Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

csvuniondiff

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

csvuniondiff

A package for comparing CSV-like files through union and difference operations.

  • 0.0.0.dev1
  • PyPI
  • Socket score

Maintainers
1

CSVUnionDiff

CSVUnionDiff is an open-source library for comparing CSV-like files through union and difference operations.

  • CSVUnionDiff

Features

  • A convenient command-line tool for quickly comparing files.
  • A robust python package for comparing files in a programmatic way.
  • A union operation to get the common rows between files.
  • A diff operation to get unique rows between files.
  • A match rows option which forces comparisons to be carried in a specific useful way.
  • Incorporates pandas to allow for various input and output types (csv, xlsx, json, xml, or html) and integration with dataframes.

Installation and usage

To install through command-line, use

python -m pip install csvuniondiff

To view available options for the command-line tool, use

csvuniondiff -h

To use the package in python, do

from csvuniondiff import ...

where ... can be replaced with whatever is available from the package.

Examples

Command-line

Currently supported command line options are:

options:
  -h, --help            show this help message and exit
  --version             print the version of this package
  --diff DIFF DIFF      use the diff command, takes 2 files as arguments
  --union UNION UNION   use the union command, takes 2 files as arguments
  -a, --align-columns   aligns common columns on the left sorted
  -c [USE_COLUMNS ...], --use-columns [USE_COLUMNS ...]
                        only use these columns for comparison
  --ignore-columns [IGNORE_COLUMNS ...]
                        do not use these columns for comparison
  -f [FILL_NULL], --fill-null [FILL_NULL]
                        fills null option value so that they can be compared, default is 'NULL'
  -d, --drop-null       drop rows with nulls
  -D, --drop-duplicates
                        drop duplicate rows
  -i INPUT_DIR, --input-dir INPUT_DIR
                        use this directory path as the base for the path to the files
  -o OUTPUT_DIR, --output-dir OUTPUT_DIR
                        save outputs from the script to this directory
  -m, --match-rows      use the match rows algorithm for comparison
  -k [KEEP_COLUMNS ...], --keep-columns [KEEP_COLUMNS ...]
                        only keep these columns in the final result
  -C, --use-common-columns
                        use the maximal set of common columns for comparison
  --dont-add-timestamp  don't add a timestamp directory when outputting files
  --disable-printing    disable printing to stdout
  --print-prepared      print the prepared df before comparison
  --save-file-extension SAVE_FILE_EXTENSION
                        the extension for output files (csv, xlsx, json, xml, or html)
  -r, --row-counts      use the counts of each unique row in the final result instead
  1. test2.csv:

    column7column1column2column3column4column5column6
    0value7value1value2value3value4value5value6
    1value14value8value9value10value11value12value13
    2value21value15value16value17value18value19value20

    test4.csv:

    column4column3column2column1
    0value3value2value1
    1value9value8value6
    2value14value11

    Input

    csvuniondiff
    --input-dir csvuniondiff/tests/test-data/random/ 
    --union test2.csv test4.csv 
    --match-rows            # use the match rows algorithm
    --fill-null value4      # fills nulls with 'value4'
    --align-columns         # align common columns sorted on the left
    --use-common-columns    # compare using all common columns
    

    Output

    Timestamp: 2024-07-10 14:27:45.402980
    
    Input directory: csvuniondiff/tests/test-data/random/
    
    union(
        args
        ----
        left_input: ['test2.csv']
        right_input: ['test4.csv']
        data_save_file_extensions: ['csv']
    
        options
        -------
        align_columns: True
        fill_null: value4
        match_rows: True
        enable_printing: True
        add_save_timestamp: True
        use_common_columns: True
    )
    
    Intersecting rows from test2.csv (1, 7):
    column1 column2 column3 column4 column7 column5 column6
    0  value1  value2  value3  value4  value7  value5  value6
    
    Intersecting rows from test4.csv (1, 4):
    column1 column2 column3 column4
    0  value1  value2  value3  value4
    
  2. Look here for input files.

    Input

    csvuniondiff
    --input-dir csvuniondiff/tests/test-data/diff/testset-1/ 
    --diff csv1.csv csv2.csv
    

    Output

    Timestamp: 2024-07-10 12:00:06.554911
    
    Input directory: csvuniondiff/tests/test-data/diff/testset-1/
    
    diff(
        args
        ----
        left_input: ['csv1.csv']
        right_input: ['csv2.csv']
        data_save_file_extensions: ['csv']
    
        options
        -------
        enable_printing: True
        add_save_timestamp: True
    )
    
    Only in csv1.csv (5, 3):
                Name  Age                      Email
    3  Michael Wilson   32  michaelwilson@example.com
    4  Michael Wilson   32  michaelwilson@example.com
    5    Bob Thompson   35    bobthompson@example.com
    6     Emily Davis   27     emilydavis@example.com
    7  Michael Wilson   32  michaelwilson@example.com
    
    Only in csv2.csv (3, 3):
                    Name  Age                       Email
    6       John Smith__1   35       johnsmith@example.com
    7  Michael Johnson__1   32  michaeljohnson@example.com
    8      Emily Davis__1   27      emilydavis@example.com
    

Programming

  1. test1.csv

    NameAgeEmail
    0John Doe25johndoe@example.com
    1Jane Smith30janesmith@example.com
    2Mark Johnson40markjohnson@example.com
    3Emily Davis35emilydavis@example.com
    4Michael Brown28michaelbrown@example.com
    5Sarah Wilson32sarahwilson@example.com
    6David Thompson45davidthompson@example.com
    7Jessica Martinez27jessicamartinez@example.com
    8Christopher Lee33christopherlee@example.com
    9Laura Taylor29laurataylor@example.com

    test2.csv

    NameEmailAge
    0John Doejohndoe25@example.com25
    1Jane Smithjanesmith30@example.com30
    2Mark Johnsonmarkjohnson40@example.com40
    3Emily Davisemilydavis35@example.com35
    4Jessica Martinezjessicamartinez27@example.com27
    5Christopher Leechristopherlee33@example.com33
    6Laura Taylorlaurataylor29@example.com29
    7Brian Harrisbrianharris33@example.com33

    Input

    import pandas as pd
    from csvuniondiff.csvuniondiff import (
        CsvUnionDiff,
        ParallelInputArgs,
        CommandOptions,
    )
    
    obj = CsvUnionDiff(
        "./csvuniondiff/tests/test-data/diff/testset-2/",
        None,
    )
    
    def left_df_trans(df: pd.DataFrame) -> pd.DataFrame:
        def email_trans(row):
            arr = row["Email"].split("@")
            return arr[0] + str(row["Age"]) + "@" + arr[1]
        
        df["Email"] = df.apply(email_trans, axis=1)
    
        df = df[["Name", "Email", "Age"]]
        return df
    
    left_dfs, right_dfs = obj.diff(
        args=ParallelInputArgs(
            ["test1.csv"], 
            ["test2.csv"], 
            left_trans_funcs=[left_df_trans],
            right_trans_funcs=[lambda x: x],
            return_transformed_rows=False, # selects the rows from original table
        ),
        options=CommandOptions(
            match_rows=True,
            enable_printing=True
        ),
    )
    
    left_df = left_dfs[0]
    right_df = right_dfs[0] # use the results somewhere
    

    Output

    Timestamp: 2024-07-11 11:37:38.748144
    
    Input directory: ./csvuniondiff/tests/test-data/diff/testset-2/
    
    diff(
        args
        ----
        left_input: ['test1.csv']
        right_input: ['test2.csv']
        left_trans_funcs: [<function left_df_trans at 0x000001E40ACBA340>]
        right_trans_funcs: [<function <lambda> at 0x000001E4259B3E20>]
    
        options
        -------
        match_rows: True
        enable_printing: True
    )
    
    Only in test1.csv (3, 3):
                Name  Age                      Email
    4   Michael Brown   28   michaelbrown@example.com
    5    Sarah Wilson   32    sarahwilson@example.com
    6  David Thompson   45  davidthompson@example.com
    
    Only in test2.csv (1, 3):
            Name                      Email  Age
    7  Brian Harris  brianharris33@example.com   33
    
  2. Input

    from csvuniondiff.csvuniondiff import (
        CsvUnionDiff,
        ParallelInputArgs,
        CommandOptions,
    )
    
    obj = CsvUnionDiff(
        input_dir="./csvuniondiff/tests/test-data/diff/testset-1/",
        output_dir=None,
    
    )
    
    left_dfs, right_dfs = obj.diff(
        args=ParallelInputArgs(
            left_input=["test1.csv"],
            right_input=["test2.csv"],
        ),
        options=CommandOptions(
            enable_printing=True,
            add_save_timestamp=True,
        )
    )
    
    only_in_test1, only_in_test2 = left_dfs[0], right_dfs[0] # use dataframe results somewhere
    

    Output

    Timestamp: 2024-07-10 13:23:35.239955
    
    Input directory: ./csvuniondiff/tests/test-data/diff/testset-1/
    
    diff(
        args
        ----
        left_input: ['test1.csv']
        right_input: ['test2.csv']
    
        options
        -------
        match_rows: True
        enable_printing: True
        add_save_timestamp: True
    )
    
    Only in test1.csv (5, 3):
                Name  Age                      Email
    3  Michael Wilson   32  michaelwilson@example.com
    4  Michael Wilson   32  michaelwilson@example.com
    5    Bob Thompson   35    bobthompson@example.com
    6     Emily Davis   27     emilydavis@example.com
    7  Michael Wilson   32  michaelwilson@example.com
    
    Only in test2.csv (5, 3):
                    Name  Age                       Email
    1            John Doe   25         johndoe@example.com
    3          Jane Smith   30       janesmith@example.com
    6       John Smith__1   35       johnsmith@example.com
    7  Michael Johnson__1   32  michaeljohnson@example.com
    8      Emily Davis__1   27      emilydavis@example.com
    

Possible use cases

Command-line

  1. A personal usecase of mine is to cross-check SQL results with an expected CSV/Excel file (perhaps one that was created manually). I would use my SQL management tool to generate the CSV file from my query, then call csvuniondiff --diff my.csv expected.csv --match-rows to see the differences and the magnitude of the differences. I could also call csvuniondiff --union my.csv expected.csv --match-rows to see what rows my SQL query is getting right.
  2. You want to compare 2 CSV files but some aspect covered by this tool makes it impossible to (for example NULL values, unaligned columns, or you want to only compare a subset of columns etc.) and you want to do it fast.

Programming

  1. I had a case where I needed to check for the existence of rows with certain values in specific columns across many Excel files. I can make a dataframe with the columns and values that I am looking for:

    NameAgeEmail
    0John Doe25johndoe@example.com

    I can put all of the Excel files in a directory and then run the union command with the above CSV against the target CSV's in the directory.

  2. The files are slightly different but could be transformed to be compared.

  3. You don't want to personally code out difference and union operations with match rows and stdout output.

Match rows algorithm explanation

To explain the match rows option, let's consider the following CSV tables:

csv1csv2
NameAgeEmail
0John Doe25johndoe@example.com
1Jane Smith30janesmith@example.com
2Alice Johnson28alicejohnson@example.com
3Michael Wilson32michaelwilson@example.com
4Michael Wilson32michaelwilson@example.com
5Bob Thompson35bobthompson@example.com
6Emily Davis27emilydavis@example.com
7Michael Wilson32michaelwilson@example.com
8Sarah Brown29sarahbrown@example.com
NameAgeEmail
0John Doe25johndoe@example.com
1John Doe25johndoe@example.com
2Jane Smith30janesmith@example.com
3Jane Smith30janesmith@example.com
4Alice Johnson28alicejohnson@example.com
5Sarah Brown29sarahbrown@example.com
6John Smith__135johnsmith@example.com
7Michael Johnson__132michaeljohnson@example.com
8Emily Davis__127emilydavis@example.com

When matching rows in the diff operation

  1. The first John Doe in both files is matched, so the second John Doe in csv2 is only in csv2.
  2. The first Jane Smith in both files is matched, so the second Jane Smith in csv2 is only in csv2.
  3. Both files have exactly 1 Alice Johnson and Sarah Brown so they are both matched and neither are only in csv1 or csv2.
  4. The remaining rows are all unique between the two files so they are only in csv1 or csv2, respectively.

Therefore, with the match rows option, the results of the diff operation will be:

only in csv1only in csv2
NameAgeEmail
3Michael Wilson32michaelwilson@example.com
4Michael Wilson32michaelwilson@example.com
5Bob Thompson35bobthompson@example.com
6Emily Davis27emilydavis@example.com
7Michael Wilson32michaelwilson@example.com
NameAgeEmail
1John Doe25johndoe@example.com
3Jane Smith30janesmith@example.com
6John Smith__135johnsmith@example.com
7Michael Johnson__132michaeljohnson@example.com
8Emily Davis__127emilydavis@example.com

Using the union operation with match rows instead with csv1 and csv2, we get:

intersecting from csv1intersecting from csv2
NameAgeEmail
0John Doe25johndoe@example.com
1Jane Smith30janesmith@example.com
2Alice Johnson28alicejohnson@example.com
8Sarah Brown29sarahbrown@example.com
NameAgeEmail
0John Doe25johndoe@example.com
2Jane Smith30janesmith@example.com
4Alice Johnson28alicejohnson@example.com
5Sarah Brown29sarahbrown@example.com

An example of where this might be useful is when you are cross-checking using the diff operation and you want to know the magnitude of the rows that you've missed and the extra rows that you have in your CSV when compared against an expected CSV. In this case, you can use csvuniondiff --diff my.csv expected.csv --match-rows to get the rows with duplicates or csvuniondiff --diff my.csv expected.csv --match-rows --row-counts to get the count of each unique row in the result.

Contribution

Feel free to open an issue if something isn't working properly or you think that another feature would be worth it to add.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc