
Research
SANDWORM_MODE: Shai-Hulud-Style npm Worm Hijacks CI Workflows and Poisons AI Toolchains
An emerging npm supply chain attack that infects repos, steals CI secrets, and targets developer AI toolchains for further compromise.
cpt
Advanced tools
This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.
CPT is a sequence prediction model. It is a highly explainable model specialized in predicting the next element of a sequence over a finite alphabet.
This implementation is based on the following research papers:
You can simply use pip install cpt.
You can test the model with the following code:
from cpt.cpt import Cpt
model = Cpt()
model.fit([['hello', 'world'],
['hello', 'this', 'is', 'me'],
['hello', 'me']
])
model.predict([['hello'], ['hello', 'this']])
# Output: ['me', 'is']
For an example with the compatibility with sklearn, you should check the documentation.
The model can be trained with the fit method.
If needed the model can be retrained with the same method. It adds new sequences to the model and do not remove the old ones.
The predictions are launched by default with multithreading with OpenMP.
The predictions can also be launched in a single thread with the option multithread=False in the predict method.
You can control the number of threads by setting the following environment variable OMP_NUM_THREADS.
You can pickle the model to save it, and load it later via pickle library.
from cpt.cpt import Cpt
import pickle
model = Cpt()
model.fit([['hello', 'world']])
dumped = pickle.dumps(model)
unpickled_model = pickle.loads(dumped)
print(model == unpickled_model)
The CPT class has several methods to explain the predictions.
You can see which elements are considered as noise (with a low presence in sequences) with model.compute_noisy_items(noise_ratio).
You can retrieve trained sequences with model.retrieve_sequence(id).
You can find similar sequences with find_similar_sequences(sequence).
You can not yet retrieve automatically all similar sequences with the noise reduction technique.
CPT has 3 meta parameters that need to be tuned. You can check how to tune them in the documentation. To tune you can use the model_selection module from sklearn, you can find an example here on how to.
The benchmark has been made on the FIFA dataset, the data can be found on the SPMF website.
Using multithreading, CPT was able to perform around 5000 predictions per second.
Without multithreading, CPT predicted around 1650 sequences per second.
Details on the benchmark can be found here.
A study has been made on how to reduce dataset size, and so training / testing time using PageRank on the dataset.
The study has been published in IJIKM review here. An overall performance improvement of 10-40% has been observed with this technique on the prediction time without any accuracy loss.
One of the co-author of CPT has also published an algorithm subseq for sequence prediction. An implementation can be found here
If you enjoy the project and wish to support me, a buymeacoffee link is available.
FAQs
Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction
We found that cpt demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Research
An emerging npm supply chain attack that infects repos, steals CI secrets, and targets developer AI toolchains for further compromise.

Company News
Socket is proud to join the OpenJS Foundation as a Silver Member, deepening our commitment to the long-term health and security of the JavaScript ecosystem.

Security News
npm now links to Socket's security analysis on every package page. Here's what you'll find when you click through.