Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

deepspeech-gpu

Package Overview
Dependencies
Maintainers
1
Versions
93
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

deepspeech-gpu

DeepSpeech NodeJS bindings

  • 0.6.0-alpha.10
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
223
increased by92.24%
Maintainers
1
Weekly downloads
 
Created
Source

Project DeepSpeech

.. image:: https://readthedocs.org/projects/deepspeech/badge/?version=latest :target: http://deepspeech.readthedocs.io/?badge=latest :alt: Documentation

.. image:: https://github.taskcluster.net/v1/repository/mozilla/DeepSpeech/master/badge.svg :target: https://github.taskcluster.net/v1/repository/mozilla/DeepSpeech/master/latest :alt: Task Status

DeepSpeech is an open source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Speech research paper <https://arxiv.org/abs/1412.5567>. Project DeepSpeech uses Google's TensorFlow <https://www.tensorflow.org/> to make the implementation easier.

To install and use deepspeech all you have to do is:

.. code-block:: bash

Create and activate a virtualenv

virtualenv -p python3 $HOME/tmp/deepspeech-venv/ source $HOME/tmp/deepspeech-venv/bin/activate

Install DeepSpeech

pip3 install deepspeech

Download pre-trained English model and extract

curl -LO https://github.com/mozilla/DeepSpeech/releases/download/v0.5.1/deepspeech-0.5.1-models.tar.gz tar xvf deepspeech-0.5.1-models.tar.gz

Download example audio files

curl -LO https://github.com/mozilla/DeepSpeech/releases/download/v0.5.1/audio-0.5.1.tar.gz tar xvf audio-0.5.1.tar.gz

Transcribe an audio file

deepspeech --model deepspeech-0.5.1-models/output_graph.pbmm --alphabet deepspeech-0.5.1-models/alphabet.txt --lm deepspeech-0.5.1-models/lm.binary --trie deepspeech-0.5.1-models/trie --audio audio/2830-3980-0043.wav

A pre-trained English model is available for use and can be downloaded using the instructions below <USING.rst#using-a-pre-trained-model>. Currently, only 16-bit, 16 kHz, mono-channel WAVE audio files are supported in the Python client. A package with some example audio files is available for download in our release notes <https://github.com/mozilla/DeepSpeech/releases/latest>.

Quicker inference can be performed using a supported NVIDIA GPU on Linux. See the release notes <https://github.com/mozilla/DeepSpeech/releases/latest>_ to find which GPUs are supported. To run deepspeech on a GPU, install the GPU specific package:

.. code-block:: bash

Create and activate a virtualenv

virtualenv -p python3 $HOME/tmp/deepspeech-gpu-venv/ source $HOME/tmp/deepspeech-gpu-venv/bin/activate

Install DeepSpeech CUDA enabled package

pip3 install deepspeech-gpu

Transcribe an audio file.

deepspeech --model deepspeech-0.5.1-models/output_graph.pbmm --alphabet deepspeech-0.5.1-models/alphabet.txt --lm deepspeech-0.5.1-models/lm.binary --trie deepspeech-0.5.1-models/trie --audio audio/2830-3980-0043.wav

Please ensure you have the required CUDA dependencies <USING.rst#cuda-dependency>_.

See the output of deepspeech -h for more information on the use of deepspeech. (If you experience problems running deepspeech\ , please check required runtime dependencies <native_client/README.rst#required-dependencies>_\ ).


Table of Contents

  • Using a Pre-trained Model <USING.rst#using-a-pre-trained-model>_

    • CUDA dependency <USING.rst#cuda-dependency>_
    • Getting the pre-trained model <USING.rst#getting-the-pre-trained-model>_
    • Model compatibility <USING.rst#model-compatibility>_
    • Using the Python package <USING.rst#using-the-python-package>_
    • Using the Node.JS package <USING.rst#using-the-nodejs-package>_
    • Using the Command Line client <USING.rst#using-the-command-line-client>_
    • Installing bindings from source <USING.rst#installing-bindings-from-source>_
    • Third party bindings <USING.rst#third-party-bindings>_
  • Training your own Model <TRAINING.rst#training-your-own-model>_

    • Prerequisites for training a model <TRAINING.rst#prerequisites-for-training-a-model>_
    • Getting the training code <TRAINING.rst#getting-the-training-code>_
    • Installing Python dependencies <TRAINING.rst#installing-python-dependencies>_
    • Recommendations <TRAINING.rst#recommendations>_
    • Common Voice training data <TRAINING.rst#common-voice-training-data>_
    • Training a model <TRAINING.rst#training-a-model>_
    • Checkpointing <TRAINING.rst#checkpointing>_
    • Exporting a model for inference <TRAINING.rst#exporting-a-model-for-inference>_
    • Exporting a model for TFLite <TRAINING.rst#exporting-a-model-for-tflite>_
    • Making a mmap-able model for inference <TRAINING.rst#making-a-mmap-able-model-for-inference>_
    • Continuing training from a release model <TRAINING.rst#continuing-training-from-a-release-model>_
    • Training with Augmentation <TRAINING.rst#training-with-augmentation>_
  • Contribution guidelines <CONTRIBUTING.rst>_

  • Contact/Getting Help <SUPPORT.rst>_

FAQs

Package last updated on 17 Oct 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc