
Product
Introducing Socket Fix for Safe, Automated Dependency Upgrades
Automatically fix and test dependency updates with socket fix—a new CLI tool that turns CVE alerts into safe, automated upgrades.
Seedable random number generator supporting many common distributions.
Seedable random number generator supporting many common distributions (with esm extension specifiers)
:warning: this is a fork of transitive-bullshit/random (includes breaking changes)
Welcome to the most random module on npm! 😜
npm install --save random-esm
# or
yarn add random-esm
const random = require('random-esm')
// or
import random from 'random-esm'
// quick uniform shortcuts
random.float((min = 0), (max = 1)) // uniform float in [ min, max )
random.int((min = 0), (max = 1)) // uniform integer in [ min, max ]
random.boolean() // true or false
// uniform distribution
random.uniform((min = 0), (max = 1)) // () => [ min, max )
random.uniformInt((min = 0), (max = 1)) // () => [ min, max ]
random.uniformBoolean() // () => [ false, true ]
// normal distribution
random.normal((mu = 0), (sigma = 1))
random.logNormal((mu = 0), (sigma = 1))
// bernoulli distribution
random.bernoulli((p = 0.5))
random.binomial((n = 1), (p = 0.5))
random.geometric((p = 0.5))
// poisson distribution
random.poisson((lambda = 1))
random.exponential((lambda = 1))
// misc distribution
random.irwinHall(n)
random.bates(n)
random.pareto(alpha)
For convenience, several common uniform samplers are exposed directly:
random.float() // 0.2149383367670885
random.int(0, 100) // 72
random.boolean() // true
All distribution methods return a thunk (function with no params), which will return a series of independent, identically distributed random variables from the specified distribution.
// create a normal distribution with default params (mu=1 and sigma=0)
const normal = random.normal()
normal() // 0.4855465422678824
normal() // -0.06696771815439678
normal() // 0.7350852689834705
// create a poisson distribution with default params (lambda=1)
const poisson = random.poisson()
poisson() // 0
poisson() // 4
poisson() // 1
Note that returning a thunk here is more efficient when generating multiple samples from the same distribution.
You can change the underlying PRNG or its seed as follows:
const seedrandom = require('seedrandom')
// change the underlying pseudo random number generator
// by default, Math.random is used as the underlying PRNG
random.use(seedrandom('foobar'))
// create a new independent random number generator (uses seedrandom under the hood)
const rng = random.clone('my-new-seed')
// create a second independent random number generator and use a seeded PRNG
const rng2 = random.clone(seedrandom('kittyfoo'))
// replace Math.random with rng.uniform
rng.patch()
// restore original Math.random
rng.unpatch()
Seedable random number generator supporting many common distributions.
Defaults to Math.random as its underlying pseudorandom number generator.
Type: function (rng)
rng
(RNG | function) Underlying pseudorandom number generator. (optional, default Math.random
)Convenience wrapper around this.rng.next()
Returns a floating point number in [0, 1).
Type: function (): number
Samples a uniform random floating point number, optionally specifying lower and upper bounds.
Convence wrapper around random.uniform()
Type: function (min, max): number
min
number Lower bound (float, inclusive) (optional, default 0
)max
number Upper bound (float, exclusive) (optional, default 1
)Samples a uniform random integer, optionally specifying lower and upper bounds.
Convence wrapper around random.uniformInt()
Type: function (min, max): number
min
number Lower bound (integer, inclusive) (optional, default 0
)max
number Upper bound (integer, inclusive) (optional, default 1
)Samples a uniform random integer, optionally specifying lower and upper bounds.
Convence wrapper around random.uniformInt()
Type: function (min, max): number
min
number Lower bound (integer, inclusive) (optional, default 0
)max
number Upper bound (integer, inclusive) (optional, default 1
)Samples a uniform random boolean value.
Convence wrapper around random.uniformBoolean()
Type: function (): boolean
Samples a uniform random boolean value.
Convence wrapper around random.uniformBoolean()
Type: function (): boolean
Generates a Continuous uniform distribution.
Type: function (min, max): function
min
number Lower bound (float, inclusive) (optional, default 0
)max
number Upper bound (float, exclusive) (optional, default 1
)Generates a Discrete uniform distribution.
Type: function (min, max): function
min
number Lower bound (integer, inclusive) (optional, default 0
)max
number Upper bound (integer, inclusive) (optional, default 1
)Generates a Discrete uniform distribution,
with two possible outcomes, true
or `false.
This method is analogous to flipping a coin.
Type: function (): function
Generates a Normal distribution.
Type: function (mu, sigma): function
Generates a Log-normal distribution.
Type: function (mu, sigma): function
mu
number Mean of underlying normal distribution (optional, default 0
)sigma
number Standard deviation of underlying normal distribution (optional, default 1
)Generates a Bernoulli distribution.
Type: function (p): function
p
number Success probability of each trial. (optional, default 0.5
)Generates a Binomial distribution.
Type: function (n, p): function
n
number Number of trials. (optional, default 1
)p
number Success probability of each trial. (optional, default 0.5
)Generates a Geometric distribution.
Type: function (p): function
p
number Success probability of each trial. (optional, default 0.5
)Generates a Poisson distribution.
Type: function (lambda): function
lambda
number Mean (lambda > 0) (optional, default 1
)Generates an Exponential distribution.
Type: function (lambda): function
lambda
number Inverse mean (lambda > 0) (optional, default 1
)Generates an Irwin Hall distribution.
Type: function (n): function
n
number Number of uniform samples to sum (n >= 0) (optional, default 1
)Generates a Bates distribution.
Type: function (n): function
n
number Number of uniform samples to average (n >= 1) (optional, default 1
)Generates a Pareto distribution.
Type: function (alpha): function
alpha
number Alpha (optional, default 1
)Type: function ()
Creates a new Random
instance, optionally specifying parameters to
set a new seed.
Type: function (args, seed, opts): Random
args
...anyseed
string? Optional seed for new RNG.opts
object? Optional config for new RNG options.Sets the underlying pseudorandom number generator used via
either an instance of seedrandom
, a custom instance of RNG
(for PRNG plugins), or a string specifying the PRNG to use
along with an optional seed
and opts
to initialize the
RNG.
Type: function (args)
args
...anyExample:
const random = require('random-esm')
random.use('example_seedrandom_string')
// or
random.use(seedrandom('kittens'))
// or
random.use(Math.random)
Patches Math.random
with this Random instance's PRNG.
Type: function ()
Restores a previously patched Math.random
to its original value.
Type: function ()
Distributions
Generators
Misc
Travis Fischer support his OSS work by following him on twitter
Thanks go to Andrew Moss for the TypeScript port and for helping to maintain this package!
Shoutout to Roger Combs for donating the random
npm package for this project!
Lots of inspiration from d3-random (@mbostock and @svanschooten).
Some distributions and PRNGs are ported from C++ boost::random.
FAQs
Seedable random number generator supporting many common distributions.
We found that random-esm demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Automatically fix and test dependency updates with socket fix—a new CLI tool that turns CVE alerts into safe, automated upgrades.
Security News
CISA denies CVE funding issues amid backlash over a new CVE foundation formed by board members, raising concerns about transparency and program governance.
Product
We’re excited to announce a powerful new capability in Socket: historical data and enhanced analytics.