3 = A64(3, 3, 1, 1);
A note on numeric precision
In blasjs
, contrary to the FORTRAN reference implementation, the numeric precision of a routine, is not determined by its name but by how its arguments like FortranArr
and Matrix
are constructed before used as arguments in blasjs
routines. The original FORTRAN names are kept for backwards compatibility to ease the porting of FORTRAN code toward blasjs
.
Mimicking FORTRAN OUT Arguments
In FORTRAN a subroutine can have IN, OUT and IN/OUT scalar arguments. In JavaScript only arguments of type object
are passed by reference. To mimic OUT and IN/OUT FORTRAN arguments, scalars are wrapped in a JS object. See Construct a Givens plane rotation for an example.
Level 1 routines
Routines categorized as Level 1 perform scalar-vector and vector-vector operations.
Euclidean norm: √(xᴴ·x) or √(xᵀ·x)
Calculates the norm of a (complex) vector.
xᴴ is the conjugate of x
xᵀ is the transpose of x
scrnm2/dznrm2, snrm2/dnrm2
Details (click to show)
decl
function scnrm2(n: number, x: FortranArr, incx: number): number;
function dznrm2(n: number, x: FortranArr, incx: number): number;
function snrm2(n: number, x: FortranArr, incx: number): number;
function dnrm2(n: number, x: FortranArr, incx: number): number;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { scnrm2, dznrm2, snrm2, dnrm2 } = BLAS.level1;
Construct a Givens plane rotation
See wiki.
|c -s| × |a| = |r |
|s c| |b| |0 |
r = √( a² + b² )
srotg/drotg, crotg/zrotg
Details (click to show)
decl
function srotg(p: { sa: number, sb: number, c: number, s: number } ): void;
function drotg(p: { sa: number, sb: number, c: number, s: number } ): void;
function crotg(ca: Complex, cb: Complex, c: { val: number }, s: Complex ): void
function zrotg(ca: Complex, cb: Complex, c: { val: number }, s: Complex ): void
Usage:
const BLAS = require('blasjs');
const { srotg, drotg, crotg, zrotg } = BLAS.level1;
Construct the modified Givens rotation matrix H
Construct the modified Givens transformation matrix H which zeros
the second component of the 2 vector ( sx1*√(sd1) , sy1* √(sd2) )
See researchgate.net.
srotmg/drotmg
Details (click to show)
decl
function srotmg(p: { sd1: number, sd2: number, sx1: number, sy1: number, sparam: FortranArr }): void;
function drotmg(p: { sd1: number, sd2: number, sx1: number, sy1: number, sparam: FortranArr }): void;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { srotmg, drotmg } = BLAS.level1;
Apply the modified Givens Transformation
See wiki.
srotm/drotm
Details (click to show)
decl
function srotm(n: number, sy: FortranArr, incx: number, sy: FortranArr, incy: number, sparam: FortranArr)): void;
function drotm(n: number, sy: FortranArr, incx: number, sy: FortranArr, incy: number, sparam: FortranArr)): void;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { srotm, drotm } = BLAS.level1;
Applies a plane rotation
See researchgate.net.
srot/drot, csrot/zdrot
Details (click to show)
decl
function srot(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number, c: number, s: number): void;
function drot(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number, c: number, s: number): void;
function csrot: (n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number, c: number, s: number): void;
function zdrot: (n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number, c: number, s: number): void;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { srot, drot, csrot, zdrot } = BLAS.level1;
Scale a vector by a constant
x ⟵ α·x
sscal/dscal, cscal/zscal, csscal/zdscal
sscal
: Alias for dscal
. See blas ref.dscal
: by a REAL constant. See blas ref.cscal
: Alias for zscal
. See blas ref.zscal
: Scales a COMPLEX vector with a COMPLEX constant. See blas ref.csscal
: Alias for zdscal
. blas ref.zdscal
: Scales a COMPLEX vector with a REAL constant. See blas ref.
Details (click to show)
decl
function sscal(n: number, sa: number, sx: FortranArr, incx: number): void;
function dscal(n: number, sa: number, sx: FortranArr, incx: number): void;
function cscal(n: number, ca: Complex,cx: FortranArr, incx: number): void;
function zscal(n: number, ca: Complex,cx: FortranArr, incx: number): void;
function csscal(n: number, sa: number, cx: FortranArr, incx: number): void;
function zdscal(n: number, sa: number, cx: FortranArr, incx: number): void;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { sscal, dscal, cscal, zscal, csscal, zdscal } = BLAS.level1;
Takes the sum of the absolute values of the components of vector
s ⟵ ∑ ∥ Re( x ) ∥ + ∥ Im( x ) ∥
sasum/dasum, scasum/dzasum
Details (click to show)
decl
function sasum(n: number, sx: FortranArr, incx: number): number;
function dasum(n: number, sx: FortranArr, incx: number): number;
function scasum(n: number, cx: FortranArr, incx: number): number;
function dzasum(n: number, cx: FortranArr, incx: number): number;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { sasum, dasum, scasum, dzasum } = BLAS.level1;
Interchanges 2 vectors
Swap 2 vectors.
sswap/dswap, cswap/zswap
Details (click to show)
decl
function sswap(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number ): void;
function dswap(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number ): void;
function cswap(n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number ): void;
function zswap(n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number ): void;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { sswap, dswap, cswap, zswap } = BLAS.level1;
Dot product of two complex vectors
xᵀ·y or xᴴ·y
cdotu/cdotc, zdotu/zdotc
Details (click to show)
decl
function cdotu(n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number): Complex;
function cdotc(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number ): Complex;
function zdotu(n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number ): Complex;
function zdotc(n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number ): Complex;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { cdotu, cdotc, zdotu, zdotc } = BLAS.level1;
Dot product of two non complex vectors
xᵀ·y
sdot/ddot, sdsdot/dsdot
Details (click to show)
decl
function sdot(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): number;
function ddot(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): number;
function sdsdot(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): number;
function dsdot(n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): number;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { sdot, ddot, sdsdot, dsdot } = BLAS.level1;
Finds the index of the first element having maximum absolut value.
Find k for wich: ∥ xₖ ∥ > ∥ xₜ ∥ for all t ∈ [1, n].
isamax/idamax, icamax/izamax
Details (click to show)
decl
function isamax: (n: number, sx: FortranArr, incx: number): number;
function idamax: (n: number, sx: FortranArr, incx: number): number;
function icamax: (n: number, sx: FortranArr, incx: number): number;
function izamax: (n: number, sx: FortranArr, incx: number): number;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { isamax, idamax, icamax, izamax } = BLAS.level1;
Copy a vector x to a vector y
scopy/dcopy, ccopy/zcopy
Details (click to show)
decl
function scopy (n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): void;
function dcopy (n: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): void;
function ccopy (n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number): void;
function zcopy (n: number, cx: FortranArr, incx: number, cy: FortranArr, incy: number): void;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { scopy, dcopy, ccopy, zcopy } = BLAS.level1;
Constant times a vector plus a vector
y ⟵ y + a·x where y, a and x can be complex or a real number.
saxpy/daxpy, caxpy/zaxpy
Details (click to show)
decl
function saxpy(n: number, sa: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): void;
function daxpy(n: number, sa: number, sx: FortranArr, incx: number, sy: FortranArr, incy: number): void;
function caxpy(n: number, ca: Complex, cx: FortranArr, incx: number, cy: FortranArr, incy: number): void;
function zaxpy(n: number, ca: Complex, cx: FortranArr, incx: number, cy: FortranArr, incy: number): void;
See: how to create fortranArr.
Usage:
const BLAS = require('blasjs');
const { saxpy, daxpy, caxpy, zaxpy } = BLAS.level1;
Level 2 Routines
Routines categorized as Level 2 perform Matrix-vector operations.
The hermitian rank 2 operation A ⟵ α·x·yᴴ + conjg( α )·y·xᴴ + A
( ᴴ means conjugate transpose )
For the routines chpr2
and zhpr2
the matrix A is in packed form ( a fortranArr ).
For the routines cher2
and zher2
the matrix symmetry is exploited (use only upper/lower triangular part of the matrix).
cher2/zher2, chpr2|zhpr2
Details (click to show)
decl
function cher2|zher2(
uplo: "u" | "l",
n: number,
alpha: Complex,
x: FortranArr,
incx: number,
y: FortranArr,
incy: number,
a: Matrix,
lda: number): void;
function chpr2|zhpr2(
uplo: "u" | "l",
n: number,
alpha: Complex,
x: FortranArr,
incx: number,
y: FortranArr,
incy: number,
ap: FortranArr): void;
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { cher2, zher2, chpr, zhpr } = BLAS.level2;
The symmetric rank 2 operation A ⟵ α·x·yᵀ + α·y·xᵀ + A
For the routines sspr2
and dspr2
the matrix A is in packed form ( a fortranArr ).
For the routines ssyr2
and dsyr2
the matrix symmetry is exploited (use only upper/lower triangular part of the matrix).
sspr2/dspr2, ssyr2/dsyr2
Details (click to show)
decl
function sspr2|dspr2(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
y: FortranArr,
incy: number,
ap: FortranArr):void;
function ssyr2|dsyr2(
uplo: 'u' | 'l',
n: number,
alpha: number,
x: FortranArr,
incx: number,
y: FortranArr,
incy: number,
A: Matrix,
lda: number): void;
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { sspr2, dspr2, ssyr2, dsyr2 } = BLAS.level2;
The rank 1 operation A ⟵ α·x·yᴴ + A or A ⟵ α·x·yᵀ + A
( ᴴ means conjugate transpose )
The subroutines sger
and dger
perform A ⟵ α·x·yᵀ + A. Where α is a REAL scalar,
A, x, y are single or double precision REAL Matrix and vectors.
The subroutines cgerc
and zgerc
perform A ⟵ α·x·yᴴ + A. Where α is a COMPLEX scalar,
A, x, y are single or double precision COMPLEX Matrix and vectors.
The subroutines cgeru
and zgeru
perform A ⟵ α·x·yᵀ + A. Where α is a COMPLEX scalar,
A, x, y are single or double precision COMPLEX Matrix and vectors.
sger/dger, cgerc/zgerc, cgeru/zgeru
Details (click to show)
decl
function sger|dger(
m: number,
n: number,
alpha: number,
x: FortranArr,
incx: number,
y: FortranArr,
incy: number,
a: Matrix,
lda: number):void;
function cgerc|zgerc(
m: number,
n: number,
alpha: Complex,
x: FortranArr,
incx: number,
y: FortranArr,
incy: number,
a: Matrix,
lda: number): void;
function cgeru|zgeru(
m: number,
n: number,
alpha: Complex,
x: FortranArr,
incx: number,
y: FortranArr,
incy: number,
a: Matrix,
lda: number): void;
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { sger, dger, cgerc, zgerc, cgeru, zgeru } = BLAS.level2;
The hermitian rank 1 operation A ⟵ α·x·xᴴ + A
( ᴴ means conjugate transpose )
For the routines cher
and zher
α is a REAL scalar, the matrix symmetry of A is exploited (use only upper/lower triangular part of the matrix).
For the routines chpr
and zhpr
α is a REAL scalar, the matrix A is in packed form ( a fortranArr ).
Naming
Details (click to show)
function cher(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
a: Matrix,
lda: number): void;
function zher(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
a: Matrix,
lda: number): void;
function chpr(u
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
ap: FortranArr): void;
function zhpr(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
ap: FortranArr): void;
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { cher, zher, chpr, zhpr } = BLAS.level2;
The symmetric rank 1 operation A ⟵ α·x·xᵀ + A
For the routines ssyr
and dsyr
α is a REAL scalar, the symmetry of the REAL matrix A is exploited (use only upper/lower triangular part of the matrix).
For the routines sspr
and dspr
α is a REAL scalar, the REAL matrix A is in packed form ( a fortranArr ).
sspr/dspr, ssyr/dsyr
Details (click to show)
decl
function sspr(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
ap: FortranArr): void;
function dspr(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
ap: FortranArr): void;
function ssyr(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
a: Matrix,
lda: number): void;
function dsyr(
uplo: "u" | "l",
n: number,
alpha: number,
x: FortranArr,
incx: number,
a: Matrix,
lda: number): void;
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { sspr, dspr, ssyr, dsyr } = BLAS.level2;
The matrix-vector operation, y ⟵ α·A·x + β·y, or y ⟵ α·Aᵀ·x + β·y or y ⟵ α·Aᴴ·x + β·y
Aᴴ is the complex conjugate transpose of matrix A
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
cgbmv/zgbmv, chbmv/zhbmv, ssbmv/dsbmv, sgbmv/dgbmv, stbmv/dtbmv, chemv/zhemv, sgemv/dgemv, cgemv/zgemv, chpmv/zhpmv, sspmv/dspmv, ssymv/dsymv
subroutine | operation | complex | real | type of matrix A | blas ref link |
---|
cgbmv/zgbmv | y ⟵ α·A·x + β·y , y ⟵ α·Aᵀ·x + β·y, y ⟵ α·Aᴴ·x + β·y | α, A, β | none | upper/lower band | cgbmv/zgbmv |
chbmv/zhbmv | y ⟵ α·A·x + β·y | α, A, β | none | upper/lower band | chbmv/zhbmv |
ssbmv/dsbmv | y ⟵ α·A·x + β·y | none | α, A, β | upper/lower band | chbmv/zhbmv |
sgbmv/dgbmv | y ⟵ α·A·x + β·y , y ⟵ α·Aᵀ·x + β·y | none | α, A, β | upper/lower band | sgbmv/dgbmv |
stbmv/dtbmv | y ⟵ α·A·x + β·y | none | α, A, β | upper/lower band | stbmv/dtbmv |
chemv/zhemv | y ⟵ α·A·x + β·y | α, A, β | none | triangular upper/lower | chemv/zhemv |
sgemv/dgemv | y ⟵ α·A·x + β·y , y ⟵ α·Aᵀ·x + β·y | none | α, A, β | full m x n | sgemv/dgemv |
cgemv/zgemv | y ⟵ α·A·x + β·y , y ⟵ α·Aᵀ·x + β·y, y ⟵ α·Aᴴ·x + β·y | α, A, β | none | full m x n | cgemv/zgemv |
chpmv/zhpmv | y ⟵ α·A·x + β·y | α, A, β | none | packed upper/lower triangular | cgemv/zgemv |
sspmv/dspmv | y ⟵ α·A·x + β·y | none | α, A, β | packed upper/lower triangular | sspmv/dspmv |
ssymv/dsymv | y ⟵ α·A·x + β·y | α, A, β | none | upper/lower triangular | ssymv/dsymv |
Details (click to show)
decl
function cgbmv|zgbmv(
trans: 'n' | 't' | 'c',
m: number,
n: number,
kl: number,
ku: number,
alpha: Complex,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: Complex,
y: FortranArr,
incy: number
): void;
function chbmv|zhbmv(
uplo: 'u' | 'l',
n: number,
k: number,
alpha: Complex,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: Complex,
y: FortranArr,
incy: number
): void;
export function ssbmv|dsbmv(
uplo: string,
n: number,
k: number,
alpha: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: number,
y: FortranArr,
incy: number
): void;
function sgbmv|dgbmv(
trans: string,
m: number,
n: number,
kl: number,
ku: number,
alpha: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: number,
y: FortranArr,
incy: number
): void;
function stbmv | dtbmv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
k: number,
A: Matrix,
lda: number,
x: FortranArr,
incx: number
): void;
function chemv|zhemv(
uplo: 'u' | 'l',
n: number,
alpha: Complex,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: Complex,
y: FortranArr,
incy: number
): void
function sgemv|dgemv(
trans: string,
m: number,
n: number,
alpha: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: number,
y: FortranArr,
incy: number
): void;
function cgemv|zgemv(
trans: 'n' | 't' | 'c',
m: number,
n: number,
alpha: Complex,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: Complex,
y: FortranArr,
incy: number
): void;
function chpmv|zhpmv(
uplo: 'u' | 'l',
n: number,
alpha: Complex,
ap: FortranArr,
x: FortranArr,
incx: number,
beta: Complex,
y: FortranArr,
incy: number
): void;
function sspmv|dspmv(
uplo: 'u' | 'l',
n: number,
alpha: number,
ap: FortranArr,
x: FortranArr,
incx: number,
beta: number,
y: FortranArr,
incy: number
): void
function ssymv|dsymv(
uplo: 'u' | 'l',
n: number,
alpha: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number,
beta: number,
y: FortranArr,
incy: number
): void
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const {
cgbmv, chbmv, dgbmv, dsbmv, sgbmv, ssbmv, zgbmv, zhbmv,
cgemv, chemv, dgemv, sgemv, zgemv, zhemv,
chpmv, dspmv, sspmv, zhpmv, dsymv, ssymv } = BLAS.level2;
The matrix-vector operation, x ⟵ A·x, or x ⟵ Aᵀ·x, or x ⟵ Aᴴ·x
Aᴴ is the complex conjugate transpose of matrix A
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
stbmv, dtbmv, ctbmv, dtpmv, ctpmv, ztpmv, strmv, dtrmv, ctrmv, ztrmv
subroutine | operation | complex | real | type of matrix A | blas ref link |
---|
stbmv/dtbmv | x ⟵ A·x, or x ⟵ Aᵀ·x | none | A, x | upper/lower band | stbmv/dtbmv |
ctbmv/ztbmv | x ⟵ A·x, or x ⟵ Aᵀ·x, or x ⟵ Aᴴ·x | A, x | none | upper/lower band | ctbmv/ztbmv |
stpmv/dtpmv | x ⟵ A·x, or x ⟵ Aᵀ·x | none | A, x | upper/lower triangular packed | stpmv/dtpmv |
ctpmv/ztpmv | x ⟵ A·x, or x ⟵ Aᵀ·x, or x ⟵ Aᴴ·x | A, x | none | upper/lower triangular packed | ctpmv/ztpmv |
strmv/dtrmv | x ⟵ A·x, or x ⟵ Aᵀ·x | none | A, x | upper/lower triangular | strmv/dtrmv |
ctrmv/ztrmv | x ⟵ A·x, or x ⟵ Aᵀ·x, or x ⟵ Aᴴ·x | A, x | none | upper/lower triangular | ctrmv/ztrmv |
Details (click to show)
decl
function stbmv|dtbmv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
k: number,
A: Matrix,
lda: number,
x: FortranArr,
incx: number
): void;
function ctbmv|ztbmv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
k: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number
): void;
function stpmv|zhbmv (
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
ap: FortranArr,
x: FortranArr,
incx: number
): void;
function ctpmv|ztpmv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
ap: FortranArr,
x: FortranArr,
incx: number
): void;
function strmv|dtrmv(
uplo: 'u' | 'l',
trans: 't' | 'c' | 'n',
diag: 'u' | 'n',
n: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number
): void;
function ctrmv|ztrmv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number
): void;
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const {
stbmv, dtbmv, ctbmv, ztbmv, stpmv, dtpmv, ctpmv, ztpmv, strmv
dtrmv, ctrmv, ztrmv } = BLAS.level2;
Solves a systems of equations A·x = b, or Aᵀ·x = b, or Aᴴ·x = b
Aᴴ is the complex conjugate transpose of matrix A
stbsv, dtbsv, ctbsv, ztbsv, stpsv, dtpsv, ctpsv, ztpsv, ctrsv, ztrsv, strs, dtrsv
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | complex | real | type of matrix A | blas ref link |
---|
stbsv/dtbsv | A·x = b, or Aᵀ·x = b | none | A, b, x | upper/lower band | stbsv/dtbsv |
ctbsv/ztbsv | A·x = b, or Aᵀ·x = b, or Aᴴ·x = b | A, b, x | none | upper/lower band | ctbsv/ztbsv |
stpsv/dtpsv | A·x = b, or Aᵀ·x = b | none | A, b, x | packed upper/lower triangular | stpsv/dtpsv |
ctpsv/ztpsv | A·x = b, or Aᵀ·x = b, or Aᴴ·x = b | A, b, x | none | packed upper/lower triangular | ctpsv/ztpsv |
ctrsv/ztrsv | A·x = b, or Aᵀ·x = b, or Aᴴ·x = b | A, b, x | none | upper/lower triangular | ctrsv/ztrsv |
strsv/dtrsv | A·x = b, or Aᵀ·x = b | none | A, b, x | upper/lower triangular | strsv/dtrsv |
Details (click to show)
decl
function stbsv|dtbsv(
uplo: 'u' | 'l',
trans: 't' | 'n' | 'c',
diag: 'u' | 'n',
n: number,
k: number,
A: Matrix,
lda: number,
x: FortranArr,
incx: number
): void;
function ctbsv|ztbsv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
k: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number
): void;
function stpsv|dtpsv(
uplo: 'u' | 'l',
trans: 't' | 'n' | 'c',
diag: 'u' | 'n',
n: number,
ap: FortranArr,
x: FortranArr,
incx: number
): void;
function ctpsv|ztpsv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
ap: FortranArr,
x: FortranArr,
incx: number
): void
function ctrsv|ztrsv(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
diag: 'u' | 'n',
n: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number
): void
function strsv|dtrsv(
uplo: 'u' | 'l',
trans: 't' | 'c' | 'n',
diag: 'u' | 'n',
n: number,
a: Matrix,
lda: number,
x: FortranArr,
incx: number
): void
See: how to create fortranArr.
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const {
stbsv, dtbsv, ctbsv, ztbsv, stpsv,
dtpsv, ctpsv, ztpsv, ctrsv, ztrsv,
strsv, dtrsv } = BLAS.level2;
Level 3 Routines
Routines categorized as Level 2 perform Matrix-vector operations.
Hermitian rank 2k: C ⟵ α·A·Bᴴ + con( α )·B·Aᴴ + β·C or C ⟵ α·Aᴴ·B + con( α )·Bᴴ·A + β·C
con( α ) is the conjugate of α.
Aᴴ is the conjugate transpose of Matrix A.
Bᴴ isthe conjugate transpose of Matrix B.
cher2k, zher2k
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | complex | real | type of matrix C | blas ref link |
---|
cher2k/zher2k | C ⟵ α·A·Bᴴ + con( α )·B·Aᴴ + β·C or C ⟵ α·Aᴴ·B + con( α )·Bᴴ·A + β·C | α, A, B, C | β | upper/lower triangular | cher2k/zher2k |
Details (click to show)
decl
function cher2k | zher2k(
uplo: 'u' | 'l',
trans: 'n' | 'c',
n: number,
k: number,
alpha: Complex,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: number,
c: Matrix,
ldc: number
): void;
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { cher2k, zher2k } = BLAS.level3;
Symmetric rank 2k operations C ⟵ α·A·Bᵀ + α·B·Aᵀ + β·C, or C ⟵ α·Aᵀ·B + α·Bᵀ·A + β·C
ssyr2k, dsyr2k, csyr2k, zsyr2k
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | complex | real | type of matrix C | blas ref link |
---|
ssyr2k/dsyr2k | C ⟵ α·A·Bᵀ + α·B·Aᵀ + β·C, or C ⟵ α·Aᵀ·B + α·Bᵀ·A + β·C | none | α, A, β, B, C | upper/lower triangular | cher2k/zher2k |
csyr2k/zsyr2k | C ⟵ α·A·Bᵀ + α·B·Aᵀ + β·C, or C ⟵ α·Aᵀ·B + α·Bᵀ·A + β·C | α, A, β, B, C | none | upper/lower triangular | csyr2k/zsyr2k |
Details (click to show)
decl
function ssyr2k|dsyr2k(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
n: number,
k: number,
alpha: number,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: number,
c: Matrix,
ldc: number
): void;
function csyr2k|zsyr2k(
uplo: 'u' | 'l',
trans: 'n' | 't',
n: number,
k: number,
alpha: Complex,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: Complex,
c: Matrix,
ldc: number
): void
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { ssyr2k, dsyr2k, csyr2k, zsyr2k } = BLAS.level3;
Hermatian rank k operations C ⟵ α·A·Aᴴ + β·C, or C ⟵ α·Aᴴ·A + β·C
Aᴴ is the conjugate transpose of Matrix A.
cherk, zherk
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | complex | real | type of matrix C | blas ref link |
---|
cherk/zherk | C ⟵ α·A·Aᴴ + β·C, or C ⟵ α·Aᴴ·A + β·C | A, C | α, β | upper/lower triangular | cherk/zherk |
Details (click to show)
decl
function cherk|zherk(
uplo: 'u' | 'l',
trans: 'n' | 'c',
n: number,
k: number,
alpha: number,
a: Matrix,
lda: number,
beta: number,
c: Matrix,
ldc: number
): void;
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { cherk, zherk } = BLAS.level3;
Symmetric rank k operations C ⟵ α·A·Aᵀ + β·C, or C ⟵ α·Aᵀ·A + β·C
ssyrk, dsyrk, csyrk, zsyrk
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | complex | real | type of matrix C | blas ref link |
---|
ssyrk/dsyrk | C ⟵ α·A·Aᵀ + β·C, or C ⟵ α·Aᵀ·A + β·C | none | α, A, β, C | upper/lower triangular | ssyrk/dsyrk |
csyrk/zsyrk | C ⟵ α·A·Aᵀ + β·C, or C ⟵ α·Aᵀ·A + β·C | α, A, β, C | none | upper/lower triangular | csyrk/zsyrk |
Details (click to show)
decl
function ssyrk|dsyrk(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
n: number,
k: number,
alpha: number,
a: Matrix,
lda: number,
beta: number,
c: Matrix,
ldc: number
): void;
function csyrk|zsyrk(
uplo: 'u' | 'l',
trans: 'n' | 't' | 'c',
n: number,
k: number,
alpha: number,
a: Matrix,
lda: number,
beta: number,
c: Matrix,
ldc: number
): void;
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { ssyrk, dsyrk, csyrk, zsyrk } = BLAS.level3;
Matrix-matrix operations C ⟵ α·f(A)·h(B) + β·C or C ⟵ α·h(B)·f(A) + β·C
f(A) is the result of an operation on matrix A, like Aᵀ, Aᴴ, or A (no-op)
h(B) is an operation on matrix B, like Bᵀ, Bᴴ, or B (no-op)
S(A) is the set of all possible results of f(A) for a routine.
S(B) is the set of all possible results of h(B) for a routine.
sgemm, dgemm, cgemm, zgemm
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | S(A) | S(B) | real | complex | type of matrix C | blas ref link |
---|
sgemm/dgemm | C ⟵ α·f(A)·h(B) + β·C | Aᵀ, A | Bᵀ, B | α, A, β, B, C | none | m x n | sgemm/dgemm |
cgemm/zgemm | C ⟵ α·f(A)·h(B) + β·C | Aᴴ, Aᵀ, A | Bᴴ, Bᵀ, B | none | α, A, β, B, C | m x n | cgemm/zgemm |
Details (click to show)
decl
function sgemm|dgemm(
transA: 'n' | 't' | 'c',
transB: 'n' | 't' | 'c',
m: number,
n: number,
k: number,
alpha: number,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: number,
c: Matrix,
ldc: number
): void;
function cgemm|zgemm(
transA: 'n' | 't' | 'c',
transB: 'n' | 't' | 'c',
m: number,
n: number,
k: number,
alpha: Complex,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: Complex,
c: Matrix,
ldc: number
): void
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { sgemm, dgemm, cgemm, zgemm } = BLAS.level3;
Matrix-matrix operations C ⟵ α·A·B + β·C or C ⟵ α·B·A + β·C
chemm, zhemm, ssymm, dsymm, csymm, zsymm
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | real | complex | type of matrix C | blas ref link |
---|
chemm/zhemm | C ⟵ α·A·B + β·C or C ⟵ α·B·A + β·C | none | α, A, B, β, C | m x n | chemm/zhemm |
ssymm/dsymm | C ⟵ α·A·B + β·C or C ⟵ α·B·A + β·C | α, A, B, β, C | none | m x n | ssymm/dsymm |
csymm/zsymm | C ⟵ α·A·B + β·C or C ⟵ α·B·A + β·C | none | α, A, B, β, C | m x n | csymm/zsymm |
Details (click to show)
decl
function chemm|zhemm(
side: 'l' | 'r',
uplo: 'u' | 'l',
m: number,
n: number,
alpha: Complex,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: Complex,
c: Matrix,
ldc: number
): void;
function ssymm|dsymm(
side: 'l' | 'r',
uplo: 'u' | 'l',
m: number,
n: number,
alpha: number,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: number,
c: Matrix,
ldc: number
): void
function csymm|zsymm(
side: 'l' | 'r',
uplo: 'u' | 'l',
m: number,
n: number,
alpha: Complex,
a: Matrix,
lda: number,
b: Matrix,
ldb: number,
beta: Complex,
c: Matrix,
ldc: number
): void
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { chemm, zhemm, ssymm, dsymm, csymm, zsymm } = BLAS.level3;
Matrix-matrix operations B ⟵ α·f(A)·B or B ⟵ α·B·f(A)
f(A) is the result of an operation on matrix A, like Aᵀ, Aᴴ, or A (no-op)
S(A) is the set of all possible results of f(A) for a routine.
strmm, dtrmm, ctrmm, ztrmm
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | S(A) | real | complex | type of matrix B | blas ref link |
---|
strmm/dtrmm | B ⟵ α·f(A)·B or B ⟵ α·B·f(A) | A, Aᵀ | α, B | none | m x n | strmm/dtrmm |
ctrmm/ztrmm | B ⟵ α·f(A)·B or B ⟵ α·B·f(A) | A, Aᵀ, Aᴴ | none | α, A, B | m x n | ctrmm/ztrmm |
Details (click to show)
decl
function strmm|dtrmm(
side: 'l' | 'r',
uplo: 'u' | 'l',
transA: 'n' | 't' | 'c',
diag: 'u' | 'n',
m: number,
n: number,
alpha: number,
a: Matrix,
lda: number,
b: Matrix,
ldb: number
): void;
function ctrmm|ztrmm(
side: 'l' | 'r',
uplo: 'u' | 'l',
transA: 'n' | 't' | 'c',
diag: 'u' | 'n',
m: number,
n: number,
alpha: Complex,
a: Matrix,
lda: number,
b: Matrix,
ldb: number
): void;
See: how to create Matrix.
Usage:
const BLAS = require('blasjs');
const { strmm, dtrmm, ctrmm, ztrmm } = BLAS.level3;
Solves the matrix equations: f( A )·X = α·B, or X·f( A ) = α·B
f(A) is the result of an operation on matrix A, like Aᵀ, Aᴴ, or A (no-op)
S(A) is the set of all possible results of f(A) for a routine.
strsm, dtrsm, ctrsm, ztrsm
The naming in blasjs does not reflect the precision used, precision is determined by argument construction. The naming is maintained for compatibility with the reference implementation.
subroutine | operation | S(A) | real | complex | type of matrix B | blas ref link |
---|
strsm/dtrsm | f( A )·X = α·B, or X·f( A ) = α·B | A, Aᵀ | α, A, B | none | m x n | strsm/dtrsm |
ctrsm/ztrsm | f( A )·X = α·B, or X·f( A ) = α·B | A, Aᵀ, Aᴴ | none | α, A, B | m x n | ctrsm/ztrsm |