Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

aiocv

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

aiocv

aiocv Is A Python Library Used To Track Hands, Track Pose, Detect Face, Detect Contours (Shapes), Detect Cars, Detect Number Plate, Detect Smile, Detect Eyes, Control Volume Using Gesture, Read QR Codes And Create Face Mesh On Image/Video.

  • 0.0.36
  • PyPI
  • Socket score

Maintainers
2

AIOCV

aiocv Is A Python Library Used To Track Hands, Track Pose, Detect Face, Detect Contours (Shapes), Detect Cars, Detect Number Plate, Detect Smile, Detect Eyes, Control Volume Using Gesture, Read QR Codes And Create Face Mesh On Image/Video.

Installation

Use the package manager pip to install aiocv.

pip install aiocv

Usage

Hand Tracking
import aiocv
import cv2
img = cv2.imread("hands.png")
# Make An Object
hands = aiocv.HandTrack()
# Use findHands() Method To Track Hands On Image/Video
hands.findHands(img,draw=True)
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findHands() Method :
findHands(self,img=None,draw=True)
If You Are Not Getting Desired Results, Consider Changing detectionConfidence = 1 and trackConfidence = 1
Output :

Hand Image

Pose Detector
import aiocv
import cv2
img = cv2.imread("man.png")
# Make An Object
pose = aiocv.PoseDetector()
# Use findPose() Method To Detect Pose On Image/Video
pose.findPose(img,draw=True)
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findPose() Method :
findPose(self,img=None,draw=True)
If You Are Not Getting Desired Results, Consider Changing detectionConfidence = 1 and trackConfidence = 1
Output :

Pose Track Image

Face Detection
import aiocv
import cv2
img = cv2.imread("elon_musk.png")
# Make An Object
face = aiocv.FaceDetector()
# Use findFace() Method To Detect Face On Image/Video
face.findFace(img,draw=True)
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findFace() Method :
findFace(self,img=None,draw=True)
If You Are Not Getting Desired Results, Consider Changing detectionConfidence = 1
Output :

Face Detection Image

Face Mesh
import aiocv
import cv2
img = cv2.imread("elon_musk.png")
# Make An Object
mesh = aiocv.FaceMesh()
# Use findFaceMesh() Method To Detect Face And Draw Mesh On Image/Video
mesh.findFaceMesh(img,draw=True)
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findFaceMesh() Method :
findFaceMesh(self,img=None,draw=True)
If You Are Not Getting Desired Results, Consider Changing detectionConfidence = 1 and trackConfidence = 1
Output :

Face Mesh Image

Contour (Shape) Detection
import aiocv
import cv2
img = cv2.imread("shapes.png")
# Make An Object
shape = aiocv.ContourDetector(img)
# Use findContours() Method To Detect Shapes On Image/Video
shape.findContours(img,draw=True)
cv2.imshow("Image",img)
cv2.waitKey(0)
Output :

Contour Detection Image

Car Detection
import aiocv
import cv2
img = cv2.imread("car.png")
# Make An Object
car = aiocv.CarDetector(img)
# Use findCars() Method To Detect Cars On Image/Video
car.findCars()
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findCars() Method :
findCars(self,color=(255,0,0),thickness=2)
Output :

Car Detection Image

Number Plate Detection
import aiocv
import cv2
img = cv2.imread("car.png")
# Make An Object
car = aiocv.NumberPlateDetector(img)
# Use findNumberPlate() Method To Detect Number Plate On Image/Video
car.findNumberPlate()
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findNumberPlate() Method :
findNumberPlate(self,color=(255,0,0),thickness=2)
Output :

Number Plate Detection Image

Smile Detection
import aiocv
import cv2
img = cv2.imread("person.png")
# Make An Object
smile = aiocv.SmileDetector(img)
# Use findSmile() Method To Detect Smile On Image/Video
smile.findSmile()
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findSmile() Method :
findSmile(self,color=(255,0,0),thickness=2)
Output :

Smile Detection Image

Eyes Detection
import aiocv
import cv2
img = cv2.imread("person.png")
# Make An Object
eyes = aiocv.EyesDetector(img)
# Use findEyes() Method To Detect Eyes On Image/Video
eyes.findEyes()
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findEyes() Method :
findEyes(self,color=(255,0,0),thickness=2)
Output :

Eyes Detection Image

Control Volume Using Gesture
import aiocv
# Make An Object
gvc = aiocv.GestureVolumeControl()
# Use controlVolume() Method To Control Volume
gvc.controlVolume()
Params For controlVolume() Method :
controlVolume(self,color=(255,0,0),thickness=2)
Params For GestureVolumeControl Class :
gvc = aiocv.GestureVolumeControl(webcamIndex = 0)
# If You Want To Control From Other Camera, Set The webcamIndex Accordingly.
Output :

Gesture Volume Control Image

Read QR Code
import aiocv
import cv2
img = cv2.imread("qr.png")
# Make An Object
qr = aiocv.QRCodeReader(img)
# Use findQRCode() Method To Detect QR Code On Image/Video
text=qr.findQRCode()
cv2.imshow("Image",img)
cv2.waitKey(0)
Params For findQRCode() Method :
findQRCode(self,color=(255,0,0),thickness=3)
To Print The Extracted Text :
print(text)
Output :

QR Code Detected Image

Contributing

Pull Requests Are Welcome. For Major Changes, Please Open An Issue First To Discuss What You Would Like To Change.

Please Make Sure To Update Tests As Appropriate.

License

MIT

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc