Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

autodl-gpu

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

autodl-gpu

Automatic Deep Learning, towards fully automated multi-label classification for image, video, text, speech, tabular data.

  • 0.1.1
  • Source
  • PyPI
  • Socket score

Maintainers
1

English | 简体中文

GitHub issues GitHub forks GitHub stars GitHub release (latest by date) GitHub license img img

1. NeurIPS AutoDL Challenge 1'st Solution

img img

1st solution for AutoDL Challenge@NeurIPS, competition rules can be found at AutoDL Competition.

1.0.1. Motivation

There exists a series of common and tough problems in the real world, such as limited resources (CPU/ memory), skewed data, hand-craft features, model selection, network architecture details tuning, sensitivity of pre-trained models, sensitivity of hyperparameters and so on. How to solve them wholly and efficiently?

1.0.2. Solution

AutoDL concentrates on developing generic algorithms for multi-label classification problems in ANY modalities: image, video, speech, text and tabular data without ANY human intervention. Ten seconds at the soonest, our solution achieved SOTA performances on all the 24 offline datasets and 15 online datasets, beating a number of top players in the world.

1.1. Table of Contents

1.2. Features

  • Full-AutoML/AutoDL: Fully automated Deep Learning without ANY human intervention covering the whole pipelines.
  • Generic & Universal: Supporting ANY modality(image, video, speech, text, tabular) data, and ANY classification problems including binary-class, multi-class and multi-label problems.
  • SOTA: Winner solution of AutoDL challenge, involving both tranditional machine learning models and deep learning model backbones.
  • Out-of-the-Box: You can use the solution out-of-the-box.
  • Fast: You can train your model in ten seconds at the soonest to get highly competitive performance.
  • Real-time: You can get the performance feedback(AUC score) in real time.

1.3. Evaluation

  • Feedback-phase leaderboard: DeepWisdom Top 1, average rank 1.2, won 4 out of 5 datasets. img

  • Final-phase leaderboard visualization: DeepWisdom Top 1, average rank 1.2, won 7 out of 10 datasets. img

1.4. Installation

This repo is tested on Python 3.6+, PyTorch 1.0.0+ and TensorFlow 2.0.

You should install AutoDL in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.

Create a virtual environment with the version of Python you're going to use and activate it.

Now, if you want to use AutoDL, you can install it with pip.

1.4.1. With pip

AutoDL can be installed using pip as follows:

pip install autodl-gpu 
pip install autodl-gpu=1.0.0 

1.5. Quick Tour

1.5.1. Run local test tour

see Quick Tour - Run local test tour.

1.5.2. Tour of Image Classification

see Quick Tour - Image Classification Demo.

1.5.3. Tour of Video Classification

see Quick Tour - Video Classification Demo.

1.5.4. Tour of Speech Classification

see Quick Tour - Speech Classification Demo.

1.5.5. Tour of Text Classification

see Quick Tour - Text Classification Demo.

1.5.6. Tour of Tabular Classification

see Quick Tour - Tabular Classification Demo.

1.6. Public Datasets

1.6.1. Optional: Download public datasets

python download_public_datasets.py

1.6.2. Public datasets sample info

#NameTypeDomainSizeSourceData (w/o test labels)Test labels
1MunsterImageHWR18 MBMNISTmunster.datamunster.solution
2CityImageObjects128 MBCifar-10city.datacity.solution
3ChuckyImageObjects128 MBCifar-100chucky.datachucky.solution
4PedroImagePeople377 MBPA-100Kpedro.datapedro.solution
5DecalImageAerial73 MBNWPU VHR-10decal.datadecal.solution
6HammerImageMedical111 MBHam10000hammer.datahammer.solution
7KreaturVideoAction469 MBKTHkreatur.datakreatur.solution
8Kreatur3VideoAction588 MBKTHkreatur3.datakreatur3.solution
9KrautVideoAction1.9 GBKTHkraut.datakraut.solution
10KatzeVideoAction1.9 GBKTHkatze.datakatze.solution
11data01SpeechSpeaker1.8 GB--data01.datadata01.solution
12data02SpeechEmotion53 MB--data02.datadat02.solution
13data03SpeechAccent1.8 GB--data03.datadata03.solution
14data04SpeechGenre469 MB--data04.datadata04.solution
15data05SpeechLanguage208 MB--data05.datadata05.solution
16O1TextComments828 KB--O1.dataO1.solution
17O2TextEmotion25 MB--O2.dataO2.solution
18O3TextNews88 MB--O3.dataO3.solution
19O4TextSpam87 MB--O4.dataO4.solution
20O5TextNews14 MB--O5.dataO5.solution
21AdultTabularCensus2 MBAdultadult.dataadult.solution
22DilbertTabular--162 MB--dilbert.datadilbert.solution
23DigitsTabularHWR137 MBMNISTdigits.datadigits.solution
24MadelineTabular--2.6 MB--madeline.datamadeline.solution

1.7. Usage for AutoDL local development and testing

w1. Git clone the repo

cd <path_to_your_directory>
git clone https://github.com/DeepWisdom/AutoDL.git
  1. Prepare pretrained models. Download model speech_model.h5 and put it to AutoDL_sample_code_submission/at_speech/pretrained_models/ directory.

  2. Optional: run in the exact same environment as on the challenge platform with docker.

    • CPU
    cd path/to/autodl/
    docker run -it -v "$(pwd):/app/codalab" -p 8888:8888 evariste/autodl:cpu-latest
    
    • GPU
    nvidia-docker run -it -v "$(pwd):/app/codalab" -p 8888:8888 evariste/autodl:gpu-latest
    
  3. Prepare sample datasets, using the toy data in AutoDL_sample_data or download new datasets.

  4. Run local test

python run_local_test.py

The full usage is

python run_local_test.py -dataset_dir='AutoDL_sample_data/miniciao' -code_dir='AutoDL_sample_code_submission'

Then you can view the real-time feedback with a learning curve by opening the HTML page in AutoDL_scoring_output/.

Details can be seen in AutoDL Challenge official starting_kit.

1.8. Contributing

Feel free to dive in! Open an issue or submit PRs.

1.9. Contact us

img

1.10. Join the Community

Scan QR code and join AutoDL community!

AutoDL Community

1.11. License

Apache License 2.0

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc