Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

dingodb

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

dingodb

dingodb is dingodb sdk

  • 0.0.18
  • PyPI
  • Socket score

Maintainers
1

python-dingodb

The DingoDB python sdk

First, you have prepared the DingoDB environment, see the docs at https://github.com/dingodb/dingo-deploy.git

For more information about DingoDB, see the docs at https://dingodb.readthedocs.io/en/latest/

How to Contribute

1. Compile

pip install -r requirements.txt
git submodule update --init --recursive

2. Release

Usage

Installation

  1. Install from pypi
pip3 install dingodb
  1. Install from Source
pip install git+https://github.com/dingodb/pydingo.git

Basic API

Creating an index

The following example creates an index without a metadata configuration.

>>> import dingodb
>>> dingo_client = dingodb.DingoDB("user", "password", ["172.20.3.20:13000"])
>>> dingo_client.create_index("testdingo", 6, index_type="flat")
True

dingodb provides flexible indexing parameters.

>>> help(dingo_client.create_index)
create_index(index_name, dimension, index_type='hnsw', metric_type='euclidean', replicas=3, index_config=None, metadata_config=None, partition_rule=None, auto_id=True)
Get index

The following example returns all indexes in your schema.

>>> dingo_client.get_index()
['testdingo']
Get index info

The following example returns the info in specified index.

>>> dingo_client.describe_index_info("testdingo")
{'name': 'testdingo', 'version': 0, 'replica': 3, 'autoIncrement': 1, 'indexParameter': {'indexType': 'INDEX_TYPE_VECTOR', 'vectorIndexParameter': {'vectorIndexType': 'VECTOR_INDEX_TYPE_FLAT', 'flatParam': {'dimension': 6, 'metricType': 'METRIC_TYPE_L2'}, 'ivfFlatParam': None, 'ivfPqParam': None, 'hnswParam': None, 'diskAnnParam': None}}}
Add vector

The following example add vector to database.

>>> dingo_client.vector_add("testdingo", [{"a1":"b1", "aa1":"bb1"}, {"a1": "b1"}],[[0.19151945,0.62210876,0.43772775,0.7853586,0.77997583,0.2725926], [0.27746424078941345,0.801872193813324,0.9581393599510193,0.8759326338768005,0.35781726241111755,0.5009950995445251]])
[{'id': 1, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [0.19151945, 0.62210876, 0.43772775, 0.7853586, 0.77997583, 0.2725926], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}, 'aa1': {'fieldType': 'STRING', 'fields': [{'data': 'bb1'}]}}}, {'id': 2, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [0.27746424, 0.8018722, 0.95813936, 0.87593263, 0.35781726, 0.5009951], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}}]
Get MAX ID

you can use autoIncrement id, The following example get max id

>>> dingo_client.get_max_index_row("testdingo")
2
Search Vector

The following example Basic Search without metata.

>>> dingo_client.vector_search("testdingo", [[0.19151945,0.62210876,0.43772775,0.7853586,0.77997583,0.2725926]], 10)
[{'vectorWithDistances': [{'id': 1, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}, 'aa1': {'fieldType': 'STRING', 'fields': [{'data': 'bb1'}]}}, 'distance': 0.0}, {'id': 2, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}, 'distance': 0.5491189}]}]

The following example Search with metata.

>>> dingo_client.vector_search("testdingo", [0.19151945,0.62210876,0.43772775,0.7853586,0.77997583,0.2725926],10, {"meta_expr": {"aa1": "bb1"}})
{'vectorWithDistances': [{'id': 1, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [], 'binaryValues': []}, 'scalarData': {'aa1': {'fieldType': 'STRING', 'fields': [{'data': 'bb1'}]}, 'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}, 'distance': 0.0}]}
Query vector with ids

The following example Query vector with ids.

>>> dingo_client.vector_get("testdingo", [2])
[{'id': 2, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [0.27746424, 0.8018722, 0.95813936, 0.87593263, 0.35781726, 0.5009951], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}}]
Detele vector with ids

The following example Detele vector with ids.

>>> dingo_client.vector_delete("testdingo", [2])
[True]
Drop index

The following example Drop one index.

>>> dingo_client.delete_index("testdingo")
True

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc