CSVUnionDiff
CSVUnionDiff is an open-source library for comparing CSV-like files through union and difference operations.
Features
- A convenient command-line tool for quickly comparing files.
- A robust python package for comparing files in a programmatic way.
- A union operation to get the common rows between files.
- A diff operation to get unique rows between files.
- A match rows option which forces comparisons to be carried in a specific useful way.
- Incorporates pandas to allow for various input and output types (csv, xlsx, json, xml, or html) and integration with dataframes.
Installation and usage
To install through command-line, use
python -m pip install csvuniondiff
To view available options for the command-line tool, use
csvuniondiff -h
To use the package in python, do
from csvuniondiff import ...
where ...
can be replaced with whatever is available from the package.
Examples
Command-line
Currently supported command line options are:
options:
-h, --help show this help message and exit
--version print the version of this package
--diff DIFF DIFF use the diff command, takes 2 files as arguments
--union UNION UNION use the union command, takes 2 files as arguments
-a, --align-columns aligns common columns on the left sorted
-c [USE_COLUMNS ...], --use-columns [USE_COLUMNS ...]
only use these columns for comparison
--ignore-columns [IGNORE_COLUMNS ...]
do not use these columns for comparison
-f [FILL_NULL], --fill-null [FILL_NULL]
fills null option value so that they can be compared, default is 'NULL'
-d, --drop-null drop rows with nulls
-D, --drop-duplicates
drop duplicate rows
-i INPUT_DIR, --input-dir INPUT_DIR
use this directory path as the base for the path to the files
-o OUTPUT_DIR, --output-dir OUTPUT_DIR
save outputs from the script to this directory
-m, --match-rows use the match rows algorithm for comparison
-k [KEEP_COLUMNS ...], --keep-columns [KEEP_COLUMNS ...]
only keep these columns in the final result
-C, --use-common-columns
use the maximal set of common columns for comparison
--dont-add-timestamp don't add a timestamp directory when outputting files
--disable-printing disable printing to stdout
--print-prepared print the prepared df before comparison
--save-file-extension SAVE_FILE_EXTENSION
the extension for output files (csv, xlsx, json, xml, or html)
-r, --row-counts use the counts of each unique row in the final result instead
-
test2.csv:
| column7 | column1 | column2 | column3 | column4 | column5 | column6 |
---|
0 | value7 | value1 | value2 | value3 | value4 | value5 | value6 |
1 | value14 | value8 | value9 | value10 | value11 | value12 | value13 |
2 | value21 | value15 | value16 | value17 | value18 | value19 | value20 |
test4.csv:
| column4 | column3 | column2 | column1 |
---|
0 | | value3 | value2 | value1 |
1 | value9 | value8 | | value6 |
2 | value14 | | | value11 |
Input
csvuniondiff
--input-dir csvuniondiff/tests/test-data/random/
--union test2.csv test4.csv
--match-rows # use the match rows algorithm
--fill-null value4 # fills nulls with 'value4'
--align-columns # align common columns sorted on the left
--use-common-columns # compare using all common columns
Output
Timestamp: 2024-07-10 14:27:45.402980
Input directory: csvuniondiff/tests/test-data/random/
union(
args
----
left_input: ['test2.csv']
right_input: ['test4.csv']
data_save_file_extensions: ['csv']
options
-------
align_columns: True
fill_null: value4
match_rows: True
enable_printing: True
add_save_timestamp: True
use_common_columns: True
)
Intersecting rows from test2.csv (1, 7):
column1 column2 column3 column4 column7 column5 column6
0 value1 value2 value3 value4 value7 value5 value6
Intersecting rows from test4.csv (1, 4):
column1 column2 column3 column4
0 value1 value2 value3 value4
-
Look here for input files.
Input
csvuniondiff
--input-dir csvuniondiff/tests/test-data/diff/testset-1/
--diff csv1.csv csv2.csv
Output
Timestamp: 2024-07-10 12:00:06.554911
Input directory: csvuniondiff/tests/test-data/diff/testset-1/
diff(
args
----
left_input: ['csv1.csv']
right_input: ['csv2.csv']
data_save_file_extensions: ['csv']
options
-------
enable_printing: True
add_save_timestamp: True
)
Only in csv1.csv (5, 3):
Name Age Email
3 Michael Wilson 32 michaelwilson@example.com
4 Michael Wilson 32 michaelwilson@example.com
5 Bob Thompson 35 bobthompson@example.com
6 Emily Davis 27 emilydavis@example.com
7 Michael Wilson 32 michaelwilson@example.com
Only in csv2.csv (3, 3):
Name Age Email
6 John Smith__1 35 johnsmith@example.com
7 Michael Johnson__1 32 michaeljohnson@example.com
8 Emily Davis__1 27 emilydavis@example.com
Programming
-
test1.csv
test2.csv
Input
import pandas as pd
from csvuniondiff.csvuniondiff import (
CsvUnionDiff,
ParallelInputArgs,
CommandOptions,
)
obj = CsvUnionDiff(
"./csvuniondiff/tests/test-data/diff/testset-2/",
None,
)
def left_df_trans(df: pd.DataFrame) -> pd.DataFrame:
def email_trans(row):
arr = row["Email"].split("@")
return arr[0] + str(row["Age"]) + "@" + arr[1]
df["Email"] = df.apply(email_trans, axis=1)
df = df[["Name", "Email", "Age"]]
return df
left_dfs, right_dfs = obj.diff(
args=ParallelInputArgs(
["test1.csv"],
["test2.csv"],
left_trans_funcs=[left_df_trans],
right_trans_funcs=[lambda x: x],
return_transformed_rows=False,
),
options=CommandOptions(
match_rows=True,
enable_printing=True
),
)
left_df = left_dfs[0]
right_df = right_dfs[0]
Output
Timestamp: 2024-07-11 11:37:38.748144
Input directory: ./csvuniondiff/tests/test-data/diff/testset-2/
diff(
args
----
left_input: ['test1.csv']
right_input: ['test2.csv']
left_trans_funcs: [<function left_df_trans at 0x000001E40ACBA340>]
right_trans_funcs: [<function <lambda> at 0x000001E4259B3E20>]
options
-------
match_rows: True
enable_printing: True
)
Only in test1.csv (3, 3):
Name Age Email
4 Michael Brown 28 michaelbrown@example.com
5 Sarah Wilson 32 sarahwilson@example.com
6 David Thompson 45 davidthompson@example.com
Only in test2.csv (1, 3):
Name Email Age
7 Brian Harris brianharris33@example.com 33
-
Input
from csvuniondiff.csvuniondiff import (
CsvUnionDiff,
ParallelInputArgs,
CommandOptions,
)
obj = CsvUnionDiff(
input_dir="./csvuniondiff/tests/test-data/diff/testset-1/",
output_dir=None,
)
left_dfs, right_dfs = obj.diff(
args=ParallelInputArgs(
left_input=["test1.csv"],
right_input=["test2.csv"],
),
options=CommandOptions(
enable_printing=True,
add_save_timestamp=True,
)
)
only_in_test1, only_in_test2 = left_dfs[0], right_dfs[0]
Output
Timestamp: 2024-07-10 13:23:35.239955
Input directory: ./csvuniondiff/tests/test-data/diff/testset-1/
diff(
args
----
left_input: ['test1.csv']
right_input: ['test2.csv']
options
-------
match_rows: True
enable_printing: True
add_save_timestamp: True
)
Only in test1.csv (5, 3):
Name Age Email
3 Michael Wilson 32 michaelwilson@example.com
4 Michael Wilson 32 michaelwilson@example.com
5 Bob Thompson 35 bobthompson@example.com
6 Emily Davis 27 emilydavis@example.com
7 Michael Wilson 32 michaelwilson@example.com
Only in test2.csv (5, 3):
Name Age Email
1 John Doe 25 johndoe@example.com
3 Jane Smith 30 janesmith@example.com
6 John Smith__1 35 johnsmith@example.com
7 Michael Johnson__1 32 michaeljohnson@example.com
8 Emily Davis__1 27 emilydavis@example.com
Possible use cases
Command-line
- A personal usecase of mine is to cross-check SQL results with an expected CSV/Excel file (perhaps one that was created manually).
I would use my SQL management tool to generate the CSV file from my query, then call
csvuniondiff --diff my.csv expected.csv --match-rows
to see the differences and the magnitude of the differences. I could also call csvuniondiff --union my.csv expected.csv --match-rows
to see what rows my SQL query is getting right. - You want to compare 2 CSV files but some aspect covered by this tool makes it impossible to (for example NULL values, unaligned columns, or you
want to only compare a subset of columns etc.) and you want to do it fast.
Programming
-
I had a case where I needed to check for the existence of rows with certain values in specific columns across many Excel files.
I can make a dataframe with the columns and values that I am looking for:
I can put all of the Excel files in a directory and then run the union command with the above CSV against
the target CSV's in the directory.
-
The files are slightly different but could be transformed to be compared.
-
You don't want to personally code out difference and union operations with match rows and stdout output.
Match rows algorithm explanation
To explain the match rows option, let's consider the following CSV tables:
When matching rows in the diff operation
- The first John Doe in both files is matched, so the second John Doe in csv2 is only in csv2.
- The first Jane Smith in both files is matched, so the second Jane Smith in csv2 is only in csv2.
- Both files have exactly 1 Alice Johnson and Sarah Brown so they are both matched and neither are only in csv1 or csv2.
- The remaining rows are all unique between the two files so they are only in csv1 or csv2, respectively.
Therefore, with the match rows option, the results of the diff operation will be:
Using the union operation with match rows instead with csv1 and csv2, we get:
intersecting from csv1 | intersecting from csv2 |
---|
|
|
An example of where this might be useful is when you are cross-checking using the diff operation
and you want to know the magnitude of the rows that you've missed and the extra rows that you have
in your CSV when compared against an expected CSV. In this case, you can use
csvuniondiff --diff my.csv expected.csv --match-rows
to get the rows with duplicates or
csvuniondiff --diff my.csv expected.csv --match-rows --row-counts
to
get the count of each unique row in the result.
Contribution
Feel free to open an issue if something isn't working properly or you think that another feature would be
worth it to add.