
Research
Malicious npm Packages Impersonate Flashbots SDKs, Targeting Ethereum Wallet Credentials
Four npm packages disguised as cryptographic tools steal developer credentials and send them to attacker-controlled Telegram infrastructure.
generatorics
Advanced tools
Efficient Combinatorics library for JavaScript using ES2015 generator functions. Generate power set, combination, and permutation.
npm install generatorics
var G = require('generatorics');
bower install generatorics
<script src="file/path/to/generatorics.js"></script>
Note: This module is not transpiled for compatibility, as it degrades the performance. Check your browser/node version.
for (var subset of G.powerSet(['a', 'b', 'c'])) {
console.log(subset);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'b' ]
// [ 'b', 'c' ]
// [ 'c' ]
for (var perm of G.permutation(['a', 'b', 'c'], 2)) {
console.log(perm);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'a' ]
// [ 'b', 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'b' ]
for (var perm of G.permutation(['a', 'b', 'c'])) { // assumes full length of array
console.log(perm);
}
// [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c', 'b', 'a' ]
// [ 'c', 'a', 'b' ]
for (var comb of G.combination(['a', 'b', 'c'], 2)) {
console.log(comb);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'c' ]
For efficiency, each array being yielded is the same one being mutated on each iteration. DO NOT mutate the array.
var combs = [];
for (var comb of G.combination(['a', 'b', 'c'], 2)) {
combs.push(comb);
}
console.log(combs);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]
You can clone if necessary, or use the clone submodule
for (var perm of G.permutationCombination(['a', 'b', 'c'])) {
console.log(perm);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b' ]
// [ 'b', 'a' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'a', 'b' ]
// [ 'c', 'b' ]
// [ 'c', 'b', 'a' ]
for (var prod of G.cartesian([0, 1, 2], [0, 10, 20], [0, 100, 200])) {
console.log(prod);
}
// [ 0, 0, 0 ], [ 0, 0, 100 ], [ 0, 0, 200 ]
// [ 0, 10, 0 ], [ 0, 10, 100 ], [ 0, 10, 200 ]
// [ 0, 20, 0 ], [ 0, 20, 100 ], [ 0, 20, 200 ]
// [ 1, 0, 0 ], [ 1, 0, 100 ], [ 1, 0, 200 ]
// [ 1, 10, 0 ], [ 1, 10, 100 ], [ 1, 10, 200 ]
// [ 1, 20, 0 ], [ 1, 20, 100 ], [ 1, 20, 200 ]
// [ 2, 0, 0 ], [ 2, 0, 100 ], [ 2, 0, 200 ]
// [ 2, 10, 0 ], [ 2, 10, 100 ], [ 2, 10, 200 ]
// [ 2, 20, 0 ], [ 2, 20, 100 ], [ 2, 20, 200 ]
for (var num of G.baseN(['a', 'b', 'c'])) {
console.log(num);
}
// [ 'a', 'a', 'a' ], [ 'a', 'a', 'b' ], [ 'a', 'a', 'c' ]
// [ 'a', 'b', 'a' ], [ 'a', 'b', 'b' ], [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'a' ], [ 'a', 'c', 'b' ], [ 'a', 'c', 'c' ]
// [ 'b', 'a', 'a' ], [ 'b', 'a', 'b' ], [ 'b', 'a', 'c' ]
// [ 'b', 'b', 'a' ], [ 'b', 'b', 'b' ], [ 'b', 'b', 'c' ]
// [ 'b', 'c', 'a' ], [ 'b', 'c', 'b' ], [ 'b', 'c', 'c' ]
// [ 'c', 'a', 'a' ], [ 'c', 'a', 'b' ], [ 'c', 'a', 'c' ]
// [ 'c', 'b', 'a' ], [ 'c', 'b', 'b' ], [ 'c', 'b', 'c' ]
// [ 'c', 'c', 'a' ], [ 'c', 'c', 'b' ], [ 'c', 'c', 'c' ]
Each array yielded from the generator is actually the same array in memory, just mutated to have different elements. This is to avoid the unnecessary creation of a bunch of arrays, which consume memory. As a result, you get a strange result when trying to generate an array.
var combs = G.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]
Instead, you can use the clone submodule.
var combs = G.clone.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'a', 'b' ], [ 'a', 'c' ], [ 'b', 'c' ] ]
This submodule produces generators that yield a different array on each iteration in case you need to mutate it. The combination, permutation, powerSet, permutationCombination, baseN, baseNAll, and cartesian methods are provided on this submodule.
var combs = G.clone.combination([1, 2, 3], 2);
// "for-of" loop
for (let comb of combs) {
console.log(comb);
}
// generate arrays
Array.from(combs);
[...combs];
// generate sets
new Set(combs);
// spreading in function calls
console.log(...combs);
No problem! Just pass in a collection of all your valid characters and start generating.
var mininym = G.baseNAll('abcdefghijklmnopqrstuvwxyz$#')
var name = mininym.next().value.join('')
global[name] = 'some value'
var cards = [...G.clone.cartesian('♠♥♣♦', 'A23456789JQK')];
console.log(G.shuffle(cards));
// [ [ '♦', '6' ], [ '♠', '6' ], [ '♣', '7' ], [ '♥', 'K' ],
// [ '♣', 'J' ], [ '♥', '4' ], [ '♦', '2' ], [ '♥', '9' ],
// [ '♦', 'Q' ], [ '♠', 'Q' ], [ '♠', '4' ], [ '♠', 'K' ],
// [ '♥', '3' ], [ '♥', '7' ], [ '♠', '5' ], [ '♦', '7' ],
// [ '♥', '5' ], [ '♣', 'Q' ], [ '♣', '9' ], [ '♠', 'A' ],
// [ '♣', '4' ], [ '♣', '3' ], [ '♥', 'A' ], [ '♥', '8' ],
// [ '♣', '8' ], [ '♦', '8' ], [ '♠', '8' ], [ '♣', '5' ],
// [ '♥', '2' ], [ '♥', 'Q' ], [ '♦', 'A' ], [ '♥', '6' ],
// [ '♠', '2' ], [ '♣', '6' ], [ '♠', '3' ], [ '♦', 'K' ],
// [ '♦', 'J' ], [ '♠', '7' ], [ '♥', 'J' ], [ '♦', '5' ],
// [ '♦', '9' ], [ '♦', '3' ], [ '♠', '9' ], [ '♣', '2' ],
// [ '♣', 'A' ], [ '♣', 'K' ], [ '♦', '4' ], [ '♠', 'J' ] ]
Number
Array
Number
Number
Number
Generator
Generator
Generator
Generator
Generator
Generator
Generator
Array
Number
Calculates a factorial
Kind: static method of G
Returns: Number
- n!
Param | Type | Description |
---|---|---|
n | Number | The number to operate the factorial on. |
Array
Converts a number to the factorial number system. Digits are in least significant order.
Kind: static method of G
Returns: Array
- digits of n in factoradic in least significant order
Param | Type | Description |
---|---|---|
n | Number | Integer in base 10 |
Number
Calculates the number of possible permutations of "k" elements in a set of size "n".
Kind: static method of G
Returns: Number
- n P k
Param | Type | Description |
---|---|---|
n | Number | Number of elements in the set. |
k | Number | Number of elements to choose from the set. |
Number
Calculates the number of possible combinations of "k" elements in a set of size "n".
Kind: static method of G
Returns: Number
- n C k
Param | Type | Description |
---|---|---|
n | Number | Number of elements in the set. |
k | Number | Number of elements to choose from the set. |
Number
Higher level method for counting number of possible combinations of "k" elements from a set of size "n".
Kind: static method of G
Returns: Number
- Number of possible combinations.
Param | Type | Description |
---|---|---|
n | Number | Number of elements in the set. |
k | Number | Number of elements to choose from the set. |
[options] | Object | |
options.replace | Boolean | Is replacement allowed after each choice? |
options.ordered | Boolean | Does the order of the choices matter? |
Generator
Generates all combinations of a set.
Kind: static method of G
Returns: Generator
- yields each combination as an array
Param | Type | Default | Description |
---|---|---|---|
arr | Array | String | The set of elements. | |
[size] | Number | arr.length | Number of elements to choose from the set. |
Generator
Generates all permutations of a set.
Kind: static method of G
Returns: Generator
- yields each permutation as an array
Param | Type | Default | Description |
---|---|---|---|
arr | Array | String | The set of elements. | |
[size] | Number | arr.length | Number of elements to choose from the set. |
Generator
Generates all possible subsets of a set (a.k.a. power set).
Kind: static method of G
Returns: Generator
- yields each subset as an array
Param | Type | Description |
---|---|---|
arr | Array | String | The set of elements. |
Generator
Generates the permutation of the combinations of a set.
Kind: static method of G
Returns: Generator
- yields each permutation as an array
Param | Type | Description |
---|---|---|
arr | Array | String | The set of elements. |
Generator
Generates all possible "numbers" from the digits of a set.
Kind: static method of G
Returns: Generator
- yields all digits as an array
Param | Type | Default | Description |
---|---|---|---|
arr | Array | String | The set of digits. | |
[size] | Number | arr.length | How many digits will be in the numbers. |
Generator
Infinite generator for all possible "numbers" from a set of digits.
Kind: static method of G
Returns: Generator
- yields all digits as an array
Param | Type | Description |
---|---|---|
arr | Array | String | The set of digits |
Generator
Generates the cartesian product of the sets.
Kind: static method of G
Returns: Generator
- yields each product as an array
Param | Type | Description |
---|---|---|
...sets | Array | String | variable number of sets of n elements. |
Array
Shuffles an array in place using the Fisher–Yates shuffle.
Kind: static method of G
Returns: Array
- a random, unbiased perutation of arr
Param | Type | Description |
---|---|---|
arr | Array | A set of elements. |
FAQs
Efficient Combinatorics library for JavaScript using ES2015 generator functions. Generate power set, combination, and permutation.
The npm package generatorics receives a total of 9,090 weekly downloads. As such, generatorics popularity was classified as popular.
We found that generatorics demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Four npm packages disguised as cryptographic tools steal developer credentials and send them to attacker-controlled Telegram infrastructure.
Security News
Ruby maintainers from Bundler and rbenv teams are building rv to bring Python uv's speed and unified tooling approach to Ruby development.
Security News
Following last week’s supply chain attack, Nx published findings on the GitHub Actions exploit and moved npm publishing to Trusted Publishers.