datrie |travis| |appveyor|
.. |travis| image:: https://travis-ci.org/pytries/datrie.svg
:target: https://travis-ci.org/pytries/datrie
.. |appveyor| image:: https://ci.appveyor.com/api/projects/status/6bpvhllpjhlau7x0?svg=true
:target: https://ci.appveyor.com/project/superbobry/datrie
Super-fast, efficiently stored Trie for Python (2.x and 3.x).
Uses libdatrie
_.
.. _libdatrie: https://linux.thai.net/~thep/datrie/datrie.html
Installation
::
pip install datrie
Usage
Create a new trie capable of storing items with lower-case ascii keys::
>>> import string
>>> import datrie
>>> trie = datrie.Trie(string.ascii_lowercase)
trie
variable is a dict-like object that can have unicode keys of
certain ranges and Python objects as values.
In addition to implementing the mapping interface, tries facilitate
finding the items for a given prefix, and vice versa, finding the
items whose keys are prefixes of a given string. As a common special
case, finding the longest-prefix item is also supported.
.. warning::
For efficiency you must define allowed character range(s) while
creating trie. ``datrie`` doesn't check if keys are in allowed
ranges at runtime, so be careful! Invalid keys are OK at lookup time
but values won't be stored correctly for such keys.
Add some values to it (datrie keys must be unicode; the examples
are for Python 2.x)::
>>> trie[u'foo'] = 5
>>> trie[u'foobar'] = 10
>>> trie[u'bar'] = 'bar value'
>>> trie.setdefault(u'foobar', 15)
10
Check if u'foo' is in trie::
>>> u'foo' in trie
True
Get a value::
>>> trie[u'foo']
5
Find all prefixes of a word::
>>> trie.prefixes(u'foobarbaz')
[u'foo', u'foobar']
>>> trie.prefix_items(u'foobarbaz')
[(u'foo', 5), (u'foobar', 10)]
>>> trie.iter_prefixes(u'foobarbaz')
<generator object ...>
>>> trie.iter_prefix_items(u'foobarbaz')
<generator object ...>
Find the longest prefix of a word::
>>> trie.longest_prefix(u'foo')
u'foo'
>>> trie.longest_prefix(u'foobarbaz')
u'foobar'
>>> trie.longest_prefix(u'gaz')
KeyError: u'gaz'
>>> trie.longest_prefix(u'gaz', default=u'vasia')
u'vasia'
>>> trie.longest_prefix_item(u'foobarbaz')
(u'foobar', 10)
Check if the trie has keys with a given prefix::
>>> trie.has_keys_with_prefix(u'fo')
True
>>> trie.has_keys_with_prefix(u'FO')
False
Get all items with a given prefix from a trie::
>>> trie.keys(u'fo')
[u'foo', u'foobar']
>>> trie.items(u'ba')
[(u'bar', 'bar value')]
>>> trie.values(u'foob')
[10]
Get all suffixes of certain word starting with a given prefix from a trie::
>>> trie.suffixes()
[u'pro', u'producer', u'producers', u'product', u'production', u'productivity', u'prof']
>>> trie.suffixes(u'prod')
[u'ucer', u'ucers', u'uct', u'uction', u'uctivity']
Save & load a trie (values must be picklable)::
>>> trie.save('my.trie')
>>> trie2 = datrie.Trie.load('my.trie')
Trie and BaseTrie
There are two Trie classes in datrie package: datrie.Trie
and
datrie.BaseTrie
. datrie.BaseTrie
is slightly faster and uses less
memory but it can store only integer numbers -2147483648 <= x <= 2147483647.
datrie.Trie
is a bit slower but can store any Python object as a value.
If you don't need values or integer values are OK then use datrie.BaseTrie
::
import datrie
import string
trie = datrie.BaseTrie(string.ascii_lowercase)
Custom iteration
If the built-in trie methods don't fit you can use datrie.State
and
datrie.Iterator
to implement custom traversal.
.. note::
If you use ``datrie.BaseTrie`` you need ``datrie.BaseState`` and
``datrie.BaseIterator`` for custom traversal.
For example, let's find all suffixes of 'fo'
for our trie and get
the values::
>>> state = datrie.State(trie)
>>> state.walk(u'foo')
>>> it = datrie.Iterator(state)
>>> while it.next():
... print(it.key())
... print(it.data))
o
5
obar
10
Performance
Performance is measured for datrie.Trie
against Python's dict with
100k unique unicode words (English and Russian) as keys and '1' numbers
as values.
datrie.Trie
uses about 5M memory for 100k words; Python's dict
uses about 22M for this according to my unscientific tests.
This trie implementation is 2-6 times slower than python's dict
on getitem. Benchmark results (macbook air i5 1.8GHz,
"1.000M ops/sec" == "1 000 000 operations per second")::
Python 2.6:
dict __getitem__: 7.107M ops/sec
trie __getitem__: 2.478M ops/sec
Python 2.7:
dict __getitem__: 6.550M ops/sec
trie __getitem__: 2.474M ops/sec
Python 3.2:
dict __getitem__: 8.185M ops/sec
trie __getitem__: 2.684M ops/sec
Python 3.3:
dict __getitem__: 7.050M ops/sec
trie __getitem__: 2.755M ops/sec
Looking for prefixes of a given word is almost as fast as
__getitem__
(results are for Python 3.3)::
trie.iter_prefix_items (hits): 0.461M ops/sec
trie.prefix_items (hits): 0.743M ops/sec
trie.prefix_items loop (hits): 0.629M ops/sec
trie.iter_prefixes (hits): 0.759M ops/sec
trie.iter_prefixes (misses): 1.538M ops/sec
trie.iter_prefixes (mixed): 1.359M ops/sec
trie.has_keys_with_prefix (hits): 1.896M ops/sec
trie.has_keys_with_prefix (misses): 2.590M ops/sec
trie.longest_prefix (hits): 1.710M ops/sec
trie.longest_prefix (misses): 1.506M ops/sec
trie.longest_prefix (mixed): 1.520M ops/sec
trie.longest_prefix_item (hits): 1.276M ops/sec
trie.longest_prefix_item (misses): 1.292M ops/sec
trie.longest_prefix_item (mixed): 1.379M ops/sec
Looking for all words starting with a given prefix is mostly limited
by overall result count (this can be improved in future because a
lot of time is spent decoding strings from utf_32_le to Python's
unicode)::
trie.items(prefix="xxx"), avg_len(res)==415: 0.609K ops/sec
trie.keys(prefix="xxx"), avg_len(res)==415: 0.642K ops/sec
trie.values(prefix="xxx"), avg_len(res)==415: 4.974K ops/sec
trie.items(prefix="xxxxx"), avg_len(res)==17: 14.781K ops/sec
trie.keys(prefix="xxxxx"), avg_len(res)==17: 15.766K ops/sec
trie.values(prefix="xxxxx"), avg_len(res)==17: 96.456K ops/sec
trie.items(prefix="xxxxxxxx"), avg_len(res)==3: 75.165K ops/sec
trie.keys(prefix="xxxxxxxx"), avg_len(res)==3: 77.225K ops/sec
trie.values(prefix="xxxxxxxx"), avg_len(res)==3: 320.755K ops/sec
trie.items(prefix="xxxxx..xx"), avg_len(res)==1.4: 173.591K ops/sec
trie.keys(prefix="xxxxx..xx"), avg_len(res)==1.4: 180.678K ops/sec
trie.values(prefix="xxxxx..xx"), avg_len(res)==1.4: 503.392K ops/sec
trie.items(prefix="xxx"), NON_EXISTING: 2023.647K ops/sec
trie.keys(prefix="xxx"), NON_EXISTING: 1976.928K ops/sec
trie.values(prefix="xxx"), NON_EXISTING: 2060.372K ops/sec
Random insert time is very slow compared to dict, this is the limitation
of double-array tries; updates are quite fast. If you want to build a trie,
consider sorting keys before the insertion::
dict __setitem__ (updates): 6.497M ops/sec
trie __setitem__ (updates): 2.633M ops/sec
dict __setitem__ (inserts, random): 5.808M ops/sec
trie __setitem__ (inserts, random): 0.053M ops/sec
dict __setitem__ (inserts, sorted): 5.749M ops/sec
trie __setitem__ (inserts, sorted): 0.624M ops/sec
dict setdefault (updates): 3.455M ops/sec
trie setdefault (updates): 1.910M ops/sec
dict setdefault (inserts): 3.466M ops/sec
trie setdefault (inserts): 0.053M ops/sec
Other results (note that len(trie)
is currently implemented
using trie traversal)::
dict __contains__ (hits): 6.801M ops/sec
trie __contains__ (hits): 2.816M ops/sec
dict __contains__ (misses): 5.470M ops/sec
trie __contains__ (misses): 4.224M ops/sec
dict __len__: 334336.269 ops/sec
trie __len__: 22.900 ops/sec
dict values(): 406.507 ops/sec
trie values(): 20.864 ops/sec
dict keys(): 189.298 ops/sec
trie keys(): 2.773 ops/sec
dict items(): 48.734 ops/sec
trie items(): 2.611 ops/sec
Please take this benchmark results with a grain of salt; this
is a very simple benchmark and may not cover your use case.
Current Limitations
- keys must be unicode (no implicit conversion for byte strings
under Python 2.x, sorry);
- there are no iterator versions of keys/values/items (this is not
implemented yet);
- it is painfully slow and maybe buggy under pypy;
- library is not tested with narrow Python builds.
Contributing
Development happens at github: https://github.com/pytries/datrie.
Feel free to submit ideas, bugs, pull requests.
Running tests and benchmarks
Make sure tox
_ is installed and run
::
$ tox
from the source checkout. Tests should pass under Python 2.7 and 3.4+.
::
$ tox -c tox-bench.ini
runs benchmarks.
If you've changed anything in the source code then
make sure cython
_ is installed and run
::
$ update_c.sh
before each tox
command.
Please note that benchmarks are not included in the release
tar.gz's because benchmark data is large and this
saves a lot of bandwidth; use source checkouts from
github or bitbucket for the benchmarks.
.. _cython: https://cython.org/
.. _tox: https://tox.readthedocs.io/
Authors & Contributors
See https://github.com/pytries/datrie/graphs/contributors.
This module is based on libdatrie
_ C library by Theppitak Karoonboonyanan
and is inspired by fast_trie
_ Ruby bindings, PyTrie
_ pure
Python implementation and Tree::Trie
_ Perl implementation;
some docs and API ideas are borrowed from these projects.
.. _fast_trie: https://github.com/tyler/trie
.. _PyTrie: https://github.com/gsakkis/pytrie
.. _Tree::Trie: https://metacpan.org/pod/release/AVIF/Tree-Trie-1.9/Trie.pm
License
Licensed under LGPL v2.1.
CHANGES
0.8.2 (2020-03-25)
- Future-proof Python support by making cython a build time dependency and
removing cython generated c files from the repo (and sdist).
- Fix collections.abc.MutableMapping import
- CI and test updates
- Adjust library name to unbreak some linkers
0.8.1 (skipped)
This version intentionally skipped
0.8 (2019-07-03)
- Python 3.7 compatibility; extension is rebuilt with Cython 0.29.11.
- Trie.get function;
- Python 2.6 and 3.3 support is dropped;
- removed patch to libdatrie which is no longer required;
- testing and CI fixes.
0.7.1 (2016-03-12)
- updated the bundled C library to version 0.2.9;
- implemented
Trie.__len__
in terms of trie_enumerate
; - rebuilt Cython wrapper with Cython 0.23.4;
- changed
Trie
to implement collections.abc.MutableMapping
; - fixed
Trie
pickling, which segfaulted on Python2.X.
0.7 (2014-02-18)
- bundled libdatrie C library is updated to version 0.2.8;
- new
.suffixes()
method (thanks Ahmed T. Youssef); - wrapper is rebuilt with Cython 0.20.1.
0.6.1 (2013-09-21)
- fixed build for Visual Studio (thanks Gabi Davar).
0.6 (2013-07-09)
- datrie is rebuilt with Cython 0.19.1;
iter_prefix_values
, prefix_values
and longest_prefix_value
methods for datrie.BaseTrie
and datrie.Trie
(thanks Jared Suttles).
0.5.1 (2013-01-30)
- Recently introduced memory leak in
longest_prefix
and longest_prefix_item
is fixed.
0.5 (2013-01-29)
longest_prefix
and longest_prefix_item
methods are fixed;- datrie is rebuilt with Cython 0.18;
- misleading benchmark results in README are fixed;
- State._walk is renamed to State.walk_char.
0.4.2 (2012-09-02)
- Update to latest libdatrie; this makes
.keys()
method a bit slower but
removes a keys length limitation.
0.4.1 (2012-07-29)
- cPickle is used for saving/loading
datrie.Trie
if it is available.
0.4 (2012-07-27)
libdatrie
improvements and bugfixes, including C iterator API support;- custom iteration support using
datrie.State
and datrie.Iterator
. - speed improvements:
__length__
, keys
, values
and
items
methods should be up to 2x faster. - keys longer than 32768 are not supported in this release.
0.3 (2012-07-21)
There are no new features or speed improvements in this release.
datrie.new
is deprecated; use datrie.Trie
with the same arguments;- small test & benchmark improvements.
0.2 (2012-07-16)
datrie.Trie
items can have any Python object as a value
(Trie
from 0.1.x becomes datrie.BaseTrie
);longest_prefix
and longest_prefix_items
are fixed;save
& load
are rewritten;setdefault
method.
0.1.1 (2012-07-13)
- Windows support (upstream libdatrie changes are merged);
- license is changed from LGPL v3 to LGPL v2.1 to match the libdatrie license.
0.1 (2012-07-12)
Initial release.