Research
Security News
Threat Actor Exposes Playbook for Exploiting npm to Build Blockchain-Powered Botnets
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
"NLP.js" is a general natural language utilities for nodejs. Currently supporting:
If you're looking to use NLP.js in your node application, you can install via NPM like so:
npm install node-nlp
You can see a great example of use at the folder \examples\console-bot. This example is able to train the bot and save the model to a file, so when the bot is started again, the model is loaded instead of trained again.
You can start to build your NLP from scratch with few lines:
const { NlpManager } = require('node-nlp');
const manager = new NlpManager({ languages: ['en'] });
// Adds the utterances and intents for the NLP
manager.addDocument('en', 'goodbye for now', 'greetings.bye');
manager.addDocument('en', 'bye bye take care', 'greetings.bye');
manager.addDocument('en', 'okay see you later', 'greetings.bye');
manager.addDocument('en', 'bye for now', 'greetings.bye');
manager.addDocument('en', 'i must go', 'greetings.bye');
manager.addDocument('en', 'hello', 'greetings.hello');
manager.addDocument('en', 'hi', 'greetings.hello');
manager.addDocument('en', 'howdy', 'greetings.hello');
// Train also the NLG
manager.addAnswer('en', 'greetings.bye', 'Till next time');
manager.addAnswer('en', 'greetings.bye', 'see you soon!');
manager.addAnswer('en', 'greetings.hello', 'Hey there!');
manager.addAnswer('en', 'greetings.hello', 'Greetings!');
// Train and save the model.
manager.train();
manager.save();
console.log(manager.process('en', 'I have to go'));
This will show this result in console:
{ locale: 'en',
localeIso2: 'en',
language: 'English',
utterance: 'I have to go',
classification:
[ { label: 'greetings.bye', value: 0.9791293407583773 },
{ label: 'greetings.hello', value: 0.020870659241622735 } ],
intent: 'greetings.bye',
score: 0.9791293407583773,
entities: [],
sentiment:
{ score: 0.5,
comparative: 0.125,
vote: 'positive',
numWords: 4,
numHits: 1,
type: 'senticon',
language: 'en' },
answer: 'Till next time' }
There are several languages supported. The language support can be for the Stemmers or for Sentiment Analysis. Inside Stemmers there are two type of stemmers: Natural and Snowball. Natural stemmers are these supported by the Natural library, while Snowball stemmers are the ported version from the Snowball ones from Java. Inside Sentiment Analysis, there are three possible algoritms: AFINN, Senticon and Pattern.
Language | Natural | Snowball | AFINN | Senticon | Pattern |
---|---|---|---|---|---|
Danish (da) | X | ||||
Dutch (nl) | X | X | X | ||
English (en) | X | X | X | X | X |
Farsi (fa) | X | ||||
Finnish (fi) | X | ||||
French (fr) | X | X | X | ||
German (de) | X | ||||
Hungarian (hu) | X | ||||
Indonesian (id) | X | ||||
Italian (it) | X | X | X | ||
Japanese (ja) | X | ||||
Norwegian (no) | X | X | |||
Portuguese (pt) | X | X | |||
Romanian (ro) | X | ||||
Russian (ru) | X | X | |||
Spanish (es) | X | X | X | X | |
Swedish (sv) | X | X | |||
Turkish (tr) | X |
The language object gives your code the skill to guess the language of a text. The method guess do that returning to you an array of all the languages ordered descending by the score.
const { Language } = require('node-nlp');
const language = new Language();
const guess = language.guess('When the night has come And the land is dark And the moon is the only light we see');
console.log(guess[0]);
This piece of code should write in console:
{ alpha3: 'eng', alpha2: 'en', language: 'English', score: 1 }
You can limit the amount of results with the third parameter of the method:
const { Language } = require('node-nlp');
const language = new Language();
let guess = language.guess('Quan arriba la nit i la terra és fosca i la lluna és l\'única llum que podem veure', null, 3);
console.log(guess.length);
console.log(guess[0]);
In console you'll see:
3
{ alpha3: 'cat', alpha2: 'ca', language: 'Catalan', score: 1 }
You can also provide a whitelist of accepted language to find the one that fits better
const { Language } = require('node-nlp');
const language = new Language();
let guess = language.guess('When the night has come And the land is dark And the moon is the only light we see', ['de', 'es']);
console.log(guess[0]);
In console you'll see:
{ alpha3: 'deu', alpha2: 'de', language: 'German', score: 1 }
You can also use the method guessBest that returns only the best result.
const { Language } = require('node-nlp');
const language = new Language();
let guess = language.guessBest('When the night has come And the land is dark And the moon is the only light we see');
console.log(guess[0]);
let guess = language.guessBest('When the night has come And the land is dark And the moon is the only light we see', ['de', 'es']);
console.log(guess[0]);
That will show this in console:
{ alpha3: 'eng', alpha2: 'en', language: 'English', score: 1 }
{ alpha3: 'deu', alpha2: 'de', language: 'German', score: 1 }
Similar Search is used to calculate the levenshtein distance between two strings and also is able to search the best substring inside a string, i.e., the substring of a string which levenshtein distance is the smaller to another string.
You can calculate the levenshtein distance:
const { SimilarSearch } = require('node-nlp');
const similar = new SimilarSearch();
similar.getSimilarity('mikailovitch', 'Mikhaïlovitch');
// returns 3
Also you can use collation so case and special characters are compared using collation:
const { SimilarSearch } = require('node-nlp');
const similar = new SimilarSearch({ useCollation: true });
similar.getSimilarity('mikailovitch', 'Mikhaïlovitch');
// returns 1
Unfortunately, collation is very slow, but you can use normalization. Normalization preprocess strings converting to lowercase and converting accented characters to their unaccented equivalent, and this is pretty much faster than collation:
const { SimilarSearch } = require('node-nlp');
const similar = new SimilarSearch({ normalize: true });
similar.getSimilarity('mikailovitch', 'Mikhaïlovitch');
// returns 1
You can search the best substring of string with the lower levenshtein distance. The accuracy is calculated as (length - distance) / length:
const { SimilarSearch } = require('node-nlp');
const similar = new SimilarSearch();
const text1 = 'Morbi interdum ultricies neque varius condimentum. Donec volutpat turpis interdum metus ultricies vulputate.';
const text2 = 'interdumaultriciesbneque';
const result = similar.getBestSubstring(text1, text2);
// result is { start: 6, end: 30, levenshtein: 2, accuracy: 0.9166666666666666 }
You can train a classifier (indicating language) with utterances and their intents. Then you can give a different utterance, and get the classifications for each intent, sorted descending by the score value.
const { NlpClassifier } = require('node-nlp');
const classifier = new NlpClassifier({ language: 'fr' });
classifier.add('Bonjour', 'greet');
classifier.add('bonne nuit', 'greet');
classifier.add('Bonsoir', 'greet');
classifier.add('J\'ai perdu mes clés', 'keys');
classifier.add('Je ne trouve pas mes clés', 'keys');
classifier.add('Je ne me souviens pas où sont mes clés', 'keys');
classifier.train();
const classifications = classifier.getClassifications('où sont mes clés');
// value is [ { label: 'keys', value: 0.994927593677957 }, { label: 'greet', value: 0.005072406322043053 } ]
Or you can get only the best classification
const { NlpClassifier } = require('node-nlp');
const classifier = new NlpClassifier({ language: 'fr' });
classifier.add('Bonjour', 'greet');
classifier.add('bonne nuit', 'greet');
classifier.add('Bonsoir', 'greet');
classifier.add('J\'ai perdu mes clés', 'keys');
classifier.add('Je ne trouve pas mes clés', 'keys');
classifier.add('Je ne me souviens pas où sont mes clés', 'keys');
classifier.train();
const classification = classifier.classify('où sont mes clés');
// value is { label: 'keys', value: 0.994927593677957 }
Currently 18 languages are supported:
The Named Entity Recognition manager is able to store an structure of entities and options of the entity for each language. Then, given an utterance and the language, is able to search the options of the entity inside the utterance, and return a list of the bests substrings. This is done using a threshold for the accuracy, by default the accuracy is 0.5 but you can provide it in the options when creating the instance.
const { NerManager } = require('node-nlp');
const manager = new NerManager({ threshold: 0.8 });
manager.addNamedEntityText('hero', 'spiderman', ['en'], ['Spiderman', 'Spider-man']);
manager.addNamedEntityText('hero', 'iron man', ['en'], ['iron man', 'iron-man']);
manager.addNamedEntityText('hero', 'thor', ['en'], ['Thor']);
manager.addNamedEntityText('food', 'burguer', ['en'], ['Burguer', 'Hamburguer']);
manager.addNamedEntityText('food', 'pizza', ['en'], ['pizza']);
manager.addNamedEntityText('food', 'pasta', ['en'], ['Pasta', 'spaghetti']);
const entities = manager.findEntities('I saw spederman eating speghetti in the city', 'en');
// value is [ { start: 6, end: 15, levenshtein: 1, accuracy: 0.8888888888888888, option: 'spiderman',
// sourceText: 'Spiderman', entity: 'hero', utteranceText: 'spederman' },
// { start: 23, end: 32, levenshtein: 1, accuracy: 0.8888888888888888, option: 'pasta',
// sourceText: 'spaghetti', entity: 'food', utteranceText: 'speghetti' } ]
It also support Regular Expression entities
const { NerManager } = require('node-nlp');
const manager = new NerManager({ threshold: 0.8 });
manager.addNamedEntityText('hero', 'spiderman', ['en'], ['Spiderman', 'Spider-man']);
manager.addNamedEntityText('hero', 'iron man', ['en'], ['iron man', 'iron-man']);
manager.addNamedEntityText('hero', 'thor', ['en'], ['Thor']);
manager.addNamedEntityText('food', 'burguer', ['en'], ['Burguer', 'Hamburguer']);
manager.addNamedEntityText('food', 'pizza', ['en'], ['pizza']);
manager.addNamedEntityText('food', 'pasta', ['en'], ['Pasta', 'spaghetti']);
manager.addNamedEntity('email', /\b(\w[-._\w]*\w@\w[-._\w]*\w\.\w{2,3})\b/ig);
const entities = manager.findEntities('I saw spiderman eating speghetti in the city and his mail is spiderman@gmial.com', 'en');
console.log(entities);
// [ { start: 6,
// end: 15,
// levenshtein: 0,
// accuracy: 1,
// option: 'spiderman',
// sourceText: 'Spiderman',
// entity: 'hero',
// utteranceText: 'spiderman' },
// { start: 23,
// end: 32,
// levenshtein: 1,
// accuracy: 0.8888888888888888,
// option: 'pasta',
// sourceText: 'spaghetti',
// entity: 'food',
// utteranceText: 'speghetti' },
// { start: 61,
// end: 80,
// accuracy: 1,
// sourceText: 'spiderman@gmial.com',
// utteranceText: 'spiderman@gmial.com',
// entity: 'email' } ]
The Sentiment Analysis module is able to calculate the sentiment based on the AFINN. Languages accepted:
Language | AFINN | Senticon | Pattern | Negations |
---|---|---|---|---|
Dutch | X | X | ||
English | X | X | X | X |
French | X | |||
Italian | X | |||
Spanish | X | X | X |
By default Senticon is used if possible, otherwise AFINN, and last one Pattern:
Language | AFINN | Senticon | Pattern |
---|---|---|---|
Dutch | X | ||
English | X | ||
French | X | ||
Italian | X | ||
Spanish | X |
You can use a SentimentAnalyzer if you want to manage only one language:
const { SentimentAnalyzer } = require('node-nlp');
const sentiment = new SentimentAnalyzer({ language: 'en' });
let result = sentiment.getSentiment('I like cats');
console.log(result);
// { score: 0.313,
// numWords: 3,
// numHits: 1,
// comparative: 0.10433333333333333,
// type: 'senticon',
// language: 'en' }
result = sentiment.getSentiment('cats are stupid');
console.log(result);
// { score: -0.458,
// numWords: 3,
// numHits: 1,
// comparative: -0.15266666666666667,
// type: 'senticon',
// language: 'en' }
Or you can use the SentimentManager if you want to manage several languages:
const { SentimentManager } = require('node-nlp');
const sentiment = new SentimentManager();
let result = sentiment.process('en', 'I like cats');
console.log(result);
// { score: 0.313,
// numWords: 3,
// numHits: 1,
// comparative: 0.10433333333333333,
// type: 'senticon',
// language: 'en' }
result = sentiment.process('es', 'Los gatitos son amor');
console.log(result);
// { score: 0.278,
// comparative: 0.0695,
// vote: 'positive',
// numWords: 4,
// numHits: 1,
// type: 'senticon',
// language: 'es' }
The NLP Manager is able to manage several languages. For each one, he manages the Named Entities, and is able to train the NLP classifier. Once we have it trained, we can ask the NLP manager to process one utterance. We can even don't tell the language and the NLP Manger will guess it from the languages that it knows. When the utterance is processed, the NLP manager will:
const { NlpManager } = require('node-nlp');
const manager = new NlpManager({ languages: ['en'] });
manager.addNamedEntityText('hero', 'spiderman', ['en'], ['Spiderman', 'Spider-man']);
manager.addNamedEntityText('hero', 'iron man', ['en'], ['iron man', 'iron-man']);
manager.addNamedEntityText('hero', 'thor', ['en'], ['Thor']);
manager.addNamedEntityText('food', 'burguer', ['en'], ['Burguer', 'Hamburguer']);
manager.addNamedEntityText('food', 'pizza', ['en'], ['pizza']);
manager.addNamedEntityText('food', 'pasta', ['en'], ['Pasta', 'spaghetti']);
manager.addDocument('en', 'I saw %hero% eating %food%', 'sawhero');
manager.addDocument('en', 'I have seen %hero%, he was eating %food%', 'sawhero');
manager.addDocument('en', 'I want to eat %food%', 'wanteat');
manager.train();
const result = manager.process('I saw spiderman eating spaghetti today in the city!');
console.log(result);
// { locale: 'en',
// localeIso2: 'en',
// language: 'English',
// utterance: 'I saw spiderman eating spaghetti today in the city!',
// classification:
// [ { label: 'sawhero', value: 0.9920519933583061 },
// { label: 'wanteat', value: 0.00794800664169383 } ],
// intent: 'sawhero',
// score: 0.9920519933583061,
// entities:
// [ { start: 6,
// end: 15,
// levenshtein: 0,
// accuracy: 1,
// option: 'spiderman',
// sourceText: 'Spiderman',
// entity: 'hero',
// utteranceText: 'spiderman' },
// { start: 23,
// end: 32,
// levenshtein: 0,
// accuracy: 1,
// option: 'pasta',
// sourceText: 'spaghetti',
// entity: 'food',
// utteranceText: 'spaghetti' } ],
// sentiment:
// { score: 0.708,
// comparative: 0.07866666666666666,
// vote: 'positive',
// numWords: 9,
// numHits: 2,
// type: 'senticon',
// language: 'en' } }
Also, you can save and load the NLP Manager to be reused without having to train it, because the thetas of the ML are also stored.
manager.train();
manager.save(filename);
manager = new NlpManager();
manager.load(filename);
const result = manager.process('I saw spiderman eating spaghetti today in the city!');
If no filename is provided by default it is './model.nlp'.
The NLP manager can load all the information from an excel file. You can find an example excel file at https://github.com/axa-group/nlp.js/blob/master/test/nlp/rules.xls Inside the excel there must exists 4 tables: Languages, Named Entities, Intents and Responses. It's very important to keep the existing format of the tables: first row is the name of the table, second row are the column names, next rows are the da.
You can read the guide of how to contribute at Contributing.
You can read the Code of Conduct at Code of Conduct.
This project is developed by AXA Shared Services Spain S.A.
If you need to contact us, you can do it at the email jesus.seijas@axa-groupsolutions.com
Copyright (c) AXA Shared Services Spain S.A.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
FAQs
Library for NLU (Natural Language Understanding) done in Node.js
We found that node-nlp demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
Security News
NVD’s backlog surpasses 20,000 CVEs as analysis slows and NIST announces new system updates to address ongoing delays.
Security News
Research
A malicious npm package disguised as a WhatsApp client is exploiting authentication flows with a remote kill switch to exfiltrate data and destroy files.