
Product
Introducing Pull Request Stories to Help Security Teams Track Supply Chain Risks
Socket’s new Pull Request Stories give security teams clear visibility into dependency risks and outcomes across scanned pull requests.
.. -- mode: rst --
|
.. image:: https://img.shields.io/github/license/raphaelvallat/antropy.svg :target: https://github.com/raphaelvallat/antropy/blob/master/LICENSE
.. image:: https://github.com/raphaelvallat/antropy/actions/workflows/python_tests.yml/badge.svg :target: https://github.com/raphaelvallat/antropy/actions/workflows/python_tests.yml
.. image:: https://codecov.io/gh/raphaelvallat/antropy/branch/master/graph/badge.svg :target: https://codecov.io/gh/raphaelvallat/antropy
.. figure:: https://github.com/raphaelvallat/antropy/blob/master/docs/pictures/logo.png?raw=true :align: center
AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to extract features from EEG signals.
Link to documentation <https://raphaelvallat.com/antropy/build/html/index.html>
_AntroPy can be installed with pip
.. code-block:: shell
pip install antropy
or conda
.. code-block:: shell
conda config --add channels conda-forge conda config --set channel_priority strict conda install antropy
To build and install from source, clone this repository or download the source archive and decompress the files
.. code-block:: shell
cd antropy pip install ".[test]" # install the package pip install -e ".[test]" # or editable install pytest
Dependencies
numpy <https://numpy.org/>
_scipy <https://www.scipy.org/>
_scikit-learn <https://scikit-learn.org/>
_numba <http://numba.pydata.org/>
_Entropy
.. code-block:: python
import numpy as np
import antropy as ant
np.random.seed(1234567)
x = np.random.normal(size=3000)
# Permutation entropy
print(ant.perm_entropy(x, normalize=True))
# Spectral entropy
print(ant.spectral_entropy(x, sf=100, method='welch', normalize=True))
# Singular value decomposition entropy
print(ant.svd_entropy(x, normalize=True))
# Approximate entropy
print(ant.app_entropy(x))
# Sample entropy
print(ant.sample_entropy(x))
# Hjorth mobility and complexity
print(ant.hjorth_params(x))
# Number of zero-crossings
print(ant.num_zerocross(x))
# Lempel-Ziv complexity
print(ant.lziv_complexity('01111000011001', normalize=True))
.. parsed-literal::
0.9995371694290871
0.9940882825422431
0.9999110978316078
2.015221318528564
2.198595813245399
(1.4313385010057378, 1.215335712274099)
1531
1.3597696150205727
Fractal dimension
.. code-block:: python
# Petrosian fractal dimension
print(ant.petrosian_fd(x))
# Katz fractal dimension
print(ant.katz_fd(x))
# Higuchi fractal dimension
print(ant.higuchi_fd(x))
# Detrended fluctuation analysis
print(ant.detrended_fluctuation(x))
.. parsed-literal::
1.0310643385753608
5.954272156665926
2.005040632258251
0.47903505674073327
Execution time
Here are some benchmarks computed on a MacBook Pro (2020).
.. code-block:: python
import numpy as np
import antropy as ant
np.random.seed(1234567)
x = np.random.rand(1000)
# Entropy
%timeit ant.perm_entropy(x)
%timeit ant.spectral_entropy(x, sf=100)
%timeit ant.svd_entropy(x)
%timeit ant.app_entropy(x) # Slow
%timeit ant.sample_entropy(x) # Numba
# Fractal dimension
%timeit ant.petrosian_fd(x)
%timeit ant.katz_fd(x)
%timeit ant.higuchi_fd(x) # Numba
%timeit ant.detrended_fluctuation(x) # Numba
.. parsed-literal::
106 µs ± 5.49 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
138 µs ± 3.53 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
40.7 µs ± 303 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
2.44 ms ± 134 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.21 ms ± 35.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
23.5 µs ± 695 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
40.1 µs ± 2.09 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
13.7 µs ± 251 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
315 µs ± 10.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Development
===========
AntroPy was created and is maintained by `Raphael Vallat <https://raphaelvallat.com>`_. Contributions are more than welcome so feel free to contact me, open an issue or submit a pull request!
To see the code or report a bug, please visit the `GitHub repository <https://github.com/raphaelvallat/antropy>`_.
Note that this program is provided with **NO WARRANTY OF ANY KIND**. Always double check the results.
Acknowledgement
===============
Several functions of AntroPy were adapted from:
- MNE-features: https://github.com/mne-tools/mne-features
- pyEntropy: https://github.com/nikdon/pyEntropy
- pyrem: https://github.com/gilestrolab/pyrem
- nolds: https://github.com/CSchoel/nolds
All the credit goes to the author of these excellent packages.
FAQs
AntroPy: entropy and complexity of time-series in Python
We found that antropy demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Socket’s new Pull Request Stories give security teams clear visibility into dependency risks and outcomes across scanned pull requests.
Research
/Security News
npm author Qix’s account was compromised, with malicious versions of popular packages like chalk-template, color-convert, and strip-ansi published.
Research
Four npm packages disguised as cryptographic tools steal developer credentials and send them to attacker-controlled Telegram infrastructure.