Socket
Socket
Sign inDemoInstall

eciesjs

Package Overview
Dependencies
3
Maintainers
1
Versions
34
Alerts
File Explorer

Advanced tools

Install Socket

Detect and block malicious and high-risk dependencies

Install

eciesjs

Elliptic Curve Integrated Encryption Scheme for secp256k1/curve25519


Version published
Maintainers
1
Weekly downloads
64,423
decreased by-10.05%
Bundle size
31.3 kB
Minified + gzipped

Weekly downloads

Readme

Source

eciesjs

Codacy Badge License Npm Package CI Codecov

Elliptic Curve Integrated Encryption Scheme for secp256k1/curve25519 in TypeScript.

This is the JavaScript/TypeScript version of eciespy with a built-in class-like secp256k1/curve25519 API, you may go there for detailed documentation and learn the mechanism under the hood.

If you want a WASM version to run directly in modern browsers or on some blockchains, check ecies-wasm.

Install

npm install eciesjs

We recommend using the latest Node runtime although it's still possible to install on old versions.

Quick Start

Run the code below with npx ts-node.

> import { encrypt, decrypt, PrivateKey } from 'eciesjs'
> const sk = new PrivateKey()
> const data = Buffer.from('hello world🌍')
> decrypt(sk.secret, encrypt(sk.publicKey.toHex(), data)).toString()
'hello world🌍'

See Configuration to control with more granularity.

API

encrypt(receiverRawPK: string | Uint8Array, msg: Uint8Array): Buffer

Parameters:

  • receiverRawPK - Receiver's public key, hex string or buffer
  • msg - Data to encrypt

Returns: Buffer

decrypt(receiverRawSK: string | Uint8Array, msg: Uint8Array): Buffer

Parameters:

  • receiverRawSK - Receiver's private key, hex string or buffer
  • msg - Data to decrypt

Returns: Buffer

PrivateKey

  • Methods
static fromHex(hex: string): PrivateKey;
constructor(secret?: Uint8Array);
toHex(): string;
encapsulate(pk: PublicKey): Uint8Array;
multiply(pk: PublicKey, compressed?: boolean): Uint8Array;
equals(other: PrivateKey): boolean;
  • Properties
get secret(): Buffer;
readonly publicKey: PublicKey;
private readonly data;

PublicKey

  • Methods
static fromHex(hex: string): PublicKey;
constructor(data: Uint8Array);
toHex(compressed?: boolean): string;
decapsulate(sk: PrivateKey): Uint8Array;
equals(other: PublicKey): boolean;
  • Properties
get uncompressed(): Buffer;
get compressed(): Buffer;
private readonly data;

Configuration

Following configurations are available.

  • Elliptic curve: secp256k1 or curve25519 (x25519/ed25519)
  • Ephemeral key format in the payload: compressed or uncompressed (only for secp256k1)
  • Shared elliptic curve key format in the key derivation: compressed or uncompressed (only for secp256k1)
  • Symmetric cipher algorithm: AES-256-GCM or XChaCha20-Poly1305
  • Symmetric nonce length: 12 or 16 bytes (only for AES-256-GCM)

For compatibility, make sure different applications share the same configuration.

export type EllipticCurve = "secp256k1" | "x25519" | "ed25519";
export type SymmetricAlgorithm = "aes-256-gcm" | "xchacha20";
export type NonceLength = 12 | 16;

class Config {
  ellipticCurve: EllipticCurve = "secp256k1";
  isEphemeralKeyCompressed: boolean = false;
  isHkdfKeyCompressed: boolean = false;
  symmetricAlgorithm: SymmetricAlgorithm = "aes-256-gcm";
  symmetricNonceLength: NonceLength = 16;
}

export const ECIES_CONFIG = new Config();

Elliptic curve configuration

On ellipticCurve = "x25519" or ellipticCurve = "ed25519", x25519 (key exchange function on curve25519) or ed25519 (signature algorithm on curve25519) will be used for key exchange instead of secp256k1.

In this case, the payload would always be: 32 Bytes + Ciphered regardless of isEphemeralKeyCompressed.

If you don't know how to choose between x25519 and ed25519, just use the dedicated key exchange function x25519 for efficiency.

Secp256k1-specific configuration

On isEphemeralKeyCompressed = true, the payload would be: 33 Bytes + Ciphered instead of 65 Bytes + Ciphered.

On isHkdfKeyCompressed = true, the hkdf key would be derived from ephemeral public key (compressed) + shared public key (compressed) instead of ephemeral public key (uncompressed) + shared public key (uncompressed).

Symmetric cipher configuration

On symmetricAlgorithm = "xchacha20", plaintext data would be encrypted with XChaCha20-Poly1305.

On symmetricNonceLength = 12, the nonce of AES-256-GCM would be 12 bytes. XChaCha20-Poly1305's nonce is always 24 bytes regardless of symmetricNonceLength.

Security Audit

Following dependencies are audited:

Changelog

See CHANGELOG.md.

Keywords

FAQs

Last updated on 10 Dec 2023

Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc