New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

ocr-llm

Package Overview
Dependencies
Maintainers
0
Versions
31
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ocr-llm

Fast, ultra-accurate text extraction from any image or PDF, even challenging ones, with structured markdown output powered by vision models.

  • 0.4.15
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
30
increased by172.73%
Maintainers
0
Weekly downloads
 
Created
Source

OcrLLM

Fast, ultra-accurate text extraction from any image or PDF—including challenging ones—with structured Markdown output powered by vision models.

Features

  • 🔮 Extracts text from any image or PDF, even low-quality ones
  • ✨ Outputs clean Markdown
  • 🎨 Handles tables, equations, handwriting, complex layouts, etc.
  • 🚄 Processes multiple pages in parallel
  • 🎯 Retries failed extractions automatically
  • 🖋️ Recognizes any font or writing style
  • ⚡ Caches results for faster reprocessing

Table of Contents

Supported Files

  • PDF documents (*.pdf)
  • PNG (*.png)
  • JPEG/JPG (*.jpg, *.jpeg)
  • WebP (*.webp)
  • GIF (*.gif, first frame only)
  • SVG (*.svg)

Installation

Prerequisites

OcrLLM requires GraphicsMagick and Ghostscript for PDF processing. you can install the dependencies using the following methods:

macOS
brew install graphicsmagick ghostscript
Windows

Download and install the following:

Ensure that both executables are added to your system's PATH environment variable.

Linux
sudo apt-get update && sudo apt-get install -y graphicsmagick ghostscript

These are the most common installation methods, but feel free to install GraphicsMagick and Ghostscript in any way that suits you best. The important thing is to ensure that both are successfully installed on your system.

Installing OcrLLM

Install the ocr-llm package via npm:

npm install ocr-llm

Quick Start

import {OcrLLM} from 'ocr-llm';

const ocrllm = new OcrLLM({
  provider: 'openai',
  key: 'your-api-key',
});

// Extract text from an image
const imageResult = await ocrllm.image('path/to/image.jpg');
console.log(imageResult.content);

// Process a PDF document
const pdfResults = await ocrllm.pdf('path/to/document.pdf');
pdfResults.forEach(page => {
  console.log(`Page ${page.page}:`, page.content);
});

Input Sources

OcrLLM accepts multiple input formats:

Input TypeExample
File paths'/path/to/image.jpg', 'C:\\Documents\\scan.pdf'
URLs'https://example.com/image.png', 'https://files.com/document.pdf'
Base64 strings'...'
Buffer objectsBuffer.from(imageData), fs.readFileSync('image.jpg')

API Reference

OcrLLM Class

new OcrLLM(config)

Creates a new instance of OcrLLM.

  • Parameters:
    • config (Object):
      • provider (string): OCR provider (currently only 'openai' is supported)
      • key (string): API key for the provider
  • Returns: OcrLLM instance

Image Processing

ocrllm.image(input)

Processes a single image.

  • Parameters:
    • input (string | Buffer): File path, URL, base64 string, or Buffer
  • Returns: Promise<ImageResult>
    • ImageResult:
      • content (string): Extracted text in Markdown format
      • metadata (Object): Processing metadata

PDF Processing

ocrllm.pdf(input)

Processes a PDF document.

  • Parameters:
    • input (string | Buffer): File path, URL, base64 string, or Buffer
  • Returns: Promise<PageResult[]>
    • PageResult:
      • page (number): Page number
      • content (string): Extracted text in Markdown format
      • metadata (Object): Processing metadata

Error Handling

OcrLLM includes built-in error handling with detailed error messages and automatic retries for transient failures.

try {
  const result = await ocrllm.image('path/to/image.jpg');
} catch (error) {
  console.error('Processing failed:', error.message);
}

Used Models

OcrLLM uses the following model:

ProviderModelDescription
OpenAIgpt-4o-miniHigh-performance model optimized for efficient text extraction with excellent accuracy and speed.

Browser-Specific Implementation

When using OcrLLM in serverless environments like Vercel, the core library's PDF processing requires system-level dependencies (GraphicsMagick, Ghostscript) that cannot be installed. However, you can use the pdf-to-images-browser package to handle PDF-to-image conversion directly in the browser without any system dependencies or configuration.

By using pdf-to-images-browser for PDF conversion in the client and OcrLLM for text extraction in the server, you can maintain full functionality without needing system dependencies on your server. This hybrid approach gives you the best of both worlds: client-side PDF handling and server-side OCR processing.

We are using Next.js to demonstrate the browser implementation. The same technique can be applied to any browser environment where you need to process PDFs without server-side dependencies.

First, install the pdf-to-images-browser package:

npm install pdf-to-images-browser

Then in your client component:

import pdfToImages from 'pdf-to-images-browser';

const handlePdfUpload = async (pdfFile: File) => {
  try {
    // Convert PDF to images
    const images = await pdfToImages(pdfFile, {
      output: 'blob',
    });

    // Create FormData and append images
    const formData = new FormData();
    images.forEach((image, index) => {
      formData.append('images', image, `page-${index + 1}.png`);
    });

    // Send to API route
    const response = await fetch('/api/extract', {
      method: 'POST',
      body: formData,
    });

    const data = await response.json();
    console.log('Extracted text:', data.results);
  } catch (error) {
    console.error('Error processing PDF:', error);
  }
};

In your Next.js API route handler (app/api/extract/route.ts):

import {NextRequest, NextResponse} from 'next/server';

import {OcrLLM} from 'ocr-llm';

const ocrllm = new OcrLLM({
  provider: 'openai',
  key: process.env.OPENAI_API_KEY!,
});

export async function POST(req: NextRequest) {
  try {
    const formData = await req.formData();
    const images = formData.getAll('images');

    // Process each image and extract text
    const results = await Promise.all(
      images.map(async image => {
        const buffer = Buffer.from(await (image as Blob).arrayBuffer());
        return ocrllm.image(buffer);
      }),
    );

    return NextResponse.json({results});
  } catch (error) {
    console.error('Failed to process images:', error);
    return NextResponse.json(
      {error: 'Failed to process images'},
      {status: 500},
    );
  }
}

Contributing

We welcome contributions from the community to enhance OcrLLM's capabilities and make it even more powerful. ❤️

For guidelines on contributing, please read the Contributing Guide.

Keywords

FAQs

Package last updated on 09 Jan 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc