
Security News
AGENTS.md Gains Traction as an Open Format for AI Coding Agents
AGENTS.md is a fast-growing open format giving AI coding agents a shared, predictable way to understand project setup, style, and workflows.
As of AIMS v0.9, everything should be nicely wrapped up as an installable pypi package. You can simply install the AIMS GUI, CLI, and notebook using pip:
pip install aims-immune
You can then launch the GUI, the CLI, or the notebook from the terminal in the directory your data is located using one of:
aims-gui
aims-cli
aims-notebook
Lastly, you can optionally copy test data into your current directory using:
aims-tests
Whether you are a new or returning AIMS user, it is strongly recommended you check out the documentation (see below) to learn details about formatting and usage. For returning users especially, the way AIMS is called has changed completely.
The primary goal of AIMS is to identify discriminating factors between two distinct sets of immune molecules. As of versions 0.8 and later, the software is now capable of analyzing any set of sequences with general conservation and localized diversity. AIMS has specific analysis modes for Immunoglobulins (Ig - T Cell Receptors and Antibodies) and Peptides (Specifically those isolated from MHC), as well as a more general multi-sequence alignment analysis mode that has been used to characterize MHC molecules, MHC-like molecules, and the non-immunological Dpr-DIP proteins.
AIMS is a python package distributed in a notebook, CLI, and GUI format. An example of an application of AIMS can be seen in this peer-reviewed article: https://elifesciences.org/articles/61393
When publishing analysis from this software, please cite:
Boughter CT, Borowska MT, Guthmiller JJ, Bendelac A, Wilson PC, Roux B, Adams EJ. Biochemical Patterns of Antibody Polyreactivity Revealed Through a Bioinformatics-Based Analysis of CDR Loops. eLife. 2020. DOI: 10.7554/eLife.61393
&
Boughter CT, Meier-Schellersheim M. An Integrated Approach to the Characterization of Immune Repertoires Using AIMS: An Automated Immune Molecule Separator. PLoS Computational Biology. 2023. DOI: 10.1371/journal.pcbi.1011577
Rather than have all of the instructions on this GitHub page, all information on installation and usage (and more!) has been moved to a separate, more readable documentation page. Please follow this link:
https://aims-doc.readthedocs.io/en/latest/
For the comprehensive AIMS user guide.
As of versions 0.8 and later, the data necessary for reproducing data published thus far have been moved to a separate repository. This repository can be found here:
https://github.com/ctboughter/AIMS_manuscripts
The underlying code remains the same, and will continue to be updated. This has been done to keep the AIMS analysis software more streamlined and less cluttered with manuscript-specific analysis.
Now that AIMS has been out and in the wild for around five years, there have been additional published peer-reviewed manuscripts or posted preprints that highlight the capabilities of AIMS! I'll try to keep this list relatively up to date, and if it ever gets lengthy will likely move it to the ReadTheDocs page. Manuscripts thus far include:
FAQs
A software for the analysis of immune repertoires
We found that aims-immune demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
AGENTS.md is a fast-growing open format giving AI coding agents a shared, predictable way to understand project setup, style, and workflows.
Security News
/Research
Malicious npm package impersonates Nodemailer and drains wallets by hijacking crypto transactions across multiple blockchains.
Security News
This episode explores the hard problem of reachability analysis, from static analysis limits to handling dynamic languages and massive dependency trees.