Security News
Input Validation Vulnerabilities Dominate MITRE's 2024 CWE Top 25 List
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
The tiktoken npm package is designed for tokenizing text, particularly for use with OpenAI's GPT models. It provides efficient and accurate tokenization, which is essential for natural language processing tasks.
Tokenization
This feature allows you to tokenize a string of text into tokens. The example demonstrates how to encode a simple string using the GPT-3 encoding.
const tiktoken = require('tiktoken');
const encoder = tiktoken.getEncoding('gpt-3');
const tokens = encoder.encode('Hello, world!');
console.log(tokens);
Detokenization
This feature allows you to convert tokens back into the original text. The example shows how to decode tokens back into the original string.
const tiktoken = require('tiktoken');
const encoder = tiktoken.getEncoding('gpt-3');
const tokens = encoder.encode('Hello, world!');
const text = encoder.decode(tokens);
console.log(text);
Custom Encoding
This feature allows you to create a custom encoding scheme. The example demonstrates how to define a custom encoding and use it to tokenize a string.
const tiktoken = require('tiktoken');
const customEncoding = tiktoken.createEncoding({
'Hello': 1,
'world': 2,
'!': 3
});
const tokens = customEncoding.encode('Hello, world!');
console.log(tokens);
The tokenizer package provides basic tokenization functionalities. It is more general-purpose compared to tiktoken, which is specifically optimized for OpenAI's GPT models.
The natural package is a comprehensive natural language processing library for Node.js. It includes tokenization as one of its many features, making it more versatile but potentially less optimized for specific use cases like tiktoken.
The wink-tokenizer package is a fast and lightweight tokenizer for JavaScript. It offers similar tokenization capabilities but lacks the specific optimizations for GPT models that tiktoken provides.
tiktoken is a BPE tokeniser for use with OpenAI's models, forked from the original tiktoken library to provide JS/WASM bindings for NodeJS and other JS runtimes.
This repository contains the following packages:
tiktoken
(formally hosted at @dqbd/tiktoken
): WASM bindings for the original Python library, providing full 1-to-1 feature parity.js-tiktoken
: Pure JavaScript port of the original library with the core functionality, suitable for environments where WASM is not well supported or not desired (such as edge runtimes).Documentation for js-tiktoken
can be found in here. Documentation for the tiktoken
can be found here below.
The WASM version of tiktoken
can be installed from NPM:
npm install tiktoken
Basic usage follows, which includes all the OpenAI encoders and ranks:
import assert from "node:assert";
import { get_encoding, encoding_for_model } from "tiktoken";
const enc = get_encoding("gpt2");
assert(
new TextDecoder().decode(enc.decode(enc.encode("hello world"))) ===
"hello world"
);
// To get the tokeniser corresponding to a specific model in the OpenAI API:
const enc = encoding_for_model("text-davinci-003");
// Extend existing encoding with custom special tokens
const enc = encoding_for_model("gpt2", {
"<|im_start|>": 100264,
"<|im_end|>": 100265,
});
// don't forget to free the encoder after it is not used
enc.free();
In constrained environments (eg. Edge Runtime, Cloudflare Workers), where you don't want to load all the encoders at once, you can use the lightweight WASM binary via tiktoken/lite
.
const { Tiktoken } = require("tiktoken/lite");
const cl100k_base = require("tiktoken/encoders/cl100k_base.json");
const encoding = new Tiktoken(
cl100k_base.bpe_ranks,
cl100k_base.special_tokens,
cl100k_base.pat_str
);
const tokens = encoding.encode("hello world");
encoding.free();
If you want to fetch the latest ranks, use the load
function:
const { Tiktoken } = require("tiktoken/lite");
const { load } = require("tiktoken/load");
const registry = require("tiktoken/registry.json");
const models = require("tiktoken/model_to_encoding.json");
async function main() {
const model = await load(registry[models["gpt-3.5-turbo"]]);
const encoder = new Tiktoken(
model.bpe_ranks,
model.special_tokens,
model.pat_str
);
const tokens = encoder.encode("hello world");
encoder.free();
}
main();
If desired, you can create a Tiktoken instance directly with custom ranks, special tokens and regex pattern:
import { Tiktoken } from "../pkg";
import { readFileSync } from "fs";
const encoder = new Tiktoken(
readFileSync("./ranks/gpt2.tiktoken").toString("utf-8"),
{ "<|endoftext|>": 50256, "<|im_start|>": 100264, "<|im_end|>": 100265 },
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)|\\s+"
);
Finally, you can a custom init
function to override the WASM initialization logic for non-Node environments. This is useful if you are using a bundler that does not support WASM ESM integration.
import { get_encoding, init } from "tiktoken/init";
async function main() {
const wasm = "..."; // fetch the WASM binary somehow
await init((imports) => WebAssembly.instantiate(wasm, imports));
const encoding = get_encoding("cl100k_base");
const tokens = encoding.encode("hello world");
encoding.free();
}
main();
As this is a WASM library, there might be some issues with specific runtimes. If you encounter any issues, please open an issue.
Runtime | Status | Notes |
---|---|---|
Node.js | ✅ | |
Bun | ✅ | |
Vite | ✅ | See here for notes |
Next.js | ✅ | See here for notes |
Create React App (via Craco) | ✅ | See here for notes |
Vercel Edge Runtime | ✅ | See here for notes |
Cloudflare Workers | ✅ | See here for notes |
Electron | ✅ | See here for notes |
Deno | ❌ | Currently unsupported (see dqbd/tiktoken#22) |
Svelte + Cloudflare Workers | ❌ | Currently unsupported (see dqbd/tiktoken#37) |
For unsupported runtimes, consider using js-tiktoken
, which is a pure JS implementation of the tokeniser.
If you are using Vite, you will need to add both the vite-plugin-wasm
and vite-plugin-top-level-await
. Add the following to your vite.config.js
:
import wasm from "vite-plugin-wasm";
import topLevelAwait from "vite-plugin-top-level-await";
import { defineConfig } from "vite";
export default defineConfig({
plugins: [wasm(), topLevelAwait()],
});
Both API routes and /pages
are supported with the following next.config.js
configuration.
// next.config.json
const config = {
webpack(config, { isServer, dev }) {
config.experiments = {
asyncWebAssembly: true,
layers: true,
};
return config;
},
};
Usage in pages:
import { get_encoding } from "tiktoken";
import { useState } from "react";
const encoding = get_encoding("cl100k_base");
export default function Home() {
const [input, setInput] = useState("hello world");
const tokens = encoding.encode(input);
return (
<div>
<input
type="text"
value={input}
onChange={(e) => setInput(e.target.value)}
/>
<div>{tokens.toString()}</div>
</div>
);
}
Usage in API routes:
import { get_encoding } from "tiktoken";
import { NextApiRequest, NextApiResponse } from "next";
export default function handler(req: NextApiRequest, res: NextApiResponse) {
const encoding = get_encoding("cl100k_base");
const tokens = encoding.encode("hello world");
encoding.free();
return res.status(200).json({ tokens });
}
By default, the Webpack configugration found in Create React App does not support WASM ESM modules. To add support, please do the following:
react-scripts
with craco
, using the guide found here: https://craco.js.org/docs/getting-started/.craco.config.js
:module.exports = {
webpack: {
configure: (config) => {
config.experiments = {
asyncWebAssembly: true,
layers: true,
};
// turn off static file serving of WASM files
// we need to let Webpack handle WASM import
config.module.rules
.find((i) => "oneOf" in i)
.oneOf.find((i) => i.type === "asset/resource")
.exclude.push(/\.wasm$/);
return config;
},
},
};
Vercel Edge Runtime does support WASM modules by adding a ?module
suffix. Initialize the encoder with the following snippet:
// @ts-expect-error
import wasm from "tiktoken/lite/tiktoken_bg.wasm?module";
import model from "tiktoken/encoders/cl100k_base.json";
import { init, Tiktoken } from "tiktoken/lite/init";
export const config = { runtime: "edge" };
export default async function (req: Request) {
await init((imports) => WebAssembly.instantiate(wasm, imports));
const encoding = new Tiktoken(
model.bpe_ranks,
model.special_tokens,
model.pat_str
);
const tokens = encoding.encode("hello world");
encoding.free();
return new Response(`${tokens}`);
}
Similar to Vercel Edge Runtime, Cloudflare Workers must import the WASM binary file manually and use the tiktoken/lite
version to fit the 1 MB limit. However, users need to point directly at the WASM binary via a relative path (including ./node_modules/
).
Add the following rule to the wrangler.toml
to upload WASM during build:
[[rules]]
globs = ["**/*.wasm"]
type = "CompiledWasm"
Initialize the encoder with the following snippet:
import { init, Tiktoken } from "tiktoken/lite/init";
import wasm from "./node_modules/tiktoken/lite/tiktoken_bg.wasm";
import model from "tiktoken/encoders/cl100k_base.json";
export default {
async fetch() {
await init((imports) => WebAssembly.instantiate(wasm, imports));
const encoder = new Tiktoken(
model.bpe_ranks,
model.special_tokens,
model.pat_str
);
const tokens = encoder.encode("test");
encoder.free();
return new Response(`${tokens}`);
},
};
To use tiktoken in your Electron main process, you need to make sure the WASM binary gets copied into your application package.
Assuming a setup with Electron Forge and @electron-forge/plugin-webpack
, add the following to your webpack.main.config.js
:
const CopyPlugin = require("copy-webpack-plugin");
module.exports = {
// ...
plugins: [
new CopyPlugin({
patterns: [
{ from: "./node_modules/tiktoken/tiktoken_bg.wasm" },
],
}),
],
};
To build the tiktoken
library, make sure to have:
wasm-pack
installed.fetch
.Install all the dev-dependencies with yarn install
and build both WASM binary and JS bindings with yarn build
.
FAQs
JS/WASM bindings for tiktoken
The npm package tiktoken receives a total of 145,034 weekly downloads. As such, tiktoken popularity was classified as popular.
We found that tiktoken demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.
Research
Security News
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.