Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

sanctuary

Package Overview
Dependencies
Maintainers
12
Versions
31
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

sanctuary

Refuge from unsafe JavaScript

  • 3.1.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
31K
increased by24.41%
Maintainers
12
Weekly downloads
 
Created
Source

❑ Sanctuary

npm CircleCI Gitter

Sanctuary is a JavaScript functional programming library inspired by Haskell and PureScript. It's stricter than Ramda, and provides a similar suite of functions.

Sanctuary promotes programs composed of simple, pure functions. Such programs are easier to comprehend, test, and maintain – they are also a pleasure to write.

Sanctuary provides two data types, Maybe and Either, both of which are compatible with Fantasy Land. Thanks to these data types even Sanctuary functions that may fail, such as head, are composable.

Sanctuary makes it possible to write safe code without null checks. In JavaScript it's trivial to introduce a possible run-time type error:

words[0].toUpperCase()

If words is [] we'll get a familiar error at run-time:

TypeError: Cannot read property 'toUpperCase' of undefined

Sanctuary gives us a fighting chance of avoiding such errors. We might write:

S.map (S.toUpper) (S.head (words))

Sanctuary is designed to work in Node.js and in ES5-compatible browsers.

❑ Folktale

Folktale, like Sanctuary, is a standard library for functional programming in JavaScript. It is well designed and well documented. Whereas Sanctuary treats JavaScript as a member of the ML language family, Folktale embraces JavaScript's object-oriented programming model. Programming with Folktale resembles programming with Scala.

❑ Ramda

Ramda provides several functions that return problematic values such as undefined, Infinity, or NaN when applied to unsuitable inputs. These are known as partial functions. Partial functions necessitate the use of guards or null checks. In order to safely use R.head, for example, one must ensure that the array is non-empty:

if (R.isEmpty (xs)) {
  // ...
} else {
  return f (R.head (xs));
}

Using the Maybe type renders such guards (and null checks) unnecessary. Changing functions such as R.head to return Maybe values was proposed in ramda/ramda#683, but was considered too much of a stretch for JavaScript programmers. Sanctuary was released the following month, in January 2015, as a companion library to Ramda.

In addition to broadening in scope in the years since its release, Sanctuary's philosophy has diverged from Ramda's in several respects.

❑ Totality

Every Sanctuary function is defined for every value that is a member of the function's input type. Such functions are known as total functions. Ramda, on the other hand, contains a number of partial functions.

❑ Information preservation

Certain Sanctuary functions preserve more information than their Ramda counterparts. Examples:

|> R.tail ([])                      |> S.tail ([])
[]                                  Nothing

|> R.tail (['foo'])                 |> S.tail (['foo'])
[]                                  Just ([])

|> R.replace (/^x/) ('') ('abc')    |> S.stripPrefix ('x') ('abc')
'abc'                               Nothing

|> R.replace (/^x/) ('') ('xabc')   |> S.stripPrefix ('x') ('xabc')
'abc'                               Just ('abc')

❑ Invariants

Sanctuary performs rigorous type checking of inputs and outputs, and throws a descriptive error if a type error is encountered. This allows bugs to be caught and fixed early in the development cycle.

Ramda operates on the garbage in, garbage out principle. Functions are documented to take arguments of particular types, but these invariants are not enforced. The problem with this approach in a language as permissive as JavaScript is that there's no guarantee that garbage input will produce garbage output (ramda/ramda#1413). Ramda performs ad hoc type checking in some such cases (ramda/ramda#1419).

Sanctuary can be configured to operate in garbage in, garbage out mode. Ramda cannot be configured to enforce its invariants.

❑ Currying

Sanctuary functions are curried. There is, for example, exactly one way to apply S.reduce to S.add, 0, and xs:

  • S.reduce (S.add) (0) (xs)

Ramda functions are also curried, but in a complex manner. There are four ways to apply R.reduce to R.add, 0, and xs:

  • R.reduce (R.add) (0) (xs)
  • R.reduce (R.add) (0, xs)
  • R.reduce (R.add, 0) (xs)
  • R.reduce (R.add, 0, xs)

Ramda supports all these forms because curried functions enable partial application, one of the library's tenets, but f(x)(y)(z) is considered too unfamiliar and too unattractive to appeal to JavaScript programmers.

Sanctuary's developers prefer a simple, unfamiliar construct to a complex, familiar one. Familiarity can be acquired; complexity is intrinsic.

The lack of breathing room in f(x)(y)(z) impairs readability. The simple solution to this problem, proposed in #438, is to include a space when applying a function: f (x) (y) (z).

Ramda also provides a special placeholder value, R.__, that removes the restriction that a function must be applied to its arguments in order. The following expressions are equivalent:

  • R.reduce (R.__, 0, xs) (R.add)
  • R.reduce (R.add, R.__, xs) (0)
  • R.reduce (R.__, 0) (R.add) (xs)
  • R.reduce (R.__, 0) (R.add, xs)
  • R.reduce (R.__, R.__, xs) (R.add) (0)
  • R.reduce (R.__, R.__, xs) (R.add, 0)

❑ Variadic functions

Ramda provides several functions that take any number of arguments. These are known as variadic functions. Additionally, Ramda provides several functions that take variadic functions as arguments. Although natural in a dynamically typed language, variadic functions are at odds with the type notation Ramda and Sanctuary both use, leading to some indecipherable type signatures such as this one:

R.lift :: (*... -> *...) -> ([*]... -> [*])

Sanctuary has no variadic functions, nor any functions that take variadic functions as arguments. Sanctuary provides two "lift" functions, each with a helpful type signature:

S.lift2 :: Apply f => (a -> b -> c) -> f a -> f b -> f c
S.lift3 :: Apply f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d

❑ Implicit context

Ramda provides R.bind and R.invoker for working with methods. Additionally, many Ramda functions use Function#call or Function#apply to preserve context. Sanctuary makes no allowances for this.

❑ Transducers

Several Ramda functions act as transducers. Sanctuary provides no support for transducers.

❑ Modularity

Whereas Ramda has no dependencies, Sanctuary has a modular design: sanctuary-def provides type checking, sanctuary-type-classes provides Fantasy Land functions and type classes, sanctuary-show provides string representations, and algebraic data types are provided by sanctuary-either, sanctuary-maybe, and sanctuary-pair. Not only does this approach reduce the complexity of Sanctuary itself, but it allows these components to be reused in other contexts.

❑ Types

Sanctuary uses Haskell-like type signatures to describe the types of values, including functions. 'foo', for example, is a member of String; [1, 2, 3] is a member of Array Number. The double colon (::) is used to mean "is a member of", so one could write:

'foo' :: String
[1, 2, 3] :: Array Number

An identifier may appear to the left of the double colon:

Math.PI :: Number

The arrow (->) is used to express a function's type:

Math.abs :: Number -> Number

That states that Math.abs is a unary function that takes an argument of type Number and returns a value of type Number.

Some functions are parametrically polymorphic: their types are not fixed. Type variables are used in the representations of such functions:

S.I :: a -> a

a is a type variable. Type variables are not capitalized, so they are differentiable from type identifiers (which are always capitalized). By convention type variables have single-character names. The signature above states that S.I takes a value of any type and returns a value of the same type. Some signatures feature multiple type variables:

S.K :: a -> b -> a

It must be possible to replace all occurrences of a with a concrete type. The same applies for each other type variable. For the function above, the types with which a and b are replaced may be different, but needn't be.

Since all Sanctuary functions are curried (they accept their arguments one at a time), a binary function is represented as a unary function that returns a unary function: * -> * -> *. This aligns neatly with Haskell, which uses curried functions exclusively. In JavaScript, though, we may wish to represent the types of functions with arities less than or greater than one. The general form is (<input-types>) -> <output-type>, where <input-types> comprises zero or more comma–space (, ) -separated type representations:

  • () -> String
  • (a, b) -> a
  • (a, b, c) -> d

Number -> Number can thus be seen as shorthand for (Number) -> Number.

Sanctuary embraces types. JavaScript doesn't support algebraic data types, but these can be simulated by providing a group of data constructors that return values with the same set of methods. A value of the Either type, for example, is created via the Left constructor or the Right constructor.

It's necessary to extend Haskell's notation to describe implicit arguments to the methods provided by Sanctuary's types. In x.map(y), for example, the map method takes an implicit argument x in addition to the explicit argument y. The type of the value upon which a method is invoked appears at the beginning of the signature, separated from the arguments and return value by a squiggly arrow (~>). The type of the fantasy-land/map method of the Maybe type is written Maybe a ~> (a -> b) -> Maybe b. One could read this as:

When the fantasy-land/map method is invoked on a value of type Maybe a (for any type a) with an argument of type a -> b (for any type b), it returns a value of type Maybe b.

The squiggly arrow is also used when representing non-function properties. Maybe a ~> Boolean, for example, represents a Boolean property of a value of type Maybe a.

Sanctuary supports type classes: constraints on type variables. Whereas a -> a implicitly supports every type, Functor f => (a -> b) -> f a -> f b requires that f be a type that satisfies the requirements of the Functor type class. Type-class constraints appear at the beginning of a type signature, separated from the rest of the signature by a fat arrow (=>).

❑ Type checking

Sanctuary functions are defined via sanctuary-def to provide run-time type checking. This is tremendously useful during development: type errors are reported immediately, avoiding circuitous stack traces (at best) and silent failures due to type coercion (at worst). For example:

S.add (2) (true);
// ! TypeError: Invalid value
//
//   add :: FiniteNumber -> FiniteNumber -> FiniteNumber
//                          ^^^^^^^^^^^^
//                               1
//
//   1)  true :: Boolean
//
//   The value at position 1 is not a member of ‘FiniteNumber’.
//
//   See https://github.com/sanctuary-js/sanctuary-def/tree/v0.22.0#FiniteNumber for information about the FiniteNumber type.

Compare this to the behaviour of Ramda's unchecked equivalent:

R.add (2) (true);
// => 3

There is a performance cost to run-time type checking. Type checking is disabled by default if process.env.NODE_ENV is 'production'. If this rule is unsuitable for a given program, one may use create to create a Sanctuary module based on a different rule. For example:

const S = sanctuary.create ({
  checkTypes: localStorage.getItem ('SANCTUARY_CHECK_TYPES') === 'true',
  env: sanctuary.env,
});

Occasionally one may wish to perform an operation that is not type safe, such as mapping over an object with heterogeneous values. This is possible via selective use of unchecked functions.

❑ Installation

npm install sanctuary will install Sanctuary for use in Node.js.

To add Sanctuary to a website, add the following <script> element, replacing X.Y.Z with a version number greater than or equal to 2.0.2:

<script src="https://cdn.jsdelivr.net/gh/sanctuary-js/sanctuary@X.Y.Z/dist/bundle.js"></script>

Optionally, define aliases for various modules:

const S = window.sanctuary;
const $ = window.sanctuaryDef;
// ...

❑ API

❑ Configure

create :: { checkTypes :: Boolean, env :: Array Type } -⁠> Module

Takes an options record and returns a Sanctuary module. checkTypes specifies whether to enable type checking. The module's polymorphic functions (such as I) require each value associated with a type variable to be a member of at least one type in the environment.

A well-typed application of a Sanctuary function will produce the same result regardless of whether type checking is enabled. If type checking is enabled, a badly typed application will produce an exception with a descriptive error message.

The following snippet demonstrates defining a custom type and using create to produce a Sanctuary module that is aware of that type:

const {create, env} = require ('sanctuary');
const $ = require ('sanctuary-def');
const type = require ('sanctuary-type-identifiers');

//    Identity :: a -> Identity a
const Identity = x => {
  const identity = Object.create (Identity$prototype);
  identity.value = x;
  return identity;
};

//    identityTypeIdent :: String
const identityTypeIdent = 'my-package/Identity@1';

const Identity$prototype = {
  '@@type': identityTypeIdent,
  '@@show': function() { return `Identity (${S.show (this.value)})`; },
  'fantasy-land/map': function(f) { return Identity (f (this.value)); },
};

//    IdentityType :: Type -> Type
const IdentityType = $.UnaryType
  ('Identity')
  ('http://example.com/my-package#Identity')
  ([])
  (x => type (x) === identityTypeIdent)
  (identity => [identity.value]);

const S = create ({
  checkTypes: process.env.NODE_ENV !== 'production',
  env: env.concat ([IdentityType ($.Unknown)]),
});

S.map (S.sub (1)) (Identity (43));
// => Identity (42)

See also env.

env :: Array Type

The Sanctuary module's environment ((S.create ({checkTypes, env})).env is a reference to env). Useful in conjunction with create.

> S.env
[ $.AnyFunction,
. $.Arguments,
. $.Array ($.Unknown),
. $.Array2 ($.Unknown) ($.Unknown),
. $.Boolean,
. $.Buffer,
. $.Date,
. $.Descending ($.Unknown),
. $.Either ($.Unknown) ($.Unknown),
. $.Error,
. $.Fn ($.Unknown) ($.Unknown),
. $.HtmlElement,
. $.Identity ($.Unknown),
. $.JsMap ($.Unknown) ($.Unknown),
. $.JsSet ($.Unknown),
. $.Maybe ($.Unknown),
. $.Module,
. $.Null,
. $.Number,
. $.Object,
. $.Pair ($.Unknown) ($.Unknown),
. $.RegExp,
. $.StrMap ($.Unknown),
. $.String,
. $.Symbol,
. $.Type,
. $.TypeClass,
. $.Undefined ]
unchecked :: Module

A complete Sanctuary module that performs no type checking. This is useful as it permits operations that Sanctuary's type checking would disallow, such as mapping over an object with heterogeneous values.

See also create.

> S.unchecked.map (S.show) ({x: 'foo', y: true, z: 42})
{x: '"foo"', y: 'true', z: '42'}

Opting out of type checking may cause type errors to go unnoticed.

> S.unchecked.add (2) ('2')
'22'

❑ Classify

type :: Any -⁠> { namespace :: Maybe String, name :: String, version :: NonNegativeInteger }

Returns the result of parsing the type identifier of the given value.

> S.type (S.Just (42))
{namespace: Just ('sanctuary-maybe'), name: 'Maybe', version: 1}

> S.type ([1, 2, 3])
{namespace: Nothing, name: 'Array', version: 0}
is :: Type -⁠> Any -⁠> Boolean

Returns true iff the given value is a member of the specified type. See $.test for details.

> S.is ($.Array ($.Integer)) ([1, 2, 3])
true

> S.is ($.Array ($.Integer)) ([1, 2, 3.14])
false

❑ Showable

show :: Any -⁠> String

Alias of show.

> S.show (-0)
'-0'

> S.show (['foo', 'bar', 'baz'])
'["foo", "bar", "baz"]'

> S.show ({x: 1, y: 2, z: 3})
'{"x": 1, "y": 2, "z": 3}'

> S.show (S.Left (S.Right (S.Just (S.Nothing))))
'Left (Right (Just (Nothing)))'

❑ Fantasy Land

Sanctuary is compatible with the Fantasy Land specification.

equals :: Setoid a => a -⁠> a -⁠> Boolean

Curried version of Z.equals that requires two arguments of the same type.

To compare values of different types first use create to create a Sanctuary module with type checking disabled, then use that module's equals function.

> S.equals (0) (-0)
true

> S.equals (NaN) (NaN)
true

> S.equals (S.Just ([1, 2, 3])) (S.Just ([1, 2, 3]))
true

> S.equals (S.Just ([1, 2, 3])) (S.Just ([1, 2, 4]))
false
lt :: Ord a => a -⁠> a -⁠> Boolean

Returns true iff the second argument is less than the first according to Z.lt.

> S.filter (S.lt (3)) ([1, 2, 3, 4, 5])
[1, 2]
lte :: Ord a => a -⁠> a -⁠> Boolean

Returns true iff the second argument is less than or equal to the first according to Z.lte.

> S.filter (S.lte (3)) ([1, 2, 3, 4, 5])
[1, 2, 3]
gt :: Ord a => a -⁠> a -⁠> Boolean

Returns true iff the second argument is greater than the first according to Z.gt.

> S.filter (S.gt (3)) ([1, 2, 3, 4, 5])
[4, 5]
gte :: Ord a => a -⁠> a -⁠> Boolean

Returns true iff the second argument is greater than or equal to the first according to Z.gte.

> S.filter (S.gte (3)) ([1, 2, 3, 4, 5])
[3, 4, 5]
min :: Ord a => a -⁠> a -⁠> a

Returns the smaller of its two arguments (according to Z.lte).

See also max.

> S.min (10) (2)
2

> S.min (new Date ('1999-12-31')) (new Date ('2000-01-01'))
new Date ('1999-12-31')

> S.min ('10') ('2')
'10'
max :: Ord a => a -⁠> a -⁠> a

Returns the larger of its two arguments (according to Z.lte).

See also min.

> S.max (10) (2)
10

> S.max (new Date ('1999-12-31')) (new Date ('2000-01-01'))
new Date ('2000-01-01')

> S.max ('10') ('2')
'2'
clamp :: Ord a => a -⁠> a -⁠> a -⁠> a

Takes a lower bound, an upper bound, and a value of the same type. Returns the value if it is within the bounds; the nearer bound otherwise.

See also min and max.

> S.clamp (0) (100) (42)
42

> S.clamp (0) (100) (-1)
0

> S.clamp ('A') ('Z') ('~')
'Z'
id :: Category c => TypeRep c -⁠> c

Type-safe version of Z.id.

> S.id (Function) (42)
42
concat :: Semigroup a => a -⁠> a -⁠> a

Curried version of Z.concat.

> S.concat ('abc') ('def')
'abcdef'

> S.concat ([1, 2, 3]) ([4, 5, 6])
[1, 2, 3, 4, 5, 6]

> S.concat ({x: 1, y: 2}) ({y: 3, z: 4})
{x: 1, y: 3, z: 4}

> S.concat (S.Just ([1, 2, 3])) (S.Just ([4, 5, 6]))
Just ([1, 2, 3, 4, 5, 6])

> S.concat (Sum (18)) (Sum (24))
Sum (42)
empty :: Monoid a => TypeRep a -⁠> a

Type-safe version of Z.empty.

> S.empty (String)
''

> S.empty (Array)
[]

> S.empty (Object)
{}

> S.empty (Sum)
Sum (0)
invert :: Group g => g -⁠> g

Type-safe version of Z.invert.

> S.invert (Sum (5))
Sum (-5)
filter :: Filterable f => (a -⁠> Boolean) -⁠> f a -⁠> f a

Curried version of Z.filter. Discards every element that does not satisfy the predicate.

See also reject.

> S.filter (S.odd) ([1, 2, 3])
[1, 3]

> S.filter (S.odd) ({x: 1, y: 2, z: 3})
{x: 1, z: 3}

> S.filter (S.odd) (S.Nothing)
Nothing

> S.filter (S.odd) (S.Just (0))
Nothing

> S.filter (S.odd) (S.Just (1))
Just (1)
reject :: Filterable f => (a -⁠> Boolean) -⁠> f a -⁠> f a

Curried version of Z.reject. Discards every element that satisfies the predicate.

See also filter.

> S.reject (S.odd) ([1, 2, 3])
[2]

> S.reject (S.odd) ({x: 1, y: 2, z: 3})
{y: 2}

> S.reject (S.odd) (S.Nothing)
Nothing

> S.reject (S.odd) (S.Just (0))
Just (0)

> S.reject (S.odd) (S.Just (1))
Nothing
map :: Functor f => (a -⁠> b) -⁠> f a -⁠> f b

Curried version of Z.map.

> S.map (Math.sqrt) ([1, 4, 9])
[1, 2, 3]

> S.map (Math.sqrt) ({x: 1, y: 4, z: 9})
{x: 1, y: 2, z: 3}

> S.map (Math.sqrt) (S.Just (9))
Just (3)

> S.map (Math.sqrt) (S.Right (9))
Right (3)

> S.map (Math.sqrt) (S.Pair (99980001) (99980001))
Pair (99980001) (9999)

Replacing Functor f => f with Function x produces the B combinator from combinatory logic (i.e. compose):

Functor f => (a -> b) -> f a -> f b
(a -> b) -> Function x a -> Function x b
(a -> c) -> Function x a -> Function x c
(b -> c) -> Function x b -> Function x c
(b -> c) -> Function a b -> Function a c
(b -> c) -> (a -> b) -> (a -> c)
> S.map (Math.sqrt) (S.add (1)) (99)
10
flip :: Functor f => f (a -⁠> b) -⁠> a -⁠> f b

Curried version of Z.flip. Maps over the given functions, applying each to the given value.

Replacing Functor f => f with Function x produces the C combinator from combinatory logic:

Functor f => f (a -> b) -> a -> f b
Function x (a -> b) -> a -> Function x b
Function x (a -> c) -> a -> Function x c
Function x (b -> c) -> b -> Function x c
Function a (b -> c) -> b -> Function a c
(a -> b -> c) -> b -> a -> c
> S.flip (S.concat) ('!') ('foo')
'foo!'

> S.flip ([Math.floor, Math.ceil]) (1.5)
[1, 2]

> S.flip ({floor: Math.floor, ceil: Math.ceil}) (1.5)
{floor: 1, ceil: 2}

> S.flip (Cons (Math.floor) (Cons (Math.ceil) (Nil))) (1.5)
Cons (1) (Cons (2) (Nil))
bimap :: Bifunctor f => (a -⁠> b) -⁠> (c -⁠> d) -⁠> f a c -⁠> f b d

Curried version of Z.bimap.

> S.bimap (S.toUpper) (Math.sqrt) (S.Pair ('foo') (64))
Pair ('FOO') (8)

> S.bimap (S.toUpper) (Math.sqrt) (S.Left ('foo'))
Left ('FOO')

> S.bimap (S.toUpper) (Math.sqrt) (S.Right (64))
Right (8)
mapLeft :: Bifunctor f => (a -⁠> b) -⁠> f a c -⁠> f b c

Curried version of Z.mapLeft. Maps the given function over the left side of a Bifunctor.

> S.mapLeft (S.toUpper) (S.Pair ('foo') (64))
Pair ('FOO') (64)

> S.mapLeft (S.toUpper) (S.Left ('foo'))
Left ('FOO')

> S.mapLeft (S.toUpper) (S.Right (64))
Right (64)
promap :: Profunctor p => (a -⁠> b) -⁠> (c -⁠> d) -⁠> p b c -⁠> p a d

Curried version of Z.promap.

> S.promap (Math.abs) (S.add (1)) (Math.sqrt) (-100)
11
alt :: Alt f => f a -⁠> f a -⁠> f a

Curried version of Z.alt with arguments flipped to facilitate partial application.

> S.alt (S.Just ('default')) (S.Nothing)
Just ('default')

> S.alt (S.Just ('default')) (S.Just ('hello'))
Just ('hello')

> S.alt (S.Right (0)) (S.Left ('X'))
Right (0)

> S.alt (S.Right (0)) (S.Right (1))
Right (1)
zero :: Plus f => TypeRep f -⁠> f a

Type-safe version of Z.zero.

> S.zero (Array)
[]

> S.zero (Object)
{}

> S.zero (S.Maybe)
Nothing
reduce :: Foldable f => (b -⁠> a -⁠> b) -⁠> b -⁠> f a -⁠> b

Takes a curried binary function, an initial value, and a Foldable, and applies the function to the initial value and the Foldable's first value, then applies the function to the result of the previous application and the Foldable's second value. Repeats this process until each of the Foldable's values has been used. Returns the initial value if the Foldable is empty; the result of the final application otherwise.

See also reduce_.

> S.reduce (S.add) (0) ([1, 2, 3, 4, 5])
15

> S.reduce (xs => x => S.prepend (x) (xs)) ([]) ([1, 2, 3, 4, 5])
[5, 4, 3, 2, 1]
reduce_ :: Foldable f => (a -⁠> b -⁠> b) -⁠> b -⁠> f a -⁠> b

Variant of reduce that takes a reducing function with arguments flipped.

> S.reduce_ (S.append) ([]) (Cons (1) (Cons (2) (Cons (3) (Nil))))
[1, 2, 3]

> S.reduce_ (S.prepend) ([]) (Cons (1) (Cons (2) (Cons (3) (Nil))))
[3, 2, 1]
traverse :: (Applicative f, Traversable t) => TypeRep f -⁠> (a -⁠> f b) -⁠> t a -⁠> f (t b)

Curried version of Z.traverse.

> S.traverse (Array) (S.words) (S.Just ('foo bar baz'))
[Just ('foo'), Just ('bar'), Just ('baz')]

> S.traverse (Array) (S.words) (S.Nothing)
[Nothing]

> S.traverse (S.Maybe) (S.parseInt (16)) (['A', 'B', 'C'])
Just ([10, 11, 12])

> S.traverse (S.Maybe) (S.parseInt (16)) (['A', 'B', 'C', 'X'])
Nothing

> S.traverse (S.Maybe) (S.parseInt (16)) ({a: 'A', b: 'B', c: 'C'})
Just ({a: 10, b: 11, c: 12})

> S.traverse (S.Maybe) (S.parseInt (16)) ({a: 'A', b: 'B', c: 'C', x: 'X'})
Nothing
sequence :: (Applicative f, Traversable t) => TypeRep f -⁠> t (f a) -⁠> f (t a)

Curried version of Z.sequence. Inverts the given t (f a) to produce an f (t a).

> S.sequence (Array) (S.Just ([1, 2, 3]))
[Just (1), Just (2), Just (3)]

> S.sequence (S.Maybe) ([S.Just (1), S.Just (2), S.Just (3)])
Just ([1, 2, 3])

> S.sequence (S.Maybe) ([S.Just (1), S.Just (2), S.Nothing])
Nothing

> S.sequence (S.Maybe) ({a: S.Just (1), b: S.Just (2), c: S.Just (3)})
Just ({a: 1, b: 2, c: 3})

> S.sequence (S.Maybe) ({a: S.Just (1), b: S.Just (2), c: S.Nothing})
Nothing
ap :: Apply f => f (a -⁠> b) -⁠> f a -⁠> f b

Curried version of Z.ap.

> S.ap ([Math.sqrt, x => x * x]) ([1, 4, 9, 16, 25])
[1, 2, 3, 4, 5, 1, 16, 81, 256, 625]

> S.ap ({x: Math.sqrt, y: S.add (1), z: S.sub (1)}) ({w: 4, x: 4, y: 4})
{x: 2, y: 5}

> S.ap (S.Just (Math.sqrt)) (S.Just (64))
Just (8)

Replacing Apply f => f with Function x produces the S combinator from combinatory logic:

Apply f => f (a -> b) -> f a -> f b
Function x (a -> b) -> Function x a -> Function x b
Function x (a -> c) -> Function x a -> Function x c
Function x (b -> c) -> Function x b -> Function x c
Function a (b -> c) -> Function a b -> Function a c
(a -> b -> c) -> (a -> b) -> (a -> c)
> S.ap (s => n => s.slice (0, n)) (s => Math.ceil (s.length / 2)) ('Haskell')
'Hask'
lift2 :: Apply f => (a -⁠> b -⁠> c) -⁠> f a -⁠> f b -⁠> f c

Promotes a curried binary function to a function that operates on two Applys.

> S.lift2 (S.add) (S.Just (2)) (S.Just (3))
Just (5)

> S.lift2 (S.add) (S.Just (2)) (S.Nothing)
Nothing

> S.lift2 (S.and) (S.Just (true)) (S.Just (true))
Just (true)

> S.lift2 (S.and) (S.Just (true)) (S.Just (false))
Just (false)
lift3 :: Apply f => (a -⁠> b -⁠> c -⁠> d) -⁠> f a -⁠> f b -⁠> f c -⁠> f d

Promotes a curried ternary function to a function that operates on three Applys.

> S.lift3 (S.reduce) (S.Just (S.add)) (S.Just (0)) (S.Just ([1, 2, 3]))
Just (6)

> S.lift3 (S.reduce) (S.Just (S.add)) (S.Just (0)) (S.Nothing)
Nothing
apFirst :: Apply f => f a -⁠> f b -⁠> f a

Curried version of Z.apFirst. Combines two effectful actions, keeping only the result of the first. Equivalent to Haskell's (<*) function.

See also apSecond.

> S.apFirst ([1, 2]) ([3, 4])
[1, 1, 2, 2]

> S.apFirst (S.Just (1)) (S.Just (2))
Just (1)
apSecond :: Apply f => f a -⁠> f b -⁠> f b

Curried version of Z.apSecond. Combines two effectful actions, keeping only the result of the second. Equivalent to Haskell's (*>) function.

See also apFirst.

> S.apSecond ([1, 2]) ([3, 4])
[3, 4, 3, 4]

> S.apSecond (S.Just (1)) (S.Just (2))
Just (2)
of :: Applicative f => TypeRep f -⁠> a -⁠> f a

Curried version of Z.of.

> S.of (Array) (42)
[42]

> S.of (Function) (42) (null)
42

> S.of (S.Maybe) (42)
Just (42)

> S.of (S.Either) (42)
Right (42)
chain :: Chain m => (a -⁠> m b) -⁠> m a -⁠> m b

Curried version of Z.chain.

> S.chain (x => [x, x]) ([1, 2, 3])
[1, 1, 2, 2, 3, 3]

> S.chain (n => s => s.slice (0, n)) (s => Math.ceil (s.length / 2)) ('slice')
'sli'

> S.chain (S.parseInt (10)) (S.Just ('123'))
Just (123)

> S.chain (S.parseInt (10)) (S.Just ('XXX'))
Nothing
join :: Chain m => m (m a) -⁠> m a

Type-safe version of Z.join. Removes one level of nesting from a nested monadic structure.

> S.join ([[1], [2], [3]])
[1, 2, 3]

> S.join ([[[1, 2, 3]]])
[[1, 2, 3]]

> S.join (S.Just (S.Just (1)))
Just (1)

> S.join (S.Pair ('foo') (S.Pair ('bar') ('baz')))
Pair ('foobar') ('baz')

Replacing Chain m => m with Function x produces the W combinator from combinatory logic:

Chain m => m (m a) -> m a
Function x (Function x a) -> Function x a
(x -> x -> a) -> (x -> a)
> S.join (S.concat) ('abc')
'abcabc'
chainRec :: ChainRec m => TypeRep m -⁠> (a -⁠> m (Either a b)) -⁠> a -⁠> m b

Performs a chain-like computation with constant stack usage. Similar to Z.chainRec, but curried and more convenient due to the use of the Either type to indicate completion (via a Right).

> S.chainRec (Array)
.            (s => s.length === 2 ? S.map (S.Right) ([s + '!', s + '?'])
.                                 : S.map (S.Left) ([s + 'o', s + 'n']))
.            ('')
['oo!', 'oo?', 'on!', 'on?', 'no!', 'no?', 'nn!', 'nn?']
extend :: Extend w => (w a -⁠> b) -⁠> w a -⁠> w b

Curried version of Z.extend.

> S.extend (S.joinWith ('')) (['x', 'y', 'z'])
['xyz', 'yz', 'z']

> S.extend (f => f ([3, 4])) (S.reverse) ([1, 2])
[4, 3, 2, 1]
duplicate :: Extend w => w a -⁠> w (w a)

Type-safe version of Z.duplicate. Adds one level of nesting to a comonadic structure.

> S.duplicate (S.Just (1))
Just (Just (1))

> S.duplicate ([1])
[[1]]

> S.duplicate ([1, 2, 3])
[[1, 2, 3], [2, 3], [3]]

> S.duplicate (S.reverse) ([1, 2]) ([3, 4])
[4, 3, 2, 1]
extract :: Comonad w => w a -⁠> a

Type-safe version of Z.extract.

> S.extract (S.Pair ('foo') ('bar'))
'bar'
contramap :: Contravariant f => (b -⁠> a) -⁠> f a -⁠> f b

Type-safe version of Z.contramap.

> S.contramap (s => s.length) (Math.sqrt) ('Sanctuary')
3

❑ Combinator

I :: a -⁠> a

The I combinator. Returns its argument. Equivalent to Haskell's id function.

> S.I ('foo')
'foo'
K :: a -⁠> b -⁠> a

The K combinator. Takes two values and returns the first. Equivalent to Haskell's const function.

> S.K ('foo') ('bar')
'foo'

> S.map (S.K (42)) (S.range (0) (5))
[42, 42, 42, 42, 42]
T :: a -⁠> (a -⁠> b) -⁠> b

The T (thrush) combinator. Takes a value and a function, and returns the result of applying the function to the value. Equivalent to Haskell's (&) function.

> S.T (42) (S.add (1))
43

> S.map (S.T (100)) ([S.add (1), Math.sqrt])
[101, 10]

❑ Function

curry2 :: ((a, b) -⁠> c) -⁠> a -⁠> b -⁠> c

Curries the given binary function.

> S.map (S.curry2 (Math.pow) (10)) ([1, 2, 3])
[10, 100, 1000]
curry3 :: ((a, b, c) -⁠> d) -⁠> a -⁠> b -⁠> c -⁠> d

Curries the given ternary function.

> const replaceString = S.curry3 ((what, replacement, string) =>
.   string.replace (what, replacement)
. )

> replaceString ('banana') ('orange') ('banana icecream')
'orange icecream'
curry4 :: ((a, b, c, d) -⁠> e) -⁠> a -⁠> b -⁠> c -⁠> d -⁠> e

Curries the given quaternary function.

> const createRect = S.curry4 ((x, y, width, height) =>
.   ({x, y, width, height})
. )

> createRect (0) (0) (10) (10)
{x: 0, y: 0, width: 10, height: 10}
curry5 :: ((a, b, c, d, e) -⁠> f) -⁠> a -⁠> b -⁠> c -⁠> d -⁠> e -⁠> f

Curries the given quinary function.

> const toUrl = S.curry5 ((protocol, creds, hostname, port, pathname) =>
.   protocol + '//' +
.   S.maybe ('') (S.flip (S.concat) ('@')) (creds) +
.   hostname +
.   S.maybe ('') (S.concat (':')) (port) +
.   pathname
. )

> toUrl ('https:') (S.Nothing) ('example.com') (S.Just ('443')) ('/foo/bar')
'https://example.com:443/foo/bar'

❑ Composition

compose :: Semigroupoid s => s b c -⁠> s a b -⁠> s a c

Curried version of Z.compose.

When specialized to Function, compose composes two unary functions, from right to left (this is the B combinator from combinatory logic).

The generalized type signature indicates that compose is compatible with any Semigroupoid.

See also pipe.

> S.compose (Math.sqrt) (S.add (1)) (99)
10
pipe :: Foldable f => f (Any -⁠> Any) -⁠> a -⁠> b

Takes a sequence of functions assumed to be unary and a value of any type, and returns the result of applying the sequence of transformations to the initial value.

In general terms, pipe performs left-to-right composition of a sequence of functions. pipe ([f, g, h]) (x) is equivalent to h (g (f (x))).

> S.pipe ([S.add (1), Math.sqrt, S.sub (1)]) (99)
9
pipeK :: (Foldable f, Chain m) => f (Any -⁠> m Any) -⁠> m a -⁠> m b

Takes a sequence of functions assumed to be unary that return values with a Chain, and a value of that Chain, and returns the result of applying the sequence of transformations to the initial value.

In general terms, pipeK performs left-to-right Kleisli composition of an sequence of functions. pipeK ([f, g, h]) (x) is equivalent to chain (h) (chain (g) (chain (f) (x))).

> S.pipeK ([S.tail, S.tail, S.head]) (S.Just ([1, 2, 3, 4]))
Just (3)
on :: (b -⁠> b -⁠> c) -⁠> (a -⁠> b) -⁠> a -⁠> a -⁠> c

Takes a binary function f, a unary function g, and two values x and y. Returns f (g (x)) (g (y)).

This is the P combinator from combinatory logic.

> S.on (S.concat) (S.reverse) ([1, 2, 3]) ([4, 5, 6])
[3, 2, 1, 6, 5, 4]

❑ Pair

Pair is the canonical product type: a value of type Pair a b always contains exactly two values: one of type a; one of type b.

The implementation is provided by sanctuary-pair.

Pair :: a -⁠> b -⁠> Pair a b

Pair's sole data constructor. Additionally, it serves as the Pair type representative.

> S.Pair ('foo') (42)
Pair ('foo') (42)
pair :: (a -⁠> b -⁠> c) -⁠> Pair a b -⁠> c

Case analysis for the Pair a b type.

> S.pair (S.concat) (S.Pair ('foo') ('bar'))
'foobar'
fst :: Pair a b -⁠> a

fst (Pair (x) (y)) is equivalent to x.

> S.fst (S.Pair ('foo') (42))
'foo'
snd :: Pair a b -⁠> b

snd (Pair (x) (y)) is equivalent to y.

> S.snd (S.Pair ('foo') (42))
42
swap :: Pair a b -⁠> Pair b a

swap (Pair (x) (y)) is equivalent to Pair (y) (x).

> S.swap (S.Pair ('foo') (42))
Pair (42) ('foo')

❑ Maybe

The Maybe type represents optional values: a value of type Maybe a is either Nothing (the empty value) or a Just whose value is of type a.

The implementation is provided by sanctuary-maybe.

Maybe :: TypeRep Maybe

Maybe type representative.

Nothing :: Maybe a

The empty value of type Maybe a.

> S.Nothing
Nothing
Just :: a -⁠> Maybe a

Constructs a value of type Maybe a from a value of type a.

> S.Just (42)
Just (42)
isNothing :: Maybe a -⁠> Boolean

Returns true if the given Maybe is Nothing; false if it is a Just.

> S.isNothing (S.Nothing)
true

> S.isNothing (S.Just (42))
false
isJust :: Maybe a -⁠> Boolean

Returns true if the given Maybe is a Just; false if it is Nothing.

> S.isJust (S.Just (42))
true

> S.isJust (S.Nothing)
false
maybe :: b -⁠> (a -⁠> b) -⁠> Maybe a -⁠> b

Takes a value of any type, a function, and a Maybe. If the Maybe is a Just, the return value is the result of applying the function to the Just's value. Otherwise, the first argument is returned.

See also maybe_ and fromMaybe.

> S.maybe (0) (S.prop ('length')) (S.Just ('refuge'))
6

> S.maybe (0) (S.prop ('length')) (S.Nothing)
0
maybe_ :: (() -⁠> b) -⁠> (a -⁠> b) -⁠> Maybe a -⁠> b

Variant of maybe that takes a thunk so the default value is only computed if required.

> function fib(n) { return n <= 1 ? n : fib (n - 2) + fib (n - 1); }

> S.maybe_ (() => fib (30)) (Math.sqrt) (S.Just (1000000))
1000

> S.maybe_ (() => fib (30)) (Math.sqrt) (S.Nothing)
832040
fromMaybe :: a -⁠> Maybe a -⁠> a

Takes a default value and a Maybe, and returns the Maybe's value if the Maybe is a Just; the default value otherwise.

See also maybe, fromMaybe_, and maybeToNullable.

> S.fromMaybe (0) (S.Just (42))
42

> S.fromMaybe (0) (S.Nothing)
0
fromMaybe_ :: (() -⁠> a) -⁠> Maybe a -⁠> a

Variant of fromMaybe that takes a thunk so the default value is only computed if required.

> function fib(n) { return n <= 1 ? n : fib (n - 2) + fib (n - 1); }

> S.fromMaybe_ (() => fib (30)) (S.Just (1000000))
1000000

> S.fromMaybe_ (() => fib (30)) (S.Nothing)
832040
justs :: (Filterable f, Functor f) => f (Maybe a) -⁠> f a

Discards each element that is Nothing, and unwraps each element that is a Just. Related to Haskell's catMaybes function.

See also lefts and rights.

> S.justs ([S.Just ('foo'), S.Nothing, S.Just ('baz')])
['foo', 'baz']
mapMaybe :: (Filterable f, Functor f) => (a -⁠> Maybe b) -⁠> f a -⁠> f b

Takes a function and a structure, applies the function to each element of the structure, and returns the "successful" results. If the result of applying the function to an element is Nothing, the result is discarded; if the result is a Just, the Just's value is included.

> S.mapMaybe (S.head) ([[], [1, 2, 3], [], [4, 5, 6], []])
[1, 4]

> S.mapMaybe (S.head) ({x: [1, 2, 3], y: [], z: [4, 5, 6]})
{x: 1, z: 4}
maybeToNullable :: Maybe a -⁠> Nullable a

Returns the given Maybe's value if the Maybe is a Just; null otherwise. Nullable is defined in sanctuary-def.

See also fromMaybe.

> S.maybeToNullable (S.Just (42))
42

> S.maybeToNullable (S.Nothing)
null
maybeToEither :: a -⁠> Maybe b -⁠> Either a b

Converts a Maybe to an Either. Nothing becomes a Left (containing the first argument); a Just becomes a Right.

See also eitherToMaybe.

> S.maybeToEither ('Expecting an integer') (S.parseInt (10) ('xyz'))
Left ('Expecting an integer')

> S.maybeToEither ('Expecting an integer') (S.parseInt (10) ('42'))
Right (42)

❑ Either

The Either type represents values with two possibilities: a value of type Either a b is either a Left whose value is of type a or a Right whose value is of type b.

The implementation is provided by sanctuary-either.

Either :: TypeRep Either

Either type representative.

Left :: a -⁠> Either a b

Constructs a value of type Either a b from a value of type a.

> S.Left ('Cannot divide by zero')
Left ('Cannot divide by zero')
Right :: b -⁠> Either a b

Constructs a value of type Either a b from a value of type b.

> S.Right (42)
Right (42)
isLeft :: Either a b -⁠> Boolean

Returns true if the given Either is a Left; false if it is a Right.

> S.isLeft (S.Left ('Cannot divide by zero'))
true

> S.isLeft (S.Right (42))
false
isRight :: Either a b -⁠> Boolean

Returns true if the given Either is a Right; false if it is a Left.

> S.isRight (S.Right (42))
true

> S.isRight (S.Left ('Cannot divide by zero'))
false
either :: (a -⁠> c) -⁠> (b -⁠> c) -⁠> Either a b -⁠> c

Takes two functions and an Either, and returns the result of applying the first function to the Left's value, if the Either is a Left, or the result of applying the second function to the Right's value, if the Either is a Right.

See also fromLeft and fromRight.

> S.either (S.toUpper) (S.show) (S.Left ('Cannot divide by zero'))
'CANNOT DIVIDE BY ZERO'

> S.either (S.toUpper) (S.show) (S.Right (42))
'42'
fromLeft :: a -⁠> Either a b -⁠> a

Takes a default value and an Either, and returns the Left value if the Either is a Left; the default value otherwise.

See also either and fromRight.

> S.fromLeft ('abc') (S.Left ('xyz'))
'xyz'

> S.fromLeft ('abc') (S.Right (123))
'abc'
fromRight :: b -⁠> Either a b -⁠> b

Takes a default value and an Either, and returns the Right value if the Either is a Right; the default value otherwise.

See also either and fromLeft.

> S.fromRight (123) (S.Right (789))
789

> S.fromRight (123) (S.Left ('abc'))
123
fromEither :: b -⁠> Either a b -⁠> b

Takes a default value and an Either, and returns the Right value if the Either is a Right; the default value otherwise.

The behaviour of fromEither is likely to change in a future release. Please use fromRight instead.

> S.fromEither (0) (S.Right (42))
42

> S.fromEither (0) (S.Left (42))
0
lefts :: (Filterable f, Functor f) => f (Either a b) -⁠> f a

Discards each element that is a Right, and unwraps each element that is a Left.

See also rights.

> S.lefts ([S.Right (20), S.Left ('foo'), S.Right (10), S.Left ('bar')])
['foo', 'bar']
rights :: (Filterable f, Functor f) => f (Either a b) -⁠> f b

Discards each element that is a Left, and unwraps each element that is a Right.

See also lefts.

> S.rights ([S.Right (20), S.Left ('foo'), S.Right (10), S.Left ('bar')])
[20, 10]
tagBy :: (a -⁠> Boolean) -⁠> a -⁠> Either a a

Takes a predicate and a value, and returns a Right of the value if it satisfies the predicate; a Left of the value otherwise.

> S.tagBy (S.odd) (0)
Left (0)

> S.tagBy (S.odd) (1)
Right (1)
encase :: Throwing e a b -⁠> a -⁠> Either e b

Takes a function that may throw and returns a pure function.

> S.encase (JSON.parse) ('["foo","bar","baz"]')
Right (['foo', 'bar', 'baz'])

> S.encase (JSON.parse) ('[')
Left (new SyntaxError ('Unexpected end of JSON input'))
eitherToMaybe :: Either a b -⁠> Maybe b

Converts an Either to a Maybe. A Left becomes Nothing; a Right becomes a Just.

See also maybeToEither.

> S.eitherToMaybe (S.Left ('Cannot divide by zero'))
Nothing

> S.eitherToMaybe (S.Right (42))
Just (42)

❑ Logic

and :: Boolean -⁠> Boolean -⁠> Boolean

Boolean "and".

> S.and (false) (false)
false

> S.and (false) (true)
false

> S.and (true) (false)
false

> S.and (true) (true)
true
or :: Boolean -⁠> Boolean -⁠> Boolean

Boolean "or".

> S.or (false) (false)
false

> S.or (false) (true)
true

> S.or (true) (false)
true

> S.or (true) (true)
true
not :: Boolean -⁠> Boolean

Boolean "not".

See also complement.

> S.not (false)
true

> S.not (true)
false
complement :: (a -⁠> Boolean) -⁠> a -⁠> Boolean

Takes a unary predicate and a value of any type, and returns the logical negation of applying the predicate to the value.

See also not.

> Number.isInteger (42)
true

> S.complement (Number.isInteger) (42)
false
boolean :: a -⁠> a -⁠> Boolean -⁠> a

Case analysis for the Boolean type. boolean (x) (y) (b) evaluates to x if b is false; to y if b is true.

> S.boolean ('no') ('yes') (false)
'no'

> S.boolean ('no') ('yes') (true)
'yes'
ifElse :: (a -⁠> Boolean) -⁠> (a -⁠> b) -⁠> (a -⁠> b) -⁠> a -⁠> b

Takes a unary predicate, a unary "if" function, a unary "else" function, and a value of any type, and returns the result of applying the "if" function to the value if the value satisfies the predicate; the result of applying the "else" function to the value otherwise.

See also when and unless.

> S.ifElse (x => x < 0) (Math.abs) (Math.sqrt) (-1)
1

> S.ifElse (x => x < 0) (Math.abs) (Math.sqrt) (16)
4
when :: (a -⁠> Boolean) -⁠> (a -⁠> a) -⁠> a -⁠> a

Takes a unary predicate, a unary function, and a value of any type, and returns the result of applying the function to the value if the value satisfies the predicate; the value otherwise.

See also unless and ifElse.

> S.when (x => x >= 0) (Math.sqrt) (16)
4

> S.when (x => x >= 0) (Math.sqrt) (-1)
-1
unless :: (a -⁠> Boolean) -⁠> (a -⁠> a) -⁠> a -⁠> a

Takes a unary predicate, a unary function, and a value of any type, and returns the result of applying the function to the value if the value does not satisfy the predicate; the value otherwise.

See also when and ifElse.

> S.unless (x => x < 0) (Math.sqrt) (16)
4

> S.unless (x => x < 0) (Math.sqrt) (-1)
-1

❑ Array

array :: b -⁠> (a -⁠> Array a -⁠> b) -⁠> Array a -⁠> b

Case analysis for the Array a type.

> S.array (S.Nothing) (head => tail => S.Just (head)) ([])
Nothing

> S.array (S.Nothing) (head => tail => S.Just (head)) ([1, 2, 3])
Just (1)

> S.array (S.Nothing) (head => tail => S.Just (tail)) ([])
Nothing

> S.array (S.Nothing) (head => tail => S.Just (tail)) ([1, 2, 3])
Just ([2, 3])
head :: Foldable f => f a -⁠> Maybe a

Returns Just the first element of the given structure if the structure contains at least one element; Nothing otherwise.

> S.head ([1, 2, 3])
Just (1)

> S.head ([])
Nothing

> S.head (Cons (1) (Cons (2) (Cons (3) (Nil))))
Just (1)

> S.head (Nil)
Nothing
last :: Foldable f => f a -⁠> Maybe a

Returns Just the last element of the given structure if the structure contains at least one element; Nothing otherwise.

> S.last ([1, 2, 3])
Just (3)

> S.last ([])
Nothing

> S.last (Cons (1) (Cons (2) (Cons (3) (Nil))))
Just (3)

> S.last (Nil)
Nothing
tail :: (Applicative f, Foldable f, Monoid (f a)) => f a -⁠> Maybe (f a)

Returns Just all but the first of the given structure's elements if the structure contains at least one element; Nothing otherwise.

> S.tail ([1, 2, 3])
Just ([2, 3])

> S.tail ([])
Nothing

> S.tail (Cons (1) (Cons (2) (Cons (3) (Nil))))
Just (Cons (2) (Cons (3) (Nil)))

> S.tail (Nil)
Nothing
init :: (Applicative f, Foldable f, Monoid (f a)) => f a -⁠> Maybe (f a)

Returns Just all but the last of the given structure's elements if the structure contains at least one element; Nothing otherwise.

> S.init ([1, 2, 3])
Just ([1, 2])

> S.init ([])
Nothing

> S.init (Cons (1) (Cons (2) (Cons (3) (Nil))))
Just (Cons (1) (Cons (2) (Nil)))

> S.init (Nil)
Nothing
take :: (Applicative f, Foldable f, Monoid (f a)) => Integer -⁠> f a -⁠> Maybe (f a)

Returns Just the first N elements of the given structure if N is non-negative and less than or equal to the size of the structure; Nothing otherwise.

> S.take (0) (['foo', 'bar'])
Just ([])

> S.take (1) (['foo', 'bar'])
Just (['foo'])

> S.take (2) (['foo', 'bar'])
Just (['foo', 'bar'])

> S.take (3) (['foo', 'bar'])
Nothing

> S.take (3) (Cons (1) (Cons (2) (Cons (3) (Cons (4) (Cons (5) (Nil))))))
Just (Cons (1) (Cons (2) (Cons (3) (Nil))))
drop :: (Applicative f, Foldable f, Monoid (f a)) => Integer -⁠> f a -⁠> Maybe (f a)

Returns Just all but the first N elements of the given structure if N is non-negative and less than or equal to the size of the structure; Nothing otherwise.

> S.drop (0) (['foo', 'bar'])
Just (['foo', 'bar'])

> S.drop (1) (['foo', 'bar'])
Just (['bar'])

> S.drop (2) (['foo', 'bar'])
Just ([])

> S.drop (3) (['foo', 'bar'])
Nothing

> S.drop (3) (Cons (1) (Cons (2) (Cons (3) (Cons (4) (Cons (5) (Nil))))))
Just (Cons (4) (Cons (5) (Nil)))
takeLast :: (Applicative f, Foldable f, Monoid (f a)) => Integer -⁠> f a -⁠> Maybe (f a)

Returns Just the last N elements of the given structure if N is non-negative and less than or equal to the size of the structure; Nothing otherwise.

> S.takeLast (0) (['foo', 'bar'])
Just ([])

> S.takeLast (1) (['foo', 'bar'])
Just (['bar'])

> S.takeLast (2) (['foo', 'bar'])
Just (['foo', 'bar'])

> S.takeLast (3) (['foo', 'bar'])
Nothing

> S.takeLast (3) (Cons (1) (Cons (2) (Cons (3) (Cons (4) (Nil)))))
Just (Cons (2) (Cons (3) (Cons (4) (Nil))))
dropLast :: (Applicative f, Foldable f, Monoid (f a)) => Integer -⁠> f a -⁠> Maybe (f a)

Returns Just all but the last N elements of the given structure if N is non-negative and less than or equal to the size of the structure; Nothing otherwise.

> S.dropLast (0) (['foo', 'bar'])
Just (['foo', 'bar'])

> S.dropLast (1) (['foo', 'bar'])
Just (['foo'])

> S.dropLast (2) (['foo', 'bar'])
Just ([])

> S.dropLast (3) (['foo', 'bar'])
Nothing

> S.dropLast (3) (Cons (1) (Cons (2) (Cons (3) (Cons (4) (Nil)))))
Just (Cons (1) (Nil))
takeWhile :: (a -⁠> Boolean) -⁠> Array a -⁠> Array a

Discards the first element that does not satisfy the predicate, and all subsequent elements.

See also dropWhile.

> S.takeWhile (S.odd) ([3, 3, 3, 7, 6, 3, 5, 4])
[3, 3, 3, 7]

> S.takeWhile (S.even) ([3, 3, 3, 7, 6, 3, 5, 4])
[]
dropWhile :: (a -⁠> Boolean) -⁠> Array a -⁠> Array a

Retains the first element that does not satisfy the predicate, and all subsequent elements.

See also takeWhile.

> S.dropWhile (S.odd) ([3, 3, 3, 7, 6, 3, 5, 4])
[6, 3, 5, 4]

> S.dropWhile (S.even) ([3, 3, 3, 7, 6, 3, 5, 4])
[3, 3, 3, 7, 6, 3, 5, 4]
size :: Foldable f => f a -⁠> NonNegativeInteger

Returns the number of elements of the given structure.

> S.size ([])
0

> S.size (['foo', 'bar', 'baz'])
3

> S.size (Nil)
0

> S.size (Cons ('foo') (Cons ('bar') (Cons ('baz') (Nil))))
3

> S.size (S.Nothing)
0

> S.size (S.Just ('quux'))
1

> S.size (S.Pair ('ignored!') ('counted!'))
1
all :: Foldable f => (a -⁠> Boolean) -⁠> f a -⁠> Boolean

Returns true iff all the elements of the structure satisfy the predicate.

See also any and none.

> S.all (S.odd) ([])
true

> S.all (S.odd) ([1, 3, 5])
true

> S.all (S.odd) ([1, 2, 3])
false
any :: Foldable f => (a -⁠> Boolean) -⁠> f a -⁠> Boolean

Returns true iff any element of the structure satisfies the predicate.

See also all and none.

> S.any (S.odd) ([])
false

> S.any (S.odd) ([2, 4, 6])
false

> S.any (S.odd) ([1, 2, 3])
true
none :: Foldable f => (a -⁠> Boolean) -⁠> f a -⁠> Boolean

Returns true iff none of the elements of the structure satisfies the predicate.

Properties:

  • forall p :: a -> Boolean, xs :: Foldable f => f a. S.none (p) (xs) = S.not (S.any (p) (xs))

  • forall p :: a -> Boolean, xs :: Foldable f => f a. S.none (p) (xs) = S.all (S.complement (p)) (xs)

See also all and any.

> S.none (S.odd) ([])
true

> S.none (S.odd) ([2, 4, 6])
true

> S.none (S.odd) ([1, 2, 3])
false
append :: (Applicative f, Semigroup (f a)) => a -⁠> f a -⁠> f a

Returns the result of appending the first argument to the second.

See also prepend.

> S.append (3) ([1, 2])
[1, 2, 3]

> S.append (3) (Cons (1) (Cons (2) (Nil)))
Cons (1) (Cons (2) (Cons (3) (Nil)))

> S.append ([1]) (S.Nothing)
Just ([1])

> S.append ([3]) (S.Just ([1, 2]))
Just ([1, 2, 3])
prepend :: (Applicative f, Semigroup (f a)) => a -⁠> f a -⁠> f a

Returns the result of prepending the first argument to the second.

See also append.

> S.prepend (1) ([2, 3])
[1, 2, 3]

> S.prepend (1) (Cons (2) (Cons (3) (Nil)))
Cons (1) (Cons (2) (Cons (3) (Nil)))

> S.prepend ([1]) (S.Nothing)
Just ([1])

> S.prepend ([1]) (S.Just ([2, 3]))
Just ([1, 2, 3])
joinWith :: String -⁠> Array String -⁠> String

Joins the strings of the second argument separated by the first argument.

Properties:

  • forall s :: String, t :: String. S.joinWith (s) (S.splitOn (s) (t)) = t

See also splitOn and intercalate.

> S.joinWith (':') (['foo', 'bar', 'baz'])
'foo:bar:baz'
elem :: (Setoid a, Foldable f) => a -⁠> f a -⁠> Boolean

Takes a value and a structure and returns true iff the value is an element of the structure.

See also find.

> S.elem ('c') (['a', 'b', 'c'])
true

> S.elem ('x') (['a', 'b', 'c'])
false

> S.elem (3) ({x: 1, y: 2, z: 3})
true

> S.elem (8) ({x: 1, y: 2, z: 3})
false

> S.elem (0) (S.Just (0))
true

> S.elem (0) (S.Just (1))
false

> S.elem (0) (S.Nothing)
false
find :: Foldable f => (a -⁠> Boolean) -⁠> f a -⁠> Maybe a

Takes a predicate and a structure and returns Just the leftmost element of the structure that satisfies the predicate; Nothing if there is no such element.

See also elem.

> S.find (S.lt (0)) ([1, -2, 3, -4, 5])
Just (-2)

> S.find (S.lt (0)) ([1, 2, 3, 4, 5])
Nothing
intercalate :: (Monoid m, Foldable f) => m -⁠> f m -⁠> m

Curried version of Z.intercalate. Concatenates the elements of the given structure, separating each pair of adjacent elements with the given separator.

See also joinWith.

> S.intercalate (', ') ([])
''

> S.intercalate (', ') (['foo', 'bar', 'baz'])
'foo, bar, baz'

> S.intercalate (', ') (Nil)
''

> S.intercalate (', ') (Cons ('foo') (Cons ('bar') (Cons ('baz') (Nil))))
'foo, bar, baz'

> S.intercalate ([0, 0, 0]) ([])
[]

> S.intercalate ([0, 0, 0]) ([[1], [2, 3], [4, 5, 6], [7, 8], [9]])
[1, 0, 0, 0, 2, 3, 0, 0, 0, 4, 5, 6, 0, 0, 0, 7, 8, 0, 0, 0, 9]
foldMap :: (Monoid m, Foldable f) => TypeRep m -⁠> (a -⁠> m) -⁠> f a -⁠> m

Curried version of Z.foldMap. Deconstructs a foldable by mapping every element to a monoid and concatenating the results.

> S.foldMap (String) (f => f.name) ([Math.sin, Math.cos, Math.tan])
'sincostan'

> S.foldMap (Array) (x => [x + 1, x + 2]) ([10, 20, 30])
[11, 12, 21, 22, 31, 32]
unfoldr :: (b -⁠> Maybe (Pair a b)) -⁠> b -⁠> Array a

Takes a function and a seed value, and returns an array generated by applying the function repeatedly. The array is initially empty. The function is initially applied to the seed value. Each application of the function should result in either:

  • Nothing, in which case the array is returned; or

  • Just a pair, in which case the first element is appended to the array and the function is applied to the second element.

> S.unfoldr (n => n < 1000 ? S.Just (S.Pair (n) (2 * n)) : S.Nothing) (1)
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
range :: Integer -⁠> Integer -⁠> Array Integer

Returns an array of consecutive integers starting with the first argument and ending with the second argument minus one. Returns [] if the second argument is less than or equal to the first argument.

> S.range (0) (10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

> S.range (-5) (0)
[-5, -4, -3, -2, -1]

> S.range (0) (-5)
[]
groupBy :: (a -⁠> a -⁠> Boolean) -⁠> Array a -⁠> Array (Array a)

Splits its array argument into an array of arrays of equal, adjacent elements. Equality is determined by the function provided as the first argument. Its behaviour can be surprising for functions that aren't reflexive, transitive, and symmetric (see equivalence relation).

Properties:

  • forall f :: a -> a -> Boolean, xs :: Array a. S.join (S.groupBy (f) (xs)) = xs
> S.groupBy (S.equals) ([1, 1, 2, 1, 1])
[[1, 1], [2], [1, 1]]

> S.groupBy (x => y => x + y === 0) ([2, -3, 3, 3, 3, 4, -4, 4])
[[2], [-3, 3, 3, 3], [4, -4], [4]]
reverse :: (Applicative f, Foldable f, Monoid (f a)) => f a -⁠> f a

Reverses the elements of the given structure.

> S.reverse ([1, 2, 3])
[3, 2, 1]

> S.reverse (Cons (1) (Cons (2) (Cons (3) (Nil))))
Cons (3) (Cons (2) (Cons (1) (Nil)))

> S.pipe ([S.splitOn (''), S.reverse, S.joinWith ('')]) ('abc')
'cba'
sort :: (Ord a, Applicative m, Foldable m, Monoid (m a)) => m a -⁠> m a

Performs a stable sort of the elements of the given structure, using Z.lte for comparisons.

Properties:

  • S.sort (S.sort (m)) = S.sort (m) (idempotence)

See also sortBy.

> S.sort (['foo', 'bar', 'baz'])
['bar', 'baz', 'foo']

> S.sort ([S.Left (4), S.Right (3), S.Left (2), S.Right (1)])
[Left (2), Left (4), Right (1), Right (3)]
sortBy :: (Ord b, Applicative m, Foldable m, Monoid (m a)) => (a -⁠> b) -⁠> m a -⁠> m a

Performs a stable sort of the elements of the given structure, using Z.lte to compare the values produced by applying the given function to each element of the structure.

Properties:

  • S.sortBy (f) (S.sortBy (f) (m)) = S.sortBy (f) (m) (idempotence)

See also sort.

> S.sortBy (S.prop ('rank')) ([
.   {rank: 7, suit: 'spades'},
.   {rank: 5, suit: 'hearts'},
.   {rank: 2, suit: 'hearts'},
.   {rank: 5, suit: 'spades'},
. ])
[ {rank: 2, suit: 'hearts'},
. {rank: 5, suit: 'hearts'},
. {rank: 5, suit: 'spades'},
. {rank: 7, suit: 'spades'} ]

> S.sortBy (S.prop ('suit')) ([
.   {rank: 7, suit: 'spades'},
.   {rank: 5, suit: 'hearts'},
.   {rank: 2, suit: 'hearts'},
.   {rank: 5, suit: 'spades'},
. ])
[ {rank: 5, suit: 'hearts'},
. {rank: 2, suit: 'hearts'},
. {rank: 7, suit: 'spades'},
. {rank: 5, suit: 'spades'} ]

If descending order is desired, one may use Descending:

> S.sortBy (Descending) ([83, 97, 110, 99, 116, 117, 97, 114, 121])
[121, 117, 116, 114, 110, 99, 97, 97, 83]
zip :: Array a -⁠> Array b -⁠> Array (Pair a b)

Returns an array of pairs of corresponding elements from the given arrays. The length of the resulting array is equal to the length of the shorter input array.

See also zipWith.

> S.zip (['a', 'b']) (['x', 'y', 'z'])
[Pair ('a') ('x'), Pair ('b') ('y')]

> S.zip ([1, 3, 5]) ([2, 4])
[Pair (1) (2), Pair (3) (4)]
zipWith :: (a -⁠> b -⁠> c) -⁠> Array a -⁠> Array b -⁠> Array c

Returns the result of combining, pairwise, the given arrays using the given binary function. The length of the resulting array is equal to the length of the shorter input array.

See also zip.

> S.zipWith (a => b => a + b) (['a', 'b']) (['x', 'y', 'z'])
['ax', 'by']

> S.zipWith (a => b => [a, b]) ([1, 3, 5]) ([2, 4])
[[1, 2], [3, 4]]

❑ Object

prop :: String -⁠> a -⁠> b

Takes a property name and an object with known properties and returns the value of the specified property. If for some reason the object lacks the specified property, a type error is thrown.

For accessing properties of uncertain objects, use get instead. For accessing string map values by key, use value instead.

> S.prop ('a') ({a: 1, b: 2})
1
props :: Array String -⁠> a -⁠> b

Takes a property path (an array of property names) and an object with known structure and returns the value at the given path. If for some reason the path does not exist, a type error is thrown.

For accessing property paths of uncertain objects, use gets instead.

> S.props (['a', 'b', 'c']) ({a: {b: {c: 1}}})
1
get :: (Any -⁠> Boolean) -⁠> String -⁠> a -⁠> Maybe b

Takes a predicate, a property name, and an object and returns Just the value of the specified object property if it exists and the value satisfies the given predicate; Nothing otherwise.

See also gets, prop, and value.

> S.get (S.is ($.Number)) ('x') ({x: 1, y: 2})
Just (1)

> S.get (S.is ($.Number)) ('x') ({x: '1', y: '2'})
Nothing

> S.get (S.is ($.Number)) ('x') ({})
Nothing

> S.get (S.is ($.Array ($.Number))) ('x') ({x: [1, 2, 3]})
Just ([1, 2, 3])

> S.get (S.is ($.Array ($.Number))) ('x') ({x: [1, 2, 3, null]})
Nothing
gets :: (Any -⁠> Boolean) -⁠> Array String -⁠> a -⁠> Maybe b

Takes a predicate, a property path (an array of property names), and an object and returns Just the value at the given path if such a path exists and the value satisfies the given predicate; Nothing otherwise.

See also get.

> S.gets (S.is ($.Number)) (['a', 'b', 'c']) ({a: {b: {c: 42}}})
Just (42)

> S.gets (S.is ($.Number)) (['a', 'b', 'c']) ({a: {b: {c: '42'}}})
Nothing

> S.gets (S.is ($.Number)) (['a', 'b', 'c']) ({})
Nothing

❑ StrMap

StrMap is an abbreviation of string map. A string map is an object, such as {foo: 1, bar: 2, baz: 3}, whose values are all members of the same type. Formally, a value is a member of type StrMap a if its type identifier is 'Object' and the values of its enumerable own properties are all members of type a.

value :: String -⁠> StrMap a -⁠> Maybe a

Retrieve the value associated with the given key in the given string map.

Formally, value (k) (m) evaluates to Just (m[k]) if k is an enumerable own property of m; Nothing otherwise.

See also prop and get.

> S.value ('foo') ({foo: 1, bar: 2})
Just (1)

> S.value ('bar') ({foo: 1, bar: 2})
Just (2)

> S.value ('baz') ({foo: 1, bar: 2})
Nothing
singleton :: String -⁠> a -⁠> StrMap a

Takes a string and a value of any type, and returns a string map with a single entry (mapping the key to the value).

> S.singleton ('foo') (42)
{foo: 42}
insert :: String -⁠> a -⁠> StrMap a -⁠> StrMap a

Takes a string, a value of any type, and a string map, and returns a string map comprising all the entries of the given string map plus the entry specified by the first two arguments (which takes precedence).

Equivalent to Haskell's insert function. Similar to Clojure's assoc function.

> S.insert ('c') (3) ({a: 1, b: 2})
{a: 1, b: 2, c: 3}

> S.insert ('a') (4) ({a: 1, b: 2})
{a: 4, b: 2}
remove :: String -⁠> StrMap a -⁠> StrMap a

Takes a string and a string map, and returns a string map comprising all the entries of the given string map except the one whose key matches the given string (if such a key exists).

Equivalent to Haskell's delete function. Similar to Clojure's dissoc function.

> S.remove ('c') ({a: 1, b: 2, c: 3})
{a: 1, b: 2}

> S.remove ('c') ({})
{}
keys :: StrMap a -⁠> Array String

Returns the keys of the given string map, in arbitrary order.

> S.sort (S.keys ({b: 2, c: 3, a: 1}))
['a', 'b', 'c']
values :: StrMap a -⁠> Array a

Returns the values of the given string map, in arbitrary order.

> S.sort (S.values ({a: 1, c: 3, b: 2}))
[1, 2, 3]
pairs :: StrMap a -⁠> Array (Pair String a)

Returns the key–value pairs of the given string map, in arbitrary order.

> S.sort (S.pairs ({b: 2, a: 1, c: 3}))
[Pair ('a') (1), Pair ('b') (2), Pair ('c') (3)]
fromPairs :: Foldable f => f (Pair String a) -⁠> StrMap a

Returns a string map containing the key–value pairs specified by the given Foldable. If a key appears in multiple pairs, the rightmost pair takes precedence.

> S.fromPairs ([S.Pair ('a') (1), S.Pair ('b') (2), S.Pair ('c') (3)])
{a: 1, b: 2, c: 3}

> S.fromPairs ([S.Pair ('x') (1), S.Pair ('x') (2)])
{x: 2}

❑ Number

negate :: ValidNumber -⁠> ValidNumber

Negates its argument.

> S.negate (12.5)
-12.5

> S.negate (-42)
42
add :: FiniteNumber -⁠> FiniteNumber -⁠> FiniteNumber

Returns the sum of two (finite) numbers.

> S.add (1) (1)
2
sum :: Foldable f => f FiniteNumber -⁠> FiniteNumber

Returns the sum of the given array of (finite) numbers.

> S.sum ([1, 2, 3, 4, 5])
15

> S.sum ([])
0

> S.sum (S.Just (42))
42

> S.sum (S.Nothing)
0
sub :: FiniteNumber -⁠> FiniteNumber -⁠> FiniteNumber

Takes a finite number n and returns the subtract n function.

> S.map (S.sub (1)) ([1, 2, 3])
[0, 1, 2]
mult :: FiniteNumber -⁠> FiniteNumber -⁠> FiniteNumber

Returns the product of two (finite) numbers.

> S.mult (4) (2)
8
product :: Foldable f => f FiniteNumber -⁠> FiniteNumber

Returns the product of the given array of (finite) numbers.

> S.product ([1, 2, 3, 4, 5])
120

> S.product ([])
1

> S.product (S.Just (42))
42

> S.product (S.Nothing)
1
div :: NonZeroFiniteNumber -⁠> FiniteNumber -⁠> FiniteNumber

Takes a non-zero finite number n and returns the divide by n function.

> S.map (S.div (2)) ([0, 1, 2, 3])
[0, 0.5, 1, 1.5]
pow :: FiniteNumber -⁠> FiniteNumber -⁠> FiniteNumber

Takes a finite number n and returns the power of n function.

> S.map (S.pow (2)) ([-3, -2, -1, 0, 1, 2, 3])
[9, 4, 1, 0, 1, 4, 9]

> S.map (S.pow (0.5)) ([1, 4, 9, 16, 25])
[1, 2, 3, 4, 5]
mean :: Foldable f => f FiniteNumber -⁠> Maybe FiniteNumber

Returns the mean of the given array of (finite) numbers.

> S.mean ([1, 2, 3, 4, 5])
Just (3)

> S.mean ([])
Nothing

> S.mean (S.Just (42))
Just (42)

> S.mean (S.Nothing)
Nothing

❑ Integer

even :: Integer -⁠> Boolean

Returns true if the given integer is even; false if it is odd.

> S.even (42)
true

> S.even (99)
false
odd :: Integer -⁠> Boolean

Returns true if the given integer is odd; false if it is even.

> S.odd (99)
true

> S.odd (42)
false

❑ Parse

parseDate :: String -⁠> Maybe ValidDate

Takes a string s and returns Just (new Date (s)) if new Date (s) evaluates to a ValidDate value; Nothing otherwise.

As noted in #488, this function's behaviour is unspecified for some inputs! MDN warns against using the Date constructor to parse date strings:

Note: parsing of date strings with the Date constructor […] is strongly discouraged due to browser differences and inconsistencies. Support for RFC 2822 format strings is by convention only. Support for ISO 8601 formats differs in that date-only strings (e.g. "1970-01-01") are treated as UTC, not local.

> S.parseDate ('2011-01-19T17:40:00Z')
Just (new Date ('2011-01-19T17:40:00.000Z'))

> S.parseDate ('today')
Nothing
parseFloat :: String -⁠> Maybe Number

Takes a string and returns Just the number represented by the string if it does in fact represent a number; Nothing otherwise.

> S.parseFloat ('-123.45')
Just (-123.45)

> S.parseFloat ('foo.bar')
Nothing
parseInt :: Radix -⁠> String -⁠> Maybe Integer

Takes a radix (an integer between 2 and 36 inclusive) and a string, and returns Just the number represented by the string if it does in fact represent a number in the base specified by the radix; Nothing otherwise.

This function is stricter than parseInt: a string is considered to represent an integer only if all its non-prefix characters are members of the character set specified by the radix.

> S.parseInt (10) ('-42')
Just (-42)

> S.parseInt (16) ('0xFF')
Just (255)

> S.parseInt (16) ('0xGG')
Nothing
parseJson :: (Any -⁠> Boolean) -⁠> String -⁠> Maybe a

Takes a predicate and a string that may or may not be valid JSON, and returns Just the result of applying JSON.parse to the string if the result satisfies the predicate; Nothing otherwise.

> S.parseJson (S.is ($.Array ($.Integer))) ('[')
Nothing

> S.parseJson (S.is ($.Array ($.Integer))) ('["1","2","3"]')
Nothing

> S.parseJson (S.is ($.Array ($.Integer))) ('[0,1.5,3,4.5]')
Nothing

> S.parseJson (S.is ($.Array ($.Integer))) ('[1,2,3]')
Just ([1, 2, 3])

❑ RegExp

regex :: RegexFlags -⁠> String -⁠> RegExp

Takes a RegexFlags and a pattern, and returns a RegExp.

> S.regex ('g') (':\\d+:')
/:\d+:/g
regexEscape :: String -⁠> String

Takes a string that may contain regular expression metacharacters, and returns a string with those metacharacters escaped.

Properties:

  • forall s :: String. S.test (S.regex ('') (S.regexEscape (s))) (s) = true
> S.regexEscape ('-=*{XYZ}*=-')
'\\-=\\*\\{XYZ\\}\\*=\\-'
test :: RegExp -⁠> String -⁠> Boolean

Takes a pattern and a string, and returns true iff the pattern matches the string.

> S.test (/^a/) ('abacus')
true

> S.test (/^a/) ('banana')
false
match :: NonGlobalRegExp -⁠> String -⁠> Maybe { match :: String, groups :: Array (Maybe String) }

Takes a pattern and a string, and returns Just a match record if the pattern matches the string; Nothing otherwise.

groups :: Array (Maybe String) acknowledges the existence of optional capturing groups.

Properties:

  • forall p :: Pattern, s :: String. S.head (S.matchAll (S.regex ('g') (p)) (s)) = S.match (S.regex ('') (p)) (s)

See also matchAll.

> S.match (/(good)?bye/) ('goodbye')
Just ({match: 'goodbye', groups: [Just ('good')]})

> S.match (/(good)?bye/) ('bye')
Just ({match: 'bye', groups: [Nothing]})
matchAll :: GlobalRegExp -⁠> String -⁠> Array { match :: String, groups :: Array (Maybe String) }

Takes a pattern and a string, and returns an array of match records.

groups :: Array (Maybe String) acknowledges the existence of optional capturing groups.

See also match.

> S.matchAll (/@([a-z]+)/g) ('Hello, world!')
[]

> S.matchAll (/@([a-z]+)/g) ('Hello, @foo! Hello, @bar! Hello, @baz!')
[ {match: '@foo', groups: [Just ('foo')]},
. {match: '@bar', groups: [Just ('bar')]},
. {match: '@baz', groups: [Just ('baz')]} ]

❑ String

toUpper :: String -⁠> String

Returns the upper-case equivalent of its argument.

See also toLower.

> S.toUpper ('ABC def 123')
'ABC DEF 123'
toLower :: String -⁠> String

Returns the lower-case equivalent of its argument.

See also toUpper.

> S.toLower ('ABC def 123')
'abc def 123'
trim :: String -⁠> String

Strips leading and trailing whitespace characters.

> S.trim ('\t\t foo bar \n')
'foo bar'
stripPrefix :: String -⁠> String -⁠> Maybe String

Returns Just the portion of the given string (the second argument) left after removing the given prefix (the first argument) if the string starts with the prefix; Nothing otherwise.

See also stripSuffix.

> S.stripPrefix ('https://') ('https://sanctuary.js.org')
Just ('sanctuary.js.org')

> S.stripPrefix ('https://') ('http://sanctuary.js.org')
Nothing
stripSuffix :: String -⁠> String -⁠> Maybe String

Returns Just the portion of the given string (the second argument) left after removing the given suffix (the first argument) if the string ends with the suffix; Nothing otherwise.

See also stripPrefix.

> S.stripSuffix ('.md') ('README.md')
Just ('README')

> S.stripSuffix ('.md') ('README')
Nothing
words :: String -⁠> Array String

Takes a string and returns the array of words the string contains (words are delimited by whitespace characters).

See also unwords.

> S.words (' foo bar baz ')
['foo', 'bar', 'baz']
unwords :: Array String -⁠> String

Takes an array of words and returns the result of joining the words with separating spaces.

See also words.

> S.unwords (['foo', 'bar', 'baz'])
'foo bar baz'
lines :: String -⁠> Array String

Takes a string and returns the array of lines the string contains (lines are delimited by newlines: '\n' or '\r\n' or '\r'). The resulting strings do not contain newlines.

See also unlines.

> S.lines ('foo\nbar\nbaz\n')
['foo', 'bar', 'baz']
unlines :: Array String -⁠> String

Takes an array of lines and returns the result of joining the lines after appending a terminating line feed ('\n') to each.

See also lines.

> S.unlines (['foo', 'bar', 'baz'])
'foo\nbar\nbaz\n'
splitOn :: String -⁠> String -⁠> Array String

Returns the substrings of its second argument separated by occurrences of its first argument.

See also joinWith and splitOnRegex.

> S.splitOn ('::') ('foo::bar::baz')
['foo', 'bar', 'baz']
splitOnRegex :: GlobalRegExp -⁠> String -⁠> Array String

Takes a pattern and a string, and returns the result of splitting the string at every non-overlapping occurrence of the pattern.

Properties:

  • forall s :: String, t :: String. S.joinWith (s) (S.splitOnRegex (S.regex ('g') (S.regexEscape (s))) (t)) = t

See also splitOn.

> S.splitOnRegex (/[,;][ ]*/g) ('foo, bar, baz')
['foo', 'bar', 'baz']

> S.splitOnRegex (/[,;][ ]*/g) ('foo;bar;baz')
['foo', 'bar', 'baz']

FAQs

Package last updated on 09 Aug 2020

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc