
Research
Two Malicious Rust Crates Impersonate Popular Logger to Steal Wallet Keys
Socket uncovers malicious Rust crates impersonating fast_log to steal Solana and Ethereum wallet keys from source code.
andeplane-ai
Advanced tools
A set of AI tools for working with CDF in Python.
Store and query vector embeddings created from CDF. This can enable a bunch of use cases where the number of vectors aren't that big.
Install the package
%pip install cognite-ai
Then you can create vectors from text (both multiple lines or a list of strings) like this
from cognite.ai import MemoryVectorStore
from cognite.client import CogniteClient
client = CogniteClient()
vector_store = MemoryVectorStore(client)
vector_store.store_text("Hi, I am a software engineer working for Cognite.")
vector_store.store_text("The moon is orbiting the earth, which is orbiting the sun.")
vector_store.store_text("Coffee can be a great way to stay awake.")
vector_store.query_text("I am tired, what can I do?")
Chat with your data using LLMs. Built on top of PandasAI version 2.2.15. If you have loaded data into a Pandas dataframe, you can run
Install the package
%pip install cognite-ai
Chat with your data
from cognite.client import CogniteClient
from cognite.ai import load_pandasai
client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()
workorders_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorders", limit=-1)
workitems_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workitems", limit=-1)
workorder2items_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2items", limit=-1)
workorder2assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2assets", limit=-1)
assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "assets", limit=-1)
smart_lake_df = SmartDatalake([workorders_df, workitems_df, assets_df, workorder2items_df, workorder2assets_df], cognite_client=client)
smart_lake_df.chat("Which workorders are the longest, and what work items do they have?")
s_workorders_df = SmartDataframe(workorders_df, cognite_client=client)
s_workorders_df.chat('Which 5 work orders are the longest?')
Configure LLM parameters
params = {
"model": "gpt-35-turbo",
"temperature": 0.5
}
s_workorders_df = SmartDataframe(workorders_df, cognite_client=client, params=params)
We can also
from cognite.client import CogniteClient
from cognite.ai import load_pandasai
client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()
# Create example data
sales_by_country_df = pd.DataFrame({
"country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
"revenue": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000]
})
agent = Agent(sales_by_country_df, cognite_client=client)
print(agent.chat("Which are the top 5 countries by sales?"))
FAQs
A set of AI tools for working with Cognite Data Fusion in Python.
We found that andeplane-ai demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Socket uncovers malicious Rust crates impersonating fast_log to steal Solana and Ethereum wallet keys from source code.
Research
A malicious package uses a QR code as steganography in an innovative technique.
Research
/Security News
Socket identified 80 fake candidates targeting engineering roles, including suspected North Korean operators, exposing the new reality of hiring as a security function.