Socket
Socket
Sign inDemoInstall

memlab-test

Package Overview
Dependencies
14
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Install Socket

Detect and block malicious and high-risk dependencies

Install

    memlab-test

memlab is a framework that analyzes memory and finds memory leaks in JavaScript applications.


Version published
Weekly downloads
1
Maintainers
1
Created
Weekly downloads
 

Readme

Source

memlab

memlab is an E2E testing and analysis framework for finding JavaScript memory leaks and optimization opportunities.

Online Resources:

  • Meta Engineering Blog Post
  • Official Website and Demo
  • Documentation

Features:

  • Browser memory leak detection - Write test scenario with puppeteer API, memlab auto diffs JS heap snapshots, filters out memory leaks, and aggregates results.
  • Object-oriented heap traversing API - Supports self-defined memory leak detector and programmatically analyzing JS heap snapshots taken from Chromium-based browsers, Node.js, Electron.js, and Hermes
  • Memory CLI toolbox - Built-in toolbox and APIs for finding memory optimization opportunities (not necessarily memory leaks)
  • Memory assertions in Node.js - Enables unit test or running node.js program to take a heap snapshot of its own state, do self memory checking, or write advanced memory assertions

CLI Usage

Install the CLI

npm install -g memlab

Find Memory Leaks

To find memory leaks in Google Maps, you can create a scenario file defining how to interact with the Google Maps, let's name it test-google-maps.js:

// initial page load url: Google Maps
function url() {
  return 'https://www.google.com/maps/@37.386427,-122.0428214,11z';
}

// action where we want to detect memory leaks: click the Hotels button
async function action(page) {
  // puppeteer page API
  await page.click('button[aria-label="Hotels"]');
}

// action where we want to go back to the step before: click clear search
async function back(page) {
  // puppeteer page API
  await page.click('[aria-label="Clear search"]');
}

module.exports = {action, back, url};

Now run memlab with the scenario file, memlab will interact with the web page and detect memory leaks with built-in leak detectors:

memlab run --scenario test-google-maps.js

memlab will print memory leak results showing one representative retainer trace for each cluster of leaked objects.

Retainer traces: This is the result from an example website, the retainer trace is an object reference chain from the GC root to a leaked object. The trace shows why and how a leaked object is still kept alive in memory. Breaking the reference chain means the leaked object will no longer be reachable from the GC root, and therefore can be garbage collected. By following the leak trace one step at a time, you will be able to find a reference that should be set to null (but it wasn't due to a bug).

MemLab found 46 leak(s)
--Similar leaks in this run: 4--
--Retained size of leaked objects: 8.3MB--
[Window] (native) @35847 [8.3MB]
  --20 (element)--->  [InternalNode] (native) @130981728 [8.3MB]
  --8 (element)--->  [InternalNode] (native) @130980288 [8.3MB]
  --1 (element)--->  [EventListener] (native) @131009888 [8.3MB]
  --1 (element)--->  [V8EventListener] (native) @224808192 [8.3MB]
  --1 (element)--->  [eventHandler] (closure) @168079 [8.3MB]
  --context (internal)--->  [<function scope>] (object) @181905 [8.3MB]
  --bigArray (variable)--->  [Array] (object) @182925 [8.3MB]
  --elements (internal)--->  [(object elements)] (array) @182929 [8.3MB]
...

To get readable trace, the web site under test needs to serve non-minified code (or at least minified code with readable variables, function name, and property names on objects).

Alternatively, you can debug the leak by loading the heap snapshot taken by memlab (saved in $(memlab get-default-work-dir)/data/cur) in Chrome DevTool and search for the leaked object ID (@182929).

Self-defined leak detector: If you want to use a self-defined leak detector, add a filterLeak callback (doc) in the scenario file. filterLeak will be called for every unreleased heap object (node) allocated by the target interaction.

function filterLeak(node, heap) {
  // ... your leak detector logic
  // return true to mark the node as a memory leak
};

heap is the graph representation of the final JavaScript heap snapshot. For more details, view the doc site.

Heap Analysis and Investigation

View which object keeps growing in size during interaction in the previous run:

memlab analyze unbound-object

Analyze pre-fetched V8/hermes .heapsnapshot files:

memlab analyze unbound-object --snapshot-dir <DIR_OF_SNAPSHOT_FILES>

Use memlab analyze to view all built-in memory analyses. For extension, view the doc site.

View retainer trace of a particular object:

memlab trace --node-id <HEAP_OBJECT_ID>

Use memlab help to view all CLI commands.

APIs

Use the memlab npm package to start a E2E run in browser and detect memory leaks.

const memlab = require('memlab');

const scenario = {
    // initial page load url
    url: () => 'https://www.google.com/maps/@37.386427,-122.0428214,11z',

    // action where we want to detect memory leaks
    action: async (page) => await page.click('button[aria-label="Hotels"]'),

    // action where we want to go back to the step before
    back: async (page) => await page.click('[aria-label="Clear search"]'),
}
memlab.run({scenario});

Memory Assertions

memlab makes it possible to enable a unit test or running node.js program to take a heap snapshot of its own state, and write advanced memory assertions:

// save as example.test.ts
import type {IHeapSnapshot, Nullable} from '@memlab-test/core';
import {config, takeNodeMinimalHeap} from '@memlab-test/core';

class TestObject {
  public arr1 = [1, 2, 3];
  public arr2 = ['1', '2', '3'];
}

test('memory test with heap assertion', async () => {
  config.muteConsole = true; // no console output

  let obj: Nullable<TestObject> = new TestObject();
  // get a heap snapshot of the current program state
  let heap: IHeapSnapshot = await takeNodeMinimalHeap();

  // call some function that may add references to obj
  rabbitHole(obj)

  expect(heap.hasObjectWithClassName('TestObject')).toBe(true);
  obj = null;

  heap = await takeNodeMinimalHeap();
  // if rabbitHole does not have any side effect that
  // adds new references to obj, then obj can be GCed
  expect(heap.hasObjectWithClassName('TestObject')).toBe(false);

}, 30000);

For other APIs check out the API documentation.

Keywords

FAQs

Last updated on 22 Nov 2022

Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc