You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

andeplane-ai

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

andeplane-ai

A set of AI tools for working with Cognite Data Fusion in Python.

0.5.2
pipPyPI
Maintainers
1

cognite-ai

A set of AI tools for working with CDF in Python.

MemoryVectorStore

Store and query vector embeddings created from CDF. This can enable a bunch of use cases where the number of vectors aren't that big.

Install the package

%pip install cognite-ai

Then you can create vectors from text (both multiple lines or a list of strings) like this


from cognite.ai import MemoryVectorStore
from cognite.client import CogniteClient

client = CogniteClient()
vector_store = MemoryVectorStore(client)

vector_store.store_text("Hi, I am a software engineer working for Cognite.")
vector_store.store_text("The moon is orbiting the earth, which is orbiting the sun.")
vector_store.store_text("Coffee can be a great way to stay awake.")

vector_store.query_text("I am tired, what can I do?")

Smart data frames

Chat with your data using LLMs. Built on top of PandasAI version 2.2.15. If you have loaded data into a Pandas dataframe, you can run

Install the package

%pip install cognite-ai

Chat with your data

from cognite.client import CogniteClient
from cognite.ai import load_pandasai

client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()

workorders_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorders", limit=-1)
workitems_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workitems", limit=-1)
workorder2items_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2items", limit=-1)
workorder2assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2assets", limit=-1)
assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "assets", limit=-1)

smart_lake_df = SmartDatalake([workorders_df, workitems_df, assets_df, workorder2items_df, workorder2assets_df], cognite_client=client)
smart_lake_df.chat("Which workorders are the longest, and what work items do they have?")


s_workorders_df = SmartDataframe(workorders_df, cognite_client=client)
s_workorders_df.chat('Which 5 work orders are the longest?')

Configure LLM parameters

params = {
    "model": "gpt-35-turbo",
    "temperature": 0.5
}

s_workorders_df = SmartDataframe(workorders_df, cognite_client=client, params=params)

Pandas AI agent

We can also

from cognite.client import CogniteClient
from cognite.ai import load_pandasai

client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()

# Create example data
sales_by_country_df = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "revenue": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000]
})

agent = Agent(sales_by_country_df, cognite_client=client)

print(agent.chat("Which are the top 5 countries by sales?"))

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts