🚀 Socket Launch Week 🚀 Day 5: Introducing Socket Fix.Learn More
Socket
Sign inDemoInstall
Socket

buelon

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

buelon

A scripting language to simply manage a very large amount of i/o heavy workloads. Such as API calls for your ETL, ELT or any program needing Python and/or SQL

1.0.68
PyPI
Maintainers
1

Buelon

A scripting language to simply manage a very large amount of i/o heavy workloads. Such as API calls for your ETL, ELT or any program needing Python and/or SQL

Table of Contents

  • Installation
  • Quick Start
  • Supported Languages
  • Learn by Example
  • Future of Buelon
  • License

Installation

pip install buelon That's it!

This will install the cli command bue. Check install by running bue --version or bue -v

Note:

This package uses Cython and you may need to install python3-dev using sudo apt-get install python3-dev [more commands and information]. If you would like to use this repository without Cython, you may git clone since it is not technically dependent on these scripts, but they do provide a significant performance boost.

Quick Start

  • Run bucket server: bue bucket -b 0.0.0.0:61535
  • Run hub: bue hub -b 0.0.0.0:65432 -k localhost:61535
  • Run n worker(s): bue worker -b localhost:65432 -k localhost:61535
  • Upload code: bue upload -b localhost:65432 -f path/to/file.bue

Production Start

Security: Make sure bucket, hub and workers are under a private network only (you will need a web server or something similar under the same private network to access this tool using bue upload -f path/to/file.bue)

With Postgres (Under 1,000,000 Jobs at once)

  • Create a .env file
PIPE_WORKER_SCOPES=production-very-heavy,production-heavy,production-medium,production-small,testing-heavy,testing-medium,testing-small,default
PIPE_WORKER_SUBPROCESS_JOBS=false
N_WORKER_PROCESSES="25"

USING_POSTGRES_HUB=true
USING_POSTGRES_BUCKET="true"
POSTGRES_HOST="123.45.67.89"
POSTGRES_PORT="5432"
POSTGRES_USER="daniel"
POSTGRES_PASSWORD="Password123"
POSTGRES_DATABASE="my_db"
  • Run n worker(s): bue worker -b localhost:65432 -k localhost:61535
  • Upload code: bue upload -b localhost:65432 -f ./example.bue

Without Postgres (Under 10,000 jobs at once)

  • Create a .env file
PIPE_WORKER_SCOPES=production-very-heavy,production-heavy,production-medium,production-small,testing-heavy,testing-medium,testing-small,default
PIPE_WORKER_SUBPROCESS_JOBS=false
N_WORKER_PROCESSES="15"
PIPE_WORKER_HOST="123.45.67.89"
PIPE_WORKER_PORT="65432"

PIPELINE_HOST="0.0.0.0"
PIPELINE_PORT="65432"

BUCKET_SERVER_HOST="0.0.0.0"
BUCKET_SERVER_PORT="61535"
BUCKET_CLIENT_HOST="123.45.67.89"
BUCKET_CLIENT_PORT="61535"
  • Run bucket server: bue bucket
  • Run hub: bue hub
  • Run n worker(s): bue worker
  • Upload code: bue upload -f ./example.bue

Supported Languages

  • Python
  • SQLite3
  • PostgreSQL

Learn by Example

(see below for example.py contents)

# IMPORTANT: tabs are 4 spaces. white_space == "    "
# [Optional] change tab sizes like this
TAB = '    '

# set config values globally
!scope production-small  # job scope [see bellow]
!priority 0  # higher priority jobs are run first
!timeout 20 * 60  # job's max time to run in seconds
!retries 0  # how many times a job can run after error

# setting scopes is how you make new jobs with errors
# not interfere with all servers job queues
# and/or how you handle running heavy processes on large machine
# and small process on small machines

# define a single job called `accounts`
accounts:
    python  # <-- select the language to be run. currently only python, sqlite3 and postgres are available
    accounts  # select the function(for python) or table(for sql) name that will be used
    example.py  # either provide a file or write code directly using the "`" char (see below example)

# or

# define multiple jobs with:
import python (
    request_report 
        as request,
    get_status 
        as status 
        !scope testing-small,
    get_report 
        as download 
        !priority 9
        !timeout 60**2 * 5 / (1 % 2) // (1 + 1 - 1),  # 5 hrs
    transform_data 
        as py_transform 
        !scope production-heavy,
    upload_to_db as upload
) example.py  # <-- file path or using "`" like sql below


manipulate_data:
    sqlite3
    some_table  # *vvvv* see below for writing code directly *vvvv*
    `
SELECT
    *,
    CASE
        WHEN sales = 0
        THEN 0.0
        ELSE spend / sales
    END AS acos
FROM some_table
`

## this one's just to show postgres as well
#manipulate_data_again:
#    postgres
#    another_table
#    `
#select
#    *,
#    case
#        when spend = 0
#        then 0.0
#        else sales / spend
#    end AS roas
#from another_table
#`

# these are pipes and what will tell the server what order to run the steps
# and also transfer the returned  data between steps
# each step will be run individually and could be run on a different computer each time
accounts_pipe = | accounts  # single pipes currently need a `|` before or behind the value
# api_pipe = request | status | download | manipulate_data | py_transform | upload
# # or
api_pipe = (
    request | status | download 
    | manipulate_data | py_transform | upload
)


# currently there are only two syntax's for "running" pipes.
# either by itself:
# pipe()
#
# or in a loop:
# for value in pipe1():
#     pipe2(value)

# # Another Example:
# v = pipe()  # <-- single call
# pipe2(v)

for account in accounts_pipe():
    api_pipe(account)

example.py

import time
import random
import uuid
import logging
from typing import List, Dict, Union

from buelon.core.step import Result, StepStatus

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)


def accounts(*args) -> List[Dict[str, Union[int, str]]]:
    """Returns a list of sample account dictionaries.

    Returns:
        List[Dict[str, Union[int, str]]]: A list of dictionaries containing account information.
    """
    account_list = [
        {'id': 0, 'name': 'Account 1'},
        {'id': 2, 'name': 'Account 2'},
        {'id': 3, 'name': 'Account 4'},
    ]
    logger.info(f"Retrieved {len(account_list)} accounts")
    return account_list


def request_report(config: Dict[str, Union[int, str]]) -> Dict[str, Union[Dict, uuid.UUID, float]]:
    """Simulates a report request for a given account.

    Args:
        config (Dict[str, Union[int, str]]): A dictionary containing account information.

    Returns:
        Dict[str, Union[Dict, uuid.UUID, float]]: A dictionary with account data and request details.
    """
    account_id = config['id']
    
    request = {
        'report_id': uuid.uuid4(),
        'time': time.time(),
        'account_id': account_id
    }
    
    logger.info(f"Requested report for account ID: {account_id}, Report ID: {request['report_id']}")
    return {
        'account': config,
        'request': request
    }


def get_status(config: Dict[str, Union[Dict, uuid.UUID, float]]) -> Union[Dict, Result]:
    """Checks the status of a report request.

    Args:
        config (Dict[str, Union[Dict, uuid.UUID, float]]): A dictionary containing request information.

    Returns:
        Union[Dict, Result]: Either the input config if successful, or a Result object if pending.
    """
    requested_time = config['request']['time']
    account_id = config['account']['id']
    
    status = 'success' if requested_time + random.randint(10, 15) < time.time() else 'pending'
    
    if status == 'pending':
        logger.info(f"Report status for account ID {account_id} is pending")
        return Result(status=StepStatus.pending)
    
    logger.info(f"Report status for account ID {account_id} is success")
    return config
    

def get_report(config: Dict[str, Union[Dict, uuid.UUID, float]]) -> Union[Dict, Result]:
    """Retrieves a report or simulates an error.

    Args:
        config (Dict[str, Union[Dict, uuid.UUID, float]]): A dictionary containing request configuration.

    Returns:
        Union[Dict, Result]: Either a dictionary with report data or a Result object for reset.

    Raises:
        ValueError: If an unexpected error occurs.
    """
    account_id = config['account']['id']
    
    if random.randint(0, 10) == 0:
        report_data = {'status': 'error', 'msg': 'timeout error'}
    else:
        report_data = [
            {'sales': i * 10, 'spend': i % 10, 'clicks': i * 13}
            for i in range(random.randint(25, 100))
        ]
    
    if not isinstance(report_data, list):
        if isinstance(report_data, dict):
            if (report_data.get('status') == 'error' 
                and report_data.get('msg') == 'timeout error'):
                logger.warning(f"Timeout error for account ID {account_id}. Resetting.")
                return Result(status=StepStatus.reset)
        error_msg = f'Unexpected error: {report_data}'
        logger.error(f"Error getting report for account ID {account_id}: {error_msg}")
        raise ValueError(error_msg)
    
    logger.info(f"Successfully retrieved report for account ID {account_id} with {len(report_data)} rows")
    return {
        'config': config,
        'table_data': report_data
    }


def transform_data(data: Dict[str, Union[Dict, List[Dict]]]) -> None:
    """Transforms the report data by adding account information to each row.

    Args:
        data (Dict[str, Union[Dict, List[Dict]]]): A dictionary containing config and table data.
    """
    config = data['config']
    table_data = data['table_data']
    account_name = config['account']['name']
    
    for row in table_data:
        row['account'] = account_name
    
    logger.info(f"Transformed {len(table_data)} rows of data for account: {account_name}")

    
def upload_to_db(data: Dict[str, Union[Dict, List[Dict]]]) -> None:
    """Handles table upload to database.

    Args:
        data (Dict[str, Union[Dict, List[Dict]]]): A dictionary containing table data to be uploaded.
    """    
    table_data = data['table_data']
    account_name = data['config']['account']['name']
    # Implementation for database upload
    logger.info(f"Uploaded {len(table_data)} rows to the database for account: {account_name}")

Known Defects

Error handling and logging are currently lacking

Future Plans

If this projects sees some love, or I just find more free time, I'd like to support more languages like node or deno and even compiled languages such as rust, go and c++. Allowing teams that write different languages to work on the same program.

Web app for logging, execution and worker management

Add a scheduler process to allow scheduled pipelines

License

  • MIT License

Keywords

buelon etl pipeline asynchronous data-processing api

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts