
Research
NPM targeted by malware campaign mimicking familiar library names
Socket uncovered npm malware campaign mimicking popular Node.js libraries and packages from other ecosystems; packages steal data and execute remote code.
SimpleLPR is a software component for vehicle license plate recognition. It has a very simple programming interface that allows applications to supply a path to an image or a buffer in memory and return the detected license plate text and its location in the input image. It can be used from C++, .NET-enabled programming languages, or Python. Integration is simple and straightforward, as demonstrated by the examples provided with the SDK. Typical detection rates range between 85% and 95%, provided the license plates are in good condition, free of obstructions, and the text height is at least 20 pixels. You can download the user's guide from https://www.warelogic.com/doc/SimpleLPR3.pdf, and the class reference for .NET from https://www.warelogic.com/doc/SimpleLPR.chm. Please submit questions/issues/bug reports/feedback to support@warelogic.com. Code example: using System; using System.Collections.Generic; using SimpleLPR3; // Create an instance of the SimpleLPR engine EngineSetupParms setupP; setupP.cudaDeviceId = -1; // Select CPU setupP.enableImageProcessingWithGPU = false; setupP.enableClassificationWithGPU = false; setupP.maxConcurrentImageProcessingOps = 0; // Use the default value // Create the SimpleLPR engine ISimpleLPR lpr = SimpleLPR.Setup(setupP); // Enable country templates for Brazil lpr.set_countryWeight("Brazil", 1.0f); lpr.set_countryWeight(countryId, 1.0f); // Create a processor object IProcessor proc = lpr.createProcessor(); // Use the analyze version that takes the path to a file List<Candidate> cds = proc.analyze("image.jpg"); // Iterate over all candidates foreach (Candidate cd in cds) { // Iterate over all country matches foreach (CountryMatch match in cd.matches) { Console.WriteLine("Text: {0}, country: {1}", match.text, match.country); } }
SimpleLPR is a software component for vehicle license plate recognition. It has a very simple programming interface that allows applications to supply a path to an image or a buffer in memory and returns the detected license plate text and its location in the input image. It can be used from C++, .NET-enabled programming languages, or Python.
Typical detection rates range between 85% and 95%, provided the license plates are in good condition, free of obstructions, and the text height is at least 20 pixels.
For further information, please download the user's guide and the class reference for .NET.
You can submit your questions/issues/bug reports/feedback to support@warelogic.com
Integration is simple and straightforward, as demonstrated in the following example:
using System;
using System.Collections.Generic;
using SimpleLPR3;
namespace TestSimpleLPR
{
class Program
{
static void Main(string[] args)
{
// Create an instance of the SimpleLPR engine.
EngineSetupParms setupP;
setupP.cudaDeviceId = -1; // Select CPU
setupP.enableImageProcessingWithGPU = false;
setupP.enableClassificationWithGPU = false;
setupP.maxConcurrentImageProcessingOps = 0; // Use the default value.
ISimpleLPR lpr = SimpleLPR.Setup(setupP);
// Output the version number
VersionNumber ver = lpr.versionNumber;
Console.WriteLine("SimpleLPR version {0}.{1}.{2}.{3}", ver.A, ver.B, ver.C, ver.D);
try
{
bool bOk = (args.Length == 2 || args.Length == 3);
if (bOk)
{
string sFilePath = args[1];
// Configure country weights based on the selected country
uint countryId = uint.Parse(args[0]);
if (countryId >= lpr.numSupportedCountries)
throw new Exception("Invalid country id");
for (uint ui = 0; ui < lpr.numSupportedCountries; ++ui)
lpr.set_countryWeight(ui, 0.0f);
lpr.set_countryWeight(countryId, 1.0f);
lpr.realizeCountryWeights();
// Set the product key (if supplied)
if (args.Length == 3)
lpr.set_productKey(args[2]);
// Create a processor object
IProcessor proc = lpr.createProcessor();
proc.plateRegionDetectionEnabled = true;
proc.cropToPlateRegionEnabled = true;
// Use the analyze version that takes the path to a file
List<Candidate> cds = proc.analyze(sFilePath);
// Output the results
Console.WriteLine("***********");
Console.WriteLine("Results of IProcessor.analyze(file)");
if (cds.Count == 0)
{
Console.WriteLine("No license plate found");
}
else
{
Console.WriteLine("{0} license plate candidates found:", cds.Count);
// Iterate over all candidates
foreach (Candidate cd in cds)
{
Console.WriteLine("***********");
Console.WriteLine("Light background: {0}, left: {1}, top: {2}, width: {3}, height: {4}", cd.brightBackground, cd.bbox.Left, cd.bbox.Top, cd.bbox.Width, cd.bbox.Height);
Console.WriteLine("Plate confidence: {0}. Plate vertices: {1}", cd.plateDetectionConfidence, string.Join(", ", cd.plateRegionVertices));
Console.WriteLine("Matches:");
// Iterate over all country matches
foreach (CountryMatch match in cd.matches)
{
Console.WriteLine("-----------");
Console.WriteLine("Text: {0}, country: {1}, ISO: {2}, confidence: {3}", match.text, match.country, match.countryISO, match.confidence);
Console.WriteLine("Elements:");
foreach (Element e in match.elements)
{
Console.WriteLine(" Glyph: {0}, confidence: {1}, left: {2}, top: {3}, width: {4}, height: {5}",
e.glyph, e.confidence, e.bbox.Left, e.bbox.Top, e.bbox.Width, e.bbox.Height);
}
}
}
}
}
else
{
Console.WriteLine("\nUsage: {0} <country id> <source file> [product key]", Environment.GetCommandLineArgs()[0]);
Console.WriteLine(" Parameters:");
Console.WriteLine(" country id: Country identifier. The allowed values are");
for (uint ui = 0; ui < lpr.numSupportedCountries; ++ui)
Console.WriteLine("\t\t\t{0}\t: {1}", ui, lpr.get_countryCode(ui));
Console.WriteLine(" source file: file containing the image to be processed");
Console.WriteLine(" product key: product key file. this value is optional, if not provided SimpleLPR will run in evaluation mode");
}
}
catch (System.Exception ex)
{
Console.WriteLine("Exception occurred!: {0}", ex.Message);
}
}
}
}
FAQs
SimpleLPR is a software component for vehicle license plate recognition. It has a very simple programming interface that allows applications to supply a path to an image or a buffer in memory and return the detected license plate text and its location in the input image. It can be used from C++, .NET-enabled programming languages, or Python. Integration is simple and straightforward, as demonstrated by the examples provided with the SDK. Typical detection rates range between 85% and 95%, provided the license plates are in good condition, free of obstructions, and the text height is at least 20 pixels. You can download the user's guide from https://www.warelogic.com/doc/SimpleLPR3.pdf, and the class reference for .NET from https://www.warelogic.com/doc/SimpleLPR.chm. Please submit questions/issues/bug reports/feedback to support@warelogic.com. Code example: using System; using System.Collections.Generic; using SimpleLPR3; // Create an instance of the SimpleLPR engine EngineSetupParms setupP; setupP.cudaDeviceId = -1; // Select CPU setupP.enableImageProcessingWithGPU = false; setupP.enableClassificationWithGPU = false; setupP.maxConcurrentImageProcessingOps = 0; // Use the default value // Create the SimpleLPR engine ISimpleLPR lpr = SimpleLPR.Setup(setupP); // Enable country templates for Brazil lpr.set_countryWeight("Brazil", 1.0f); lpr.set_countryWeight(countryId, 1.0f); // Create a processor object IProcessor proc = lpr.createProcessor(); // Use the analyze version that takes the path to a file List<Candidate> cds = proc.analyze("image.jpg"); // Iterate over all candidates foreach (Candidate cd in cds) { // Iterate over all country matches foreach (CountryMatch match in cd.matches) { Console.WriteLine("Text: {0}, country: {1}", match.text, match.country); } }
We found that simplelpr demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Socket uncovered npm malware campaign mimicking popular Node.js libraries and packages from other ecosystems; packages steal data and execute remote code.
Research
Socket's research uncovers three dangerous Go modules that contain obfuscated disk-wiping malware, threatening complete data loss.
Research
Socket uncovers malicious packages on PyPI using Gmail's SMTP protocol for command and control (C2) to exfiltrate data and execute commands.