Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

nlptoolkit-sampling

Package Overview
Dependencies
Maintainers
1
Versions
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nlptoolkit-sampling

Data Sampling Library

  • 1.0.2
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

Sampling Strategies

K-Fold cross-validation

In K-fold cross-validation, the aim is to generate K training/validation set pair, where training and validation sets on fold i do no overlap. First, we divide the dataset X into K parts as X1; X2; ... ; XK. Then for each fold i, we use Xi as the validation set and the remaining as the training set.

Possible values of K are 10 or 30. One extreme case of K-fold cross-validation is leave-one-out, where K = N and each validation set has only one instance. If we have more computation power, we can have multiple runs of K-fold cross-validation, such as 10 x 10 cross-validation or 5 x 2 cross-validation.

Bootstrapping

If we have very small datasets, we do not insist on the non-overlap of training and validation sets. In bootstrapping, we generate K multiple training sets, where each training set contains N examples (like the original dataset). To get N examples, we draw examples with replacement. For the validation set, we use the original dataset. The drawback of bootstrapping is that the bootstrap samples overlap more than the cross-validation sample, hence they are more dependent.

Video Lectures

For Developers

You can also see Java, Python, Cython, C++, Swift, or C# repository.

Requirements

Node.js

To check if you have a compatible version of Node.js installed, use the following command:

node -v

You can find the latest version of Node.js here.

Git

Install the latest version of Git.

Npm Install

npm install nlptoolkit-sampling

Download Code

In order to work on code, create a fork from GitHub page. Use Git for cloning the code to your local or below line for Ubuntu:

git clone <your-fork-git-link>

A directory called util will be created. Or you can use below link for exploring the code:

git clone https://github.com/starlangsoftware/sampling-js.git

Open project with Webstorm IDE

Steps for opening the cloned project:

  • Start IDE
  • Select File | Open from main menu
  • Choose Sampling-Js file
  • Select open as project option
  • Couple of seconds, dependencies will be downloaded.

Detailed Description

CrossValidation

k. eğitim kümesini elde etmek için

getTrainFold(k: number): Array<T>

k. test kümesini elde etmek için

getTestFold(k: number): Array<T>

Bootstrap

Bootstrap için BootStrap sınıfı

Bootstrap(instanceList: Array<T>, seed: number)

Örneğin elimizdeki veriler a adlı ArrayList'te olsun. Bu veriler üstünden bir bootstrap örneklemi tanımlamak için (5 burada rasgelelik getiren seed'i göstermektedir. 5 değiştirilerek farklı samplelar elde edilebilir)

bootstrap = Bootstrap(a, 5)

ardından üretilen sample'ı çekmek için ise

sample = bootstrap.getSample()

yazılır.

KFoldCrossValidation

K kat çapraz geçerleme için KFoldCrossValidation sınıfı

KFoldCrossValidation(instanceList: Array<T>, K: number, seed: number)

Örneğin elimizdeki veriler a adlı ArrayList'te olsun. Bu veriler üstünden 10 kat çapraz geçerleme yapmak için (2 burada rasgelelik getiren seed'i göstermektedir. 2 değiştirilerek farklı samplelar elde edilebilir)

kfold = KFoldCrossValidation(a, 10, 2)

ardından yukarıda belirtilen getTrainFold ve getTestFold metodları ile sırasıyla i. eğitim ve test kümeleri elde edilebilir.

StratifiedKFoldCrossValidation

Stratified K kat çapraz geçerleme için StratifiedKFoldCrossValidation sınıfı

StratifiedKFoldCrossValidation(instanceLists: Array<Array<T>>, K: number, seed: number)

Örneğin elimizdeki veriler a adlı ArrayList of listte olsun. Stratified bir çapraz geçerlemede sınıflara ait veriler o sınıfın oranında temsil edildikleri için her bir sınıfa ait verilerin ayrı ayrı ArrayList'te olmaları gerekmektedir. Bu veriler üstünden 30 kat çapraz geçerleme yapmak için (4 burada rasgelelik getiren seed'i göstermektedir. 4 değiştirilerek farklı samplelar elde edilebilir)

stratified = StratifiedKFoldCrossValidation(a, 30, 4)

ardından yukarıda belirtilen getTrainFold ve getTestFold metodları ile sırasıyla i. eğitim ve test kümeleri elde edilebilir.

FAQs

Package last updated on 21 Nov 2022

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc