Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

asdfghjkl

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

asdfghjkl

ASDL: Automatic Second-order Differentiation (for Fisher, Gradient covariance, Hessian, Jacobian, and Kernel) Library

  • 0.1a4
  • PyPI
  • Socket score

Maintainers
1

ASDL: Automatic Second-order Differentiation Library

ASDL is an extension library of PyTorch to easily perform gradient preconditioning using second-order information (e.g., Hessian, Fisher information) for deep neural networks.

ASDL provides various implementations and a unified interface (GradientMaker) for gradient preconditioning for deep neural networks. For example, to train your model with gradient preconditioning by K-FAC algorithm, you can replace a <Standard> gradient calculation procedure (i.e., a forward pass followed by a backward pass) with one by <ASDL> with KfacGradientMaker like the following:

from asdl.precondition import PreconditioningConfig, KfacGradientMaker

# Initialize model
model = Net()

# Initialize optimizer (SGD is recommended)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

# Initialize KfacGradientMaker
config = PreconditioningConfig(data_size=batch_size, damping=0.01)
gm = KfacGradientMaker(model, config)

# Training loop
for x, t in data_loader:
  optimizer.zero_grad()
  
  # <Standard> (gradient calculation)
  # y = model(x)
  # loss = loss_fn(y, t)
  # loss.backward()

  # <ASDL> ('preconditioned' gradient calculation)
  dummy_y = gm.setup_model_call(model, x)
  gm.setup_loss_call(loss_fn, dummy_y, t)
  y, loss = gm.forward_and_backward()

  optimizer.step()

You can apply a different gradient preconditioning algorithm by replacing gm with another XXXGradientMaker(model, config) (XXX: algorithm name, e.g., ShampooGradientMaker for Shampoo algorithm) with the same interface. This enables a flexible switching/comparison of a range of gradient preconditioning algorithms.

Installation

You can install the latest version of ASDL by running:

$ pip install asdfghjkl

ASDL is tested with Python 3.7 and is compatible with PyTorch 1.13.

Example

The training script for training MLPs, CNNs, or ResNets using varous types of gradient preconditionig methods (which reproduces the results in the ASDL paper).

Resource

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc