
Security News
Open VSX Begins Implementing Pre-Publish Security Checks After Repeated Supply Chain Incidents
Following multiple malicious extension incidents, Open VSX outlines new safeguards designed to catch risky uploads earlier.
Keep your AI agent context small and cheap by managing tool bloat and large outputs. ctx-zip provides two complementary techniques: Tool Discovery (transform MCP servers and tools into explorable code) and Output Compaction (persist large results to storage with smart retrieval).
Works with the AI SDK for agents and loop control. See: AI SDK – Loop Control: Context Management.
npm i ctx-zip
# or
pnpm add ctx-zip
ctx-zip tackles two major context problems:
Transforms MCP servers and AI SDK tools into inspectable TypeScript code in a sandbox. Instead of loading hundreds of tool schemas upfront, agents explore tools on-demand using filesystem operations.
The Problem:
Context Rot
The Solution:
sandbox_ls, sandbox_cat, sandbox_grepAutomatically persists large tool outputs to the sandbox filesystem and replaces them with concise references. Agents can retrieve content on-demand using the same sandbox exploration tools.
The Problem:
Context Rot
The Solution:
sandbox_ls, sandbox_cat, sandbox_grep, sandbox_find)Transform tools into explorable code that agents can inspect and execute:
import { generateText, tool } from "ai";
import { z } from "zod";
import { SandboxManager, E2BSandboxProvider } from "ctx-zip";
// Step 1: Create a sandbox
const sandboxProvider = await E2BSandboxProvider.create();
const manager = await SandboxManager.create({ sandboxProvider });
// Step 2: Register MCP servers and/or AI SDK tools
await manager.register({
servers: [
{ name: "grep-app", url: "https://mcp.grep.app" },
{
name: "linear",
url: "https://mcp.linear.app/mcp",
headers: { Authorization: `Bearer ${process.env.LINEAR_TOKEN}` }
},
],
standardTools: {
weather: tool({
description: "Get the weather in a location",
inputSchema: z.object({
location: z.string(),
}),
async execute({ location }) {
const temp = 72 + Math.floor(Math.random() * 21) - 10;
return { location, temperature: temp, units: "°F" };
},
}),
},
});
// Step 3: Get exploration and execution tools
const tools = manager.getAllTools();
// Available: sandbox_ls, sandbox_cat, sandbox_grep, sandbox_find, sandbox_exec
// Step 4: Agent explores and uses tools
const result = await generateText({
model: "openai/gpt-4.1-mini",
tools,
prompt: "Search the codebase, check the weather, and create a Linear issue",
});
console.log(result.text);
// Cleanup
await manager.cleanup();
What Gets Generated:
The register() call creates a directory structure in the sandbox:
/workspace/
├── servers/ # MCP tool implementations
│ ├── grep-app/
│ │ ├── search.ts
│ │ ├── index.ts
│ │ └── _types.ts
│ ├── linear/
│ │ ├── createIssue.ts
│ │ ├── searchIssues.ts
│ │ └── index.ts
│ └── _client.ts # MCP routing client
├── local-tools/ # AI SDK tool implementations
│ ├── weather.ts
│ └── index.ts
├── user-code/ # Agent execution workspace
└── compact/ # Tool output storage (for compaction)
Exploration Tools:
Once tools are registered, agents can explore them:
sandbox_ls(path) - List directory contentssandbox_cat(path) - Read file contentssandbox_grep(pattern, path) - Search in filessandbox_find(pattern, path) - Find files by namesandbox_exec(code) - Execute TypeScript codeExample Agent Workflow:
// Agent explores available tools
await sandbox_ls("/workspace/mcp")
// → ["grep-app/", "linear/", "_client.ts"]
await sandbox_ls("/workspace/local-tools")
// → ["weather.ts", "index.ts"]
// Agent inspects a tool
await sandbox_cat("/workspace/mcp/grep-app/search.ts")
// → Full TypeScript source with types and documentation
// Agent writes code to use multiple tools together
await sandbox_exec(`
import { search } from './mcp/grep-app/index.ts';
import { createIssue } from './mcp/linear/index.ts';
import { weather } from './local-tools/index.ts';
const results = await search({ query: 'authentication bug' });
const topResult = results[0];
const weatherData = await weather({ location: 'San Francisco' });
await createIssue({
title: 'Fix auth bug from codebase search',
description: \`Found issue: \${topResult.content}\nWeather: \${weatherData.temperature}\`,
});
return { created: true, result: topResult.file };
`);
API Reference:
// Create manager
const manager = await SandboxManager.create({
sandboxProvider?: SandboxProvider, // E2B, Vercel, or Local
sandboxOptions?: LocalSandboxOptions, // If no provider
});
// Register tools
await manager.register({
servers?: MCPServerConfig[], // MCP servers to connect
standardTools?: Record<string, Tool>, // AI SDK tools
standardToolOptions?: {
title?: string,
outputDir?: string,
},
});
// Get tools
manager.getAllTools() // Exploration + execution tools
manager.getExplorationTools() // ls, cat, grep, find (for MCP tools, defaults to mcp dir)
manager.getCompactionTools() // ls, cat, grep, find (for compacted files, defaults to workspace root)
manager.getExecutionTool() // Only exec
// Get paths
manager.getMcpDir() // /workspace/mcp
manager.getLocalToolsDir() // /workspace/local-tools
manager.getUserCodeDir() // /workspace/user-code
manager.getCompactDir() // /workspace/compact
manager.getWorkspacePath() // /workspace
// Cleanup
await manager.cleanup()
Automatically persist large tool outputs to sandbox storage and retrieve them on-demand:
import { generateText, tool } from "ai";
import { z } from "zod";
import { compact, SandboxManager } from "ctx-zip";
// Create sandbox manager
const manager = await SandboxManager.create();
const fileAdapter = manager.getFileAdapter({ sessionId: "my-session" });
const result = await generateText({
model: "openai/gpt-4.1-mini",
tools: {
// Compaction tools for reading compacted files using exact paths
...manager.getCompactionTools(),
// Your data-generating tools
fetchEmails: tool({
description: "Fetch emails from inbox",
inputSchema: z.object({ limit: z.number() }),
async execute({ limit }) {
const emails = await getEmails(limit);
return { emails }; // This will be compacted
},
}),
},
prompt: "Check my latest emails and find any about 'budget'",
prepareStep: async ({ messages }) => {
// Compact outputs after each turn
const compacted = await compact(messages, {
storage: fileAdapter,
boundary: "all",
sessionId: "my-session",
});
return { messages: compacted };
},
});
await manager.cleanup();
How Compaction Works:
fetchEmails(50))compact() runs in prepareStep:
/compact/my-session/tool-results/fetchEmails.jsonWritten to file: file:///path/compact/my-session/tool-results/fetchEmails.json
Key: compact/my-session/tool-results/fetchEmails.json
Use the read/search tools to inspect its contents.
sandbox_ls(path) - List directory contentssandbox_cat(file) - Read entire filesandbox_grep(pattern, path) - Search within filessandbox_find(pattern, path) - Find files by name patternStorage Location:
When using SandboxManager with compaction:
/workspace/
└── compact/
└── {sessionId}/
└── tool-results/
├── fetchEmails.json
├── searchGitHub.json
└── getWeather.json
Each tool overwrites its own file on subsequent calls (one file per tool type).
Boundary Strategies:
Control which messages get compacted:
// 2. All messages - re-compact entire conversation
boundary: "all"
// 3. Keep first N - preserve system prompt, compact rest
boundary: { type: "keep-first", count: 5 }
// 4. Keep last N - preserve recent context, compact older
boundary: { type: "keep-last", count: 20 }
Sandbox Tools for Retrieval:
Use compaction-specific tools that default to the workspace root:
const manager = await SandboxManager.create();
const tools = manager.getCompactionTools();
// Available: sandbox_ls, sandbox_cat, sandbox_grep, sandbox_find
// These default to workspace root for easy use with compaction paths
// The compaction message tells you exactly how to read the file:
// "Written to file: sandbox://... To read it, use: sandbox_cat({ file: "compact/..." })"
// Just copy the path from the message!
API Reference:
// Compact messages
const compacted = await compact(messages, {
storage: FileAdapter | string, // Where to write files
boundary?: Boundary, // Which messages to compact
sessionId?: string, // Organize by session
fileReaderTools?: string[], // Tools that read (not persisted)
});
Use tool discovery and compaction together for maximum efficiency:
import { generateText } from "ai";
import {
SandboxManager,
compact,
E2BSandboxProvider,
} from "ctx-zip";
// Step 1: Setup sandbox with tools
const sandboxProvider = await E2BSandboxProvider.create();
const manager = await SandboxManager.create({ sandboxProvider });
await manager.register({
servers: [
{ name: "grep-app", url: "https://mcp.grep.app" },
],
});
// Step 2: Get file adapter for compaction
const fileAdapter = manager.getFileAdapter({
sessionId: "combined-session",
});
// Step 3: Get all sandbox tools (exploration + execution)
// These same tools are used for both tool discovery AND accessing compacted outputs
const tools = manager.getAllTools();
// Step 4: Use in agent loop with compaction
const result = await generateText({
model: "openai/gpt-4.1-mini",
tools,
prompt: "Search for authentication bugs in the codebase and summarize",
prepareStep: async ({ messages }) => {
const compacted = await compact(messages, {
storage: fileAdapter,
boundary: "all",
sessionId: "combined-session",
});
return { messages: compacted };
},
});
console.log(result.text);
await manager.cleanup();
Benefits:
ctx-zip supports three sandbox environments:
import { SandboxManager, LocalSandboxProvider } from "ctx-zip";
// Option 1: Let SandboxManager create default local sandbox
const manager = await SandboxManager.create();
// Option 2: Explicit local provider
const provider = await LocalSandboxProvider.create({
sandboxDir: "./.sandbox",
cleanOnCreate: false,
});
const manager = await SandboxManager.create({ sandboxProvider: provider });
import { SandboxManager, E2BSandboxProvider } from "ctx-zip";
const provider = await E2BSandboxProvider.create({
apiKey: process.env.E2B_API_KEY,
timeout: 1800000, // 30 minutes
});
const manager = await SandboxManager.create({ sandboxProvider: provider });
import { SandboxManager, VercelSandboxProvider } from "ctx-zip";
const provider = await VercelSandboxProvider.create({
timeout: 1800000,
runtime: "node22",
vcpus: 4,
});
const manager = await SandboxManager.create({ sandboxProvider: provider });
See the examples/ directory:
examples/mcp/ - MCP server integration with grep.app
local_mcp_search.ts - Local sandboxe2b_mcp_search.ts - E2B sandboxvercel_mcp_search.ts - Vercel sandboxexamples/tools/ - AI SDK tool transformation
weather_tool_sandbox.ts - Transform and explore standard toolsexamples/ctx-management/ - Full-featured compaction demo
email_management.ts - Interactive email assistant with multi-environment supportclass SandboxManager {
// Create
static async create(config?: {
sandboxProvider?: SandboxProvider,
sandboxOptions?: LocalSandboxOptions,
}): Promise<SandboxManager>
// Register tools
async register(options: {
servers?: MCPServerConfig[],
standardTools?: Record<string, Tool>,
standardToolOptions?: ToolCodeGenerationOptions,
}): Promise<void>
// Get tools
getAllTools(): Record<string, Tool>
getExplorationTools(): Record<string, Tool>
getExecutionTool(): Record<string, Tool>
// Get paths
getMcpDir(): string
getLocalToolsDir(): string
getUserCodeDir(): string
getCompactDir(): string
getWorkspacePath(): string
// File adapter for compaction
getFileAdapter(options?: {
prefix?: string,
sessionId?: string,
}): FileAdapter
// Static helper
static createLocalFileAdapter(options: LocalFileAdapterOptions): FileAdapter
// Cleanup
async cleanup(): Promise<void>
}
function compact(
messages: ModelMessage[],
options: CompactOptions
): Promise<ModelMessage[]>
interface CompactOptions {
storage: FileAdapter | string,
boundary?: Boundary,
sessionId?: string,
fileReaderTools?: string[],
}
type Boundary =
| "all"
| { type: "keep-first"; count: number }
| { type: "keep-last"; count: number }
Full TypeScript support with exported types:
import type {
SandboxProvider,
FileAdapter,
CompactOptions,
Boundary,
E2BSandboxOptions,
LocalSandboxOptions,
VercelSandboxOptions,
} from "ctx-zip";
MIT
Contributions welcome! Please open an issue or PR.
FAQs
Keep your AI agent context small and cheap by managing tool bloat and large outputs.
The npm package ctx-zip receives a total of 22 weekly downloads. As such, ctx-zip popularity was classified as not popular.
We found that ctx-zip demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Following multiple malicious extension incidents, Open VSX outlines new safeguards designed to catch risky uploads earlier.

Research
/Security News
Threat actors compromised four oorzc Open VSX extensions with more than 22,000 downloads, pushing malicious versions that install a staged loader, evade Russian-locale systems, pull C2 from Solana memos, and steal macOS credentials and wallets.

Security News
Lodash 4.17.23 marks a security reset, with maintainers rebuilding governance and infrastructure to support long-term, sustainable maintenance.